淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2106200814335400
中文論文名稱 分離式亞固有結構預設法之系統時變穩定器設計
英文論文名稱 Decoupled Time-Varying System Stabilizer Design Via Preseted Deutero-Eigenstructure Method
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 李金譚
研究生英文姓名 King-Tan Lee
學號 889350038
學位類別 博士
語文別 中文
口試日期 2008-06-12
論文頁數 102頁
口試委員 指導教授-黃聰亮
委員-陳友倫
委員-蕭瑛東
委員-黃聰耀
委員-翁慶昌
委員-施國琛
中文關鍵字 最佳降階,系統穩定器,亞固有結構 
英文關鍵字 Deutero-Eigenstructure  Optimal Reduced Order Model  Optimal Decoupled  System Stabilizer 
學科別分類
中文摘要 工業發展與人口增加,用電需求量大增,為提供良好供電品質與提高系統穩定度,各電力系統間遂發展為互聯系統,使傳輸距離增長,當發電廠遠離負載中心系統時負載變動或故障發生就會容易引發自發性低頻振盪。為改善系統低頻振盪,提高系統阻尼,本論文提出動態極點指定之觀念,並利用最佳降階系統模型理論,以確保輸出變數之物理性與輸出回授之有效性,接著推導出亞固有結構預設法,最後整合利用輸出回授之最佳分離式穩定器設計的新方法,並應用於設計分離式系統時變穩定器。由模擬結果顯示,系統動態極點,固有結構指定與穩定性之改善,可經由系統時變穩定器的設計達成,並符合實際應用。
英文摘要 In power system, the degree of low frequency oscillation and damping ratio of the system are the most important factors influencing the electro-mechanical output quality. Hence, the improvement of the damping ratio will be the index of the power system stabilizer design. The new concept of dynamic poles assignment is proposed in this thesis. The technique of optimal reduced order model is used to retain the physical meaning and effectiveness of the output state variables. Following, the theorem of Preseted Deutero-Eigenstructure Method are derived. Based on the output states feedback, a new method of designing optimal decentralized stabilizer is also introduced. The concept is used to design the time-varying stabilizer of power system. The results of applying the proposed power system stabilizer design approach to the study system show that the system stability can improved. The time-varying stabilizers introduced in this study are very simple and will be easily implemented.
論文目次 論文提要……………………………………………………………… I
ABSTRACT …………………………………………………………… II
目錄 ………………………………………………………………… III
圖目錄 ……………………………………………………………… VI
表目錄 ………………………………………………………………VIII
第一章 緒論
1.1 研究背景 …………………………………………………………1
1.2 相關文獻探討…………………………………………………… 2
1.3 研究動機 …………………………………………………………6
1.4 研究方法 …………………………………………………………7
1.5 本論文之貢獻…………………………………………………… 8
1.6 內容概要………………………………………………………… 8
第二章 系統數學模型……………………………………………… 10
2.1 前言 …………………………………………………………… 10 2.2 動態穩定度………………………………………………………10
2.3系統數學模型…………………………………………………… 11
2.4無限匯流排電力系統…………………………………………… 15
第三章 最佳降階理論與分離式設計………………………………21
3.1 前言 …………………………………………………………… 21
3.2 最佳降階理論……………………………………………………21
3.3 最佳降階法於系統穩定器設計之應用…………………………26
3.4 分離式設計………………………………………………………32
3.4 本章結論…………………………………………………………38
第四章 亞固有結構預設法…………………………………………40
4.1 前言 …………………………………………………………… 40
4.2模態展開理論…………………………………………………… 40
4.3固有結構指定…………………………………………………… 43
4.4固有結構指定法於系統穩定器設計之應用…………………… 51
4.5亞固有結構預設法……………………………………………… 55
4.6 本章結論…………………………………………………………62
第五章 動態極點指定與時變控制器設計…………………………63
5.1 前言 …………………………………………………………… 63
5.2 動態極點指定理論………………………………………………63
5.3動態極點指定理論分析………………………………………… 66
5.4系統時變穩定器設計與參數設定方式………………………… 70
5.5系統時變穩定器設計實例……………………………………… 72
5.6 本章結論…………………………………………………………79
第六章 固有結構指定之系統時變穩定器設計實例………………80
6.1 雙機系統 ……………………………………………………… 80
6.2 三機系統…………………………………………………………86
6.3本章結論………………………………………………………… 96
第七章 結論…………………………………………………………97
7.1 結論 ………………………………………………………… 97
7.2 未來研究方向 ……………………………………………… 98
參考文獻 …………………………………………………………… 99

圖目錄
圖1.1 傳統電力系統穩定器控制結構方塊圖……………………2
圖1.2 最佳控制結構方塊圖………………………………………3
圖1.3 最佳時間控制器結構方塊圖………………………………4
圖1.4 模糊控制器系統方塊圖……………………………………5
圖2.1 同步發電機之電路模型……………………………………12
圖2.2 發電機d軸及q軸等效電路圖………………………………14
圖2.3 IEEE Type I 激磁系統方塊圖………………………… 15
圖2.4 單機無限匯流排電力系統圖………………………………16
圖2.5 單機線性系統方塊圖………………………………………16
圖2.6 單機無限匯流排系統線性數學模型方塊圖………………17
圖2.7 雙機無限匯流排系統圖……………………………………19
圖3.1 狀態回授最佳控制與最佳降階法一號機負載變動5% 時系統響應圖………………………………………………………………30
圖3.2 狀態回授最佳控制與最佳降階法二號機負載變動5% 時系統響應圖………………………………………………………………31
圖3.3 分離設計法之控制結構………………………………… 32
圖3.4 全狀態回授分離式設計與最佳化分離式設計一號機負載變動5% 時系統響應圖………………………………………………… 38
圖4.1 與 的幾何意義………………………………………… 46
圖4.2 利用輸出回授之系統穩定器結構圖…………………… 51
圖4.3 利用PI控制器完成之系統穩定器控制結構圖………… 51
圖4.4 雙機無限匯流排系統…………………………………… 52
圖4.5 與 之幾何意義……………………………………… 57
圖5.1 加上時變回授之系統控制方塊圖……………………… 66
圖5.2 統時變穩定器的控制結構圖…………………………… 70
圖5.3 系統輸出回授時變穩定器之控制結構圖……………… 71
圖5.4 負載需量增加10%時之角頻率暫態響應……………… 74
圖5.5 負載需量增加5%時之角頻率暫態響應………………… 78
圖6.1 三機系統單線圖……………………………………… 86

表目錄
表2.1 單機無限匯流排系統參數………………………………17
表2.2 單機系統開環路固有值…………………………………19
表2.3 雙機系統開環路固有值…………………………………20
表3.1 雙機系統開環路固有值…………………………………27
表3.2 狀態回授最佳控制與最佳降階法之回授增益…………29
表4.1 指定之固有結構值………………………………………53
表4.2 固有結構指定法回授增益………………………………54
表4.3 使用固有結構指定法之閉迴路固有結構………………54
表4.4 亞固有結構指定法回授增益……………………………61
表4.5 使用亞固有結構指定法之閉迴路固有結構……………61
表5.1 開環路系統固有值………………………………………75
表5.2 預設之固有結構…………………………………………75
表5.3 固有結構指定下,回授增益與閉環路固有值…………75
表6.1 開環路系統固有值………………………………………81
表6.2 雙機系統加上整體增益後之系統固有值………………82
表6.3 指定之固有結構…………………………………………82
表6.4 固有結構指定法回授增益………………………………82
表6.5 使用固有結構指定法之閉迴路固有結構………………82
表6.6 三部機組系統參數資料………………………………… 86
表6.7 三機系統開環路系統固有值……………………………88
表6.8 三機系統開環路系統固有向量…………………………88
表6.9 加上整體增益後之三機系統固有值……………………89
表6.10 加上整體增益後之三機系統固有向量…………………90
表6.11 三機系統模態1的固有向量與參與因數……………… 90
表6.12 三機系統指定之固有結構………………………………90
表6.13 三機系統回授增益與閉環路固有結構…………………91



參考文獻 [1]D.L. Bauer, D.B. Cory, W.D. Buhr, G. B. Ostroski, S. S. Cogswell and D.A. Swanson, “Simulation of low frequency undamped oscillations in large power systems,” IEEE Trans. Power Apparatus and Systems, PAS-89, No. 3, 1996, pp. 1239-1247.
[2]V. Arcidiacono, E. Ferrari and F. Saccomanno, “Studies on damping electromechanical oscillation in multimachine system with longitudinal structure,” IEEE Trans. Power Apparatus and Systems, PAS-95, No. 2, 1976, pp. 450-460.
[3]F.R. Schleif and J.H. Whiteg ”Damping for the Northwest-Southwest tie line oscillation analog study,” IEEE Trans. Power Apparatus and Systems, PAS-85, No. 12, 1966, pp. 1239-1247.
[4]Y.Y. Hsu, S.W. Shyue, and C.C. Su, “Low frequency oscillations in longitudinal power systems: experience with dynamic stability of Taiwan Power System,” IEEE Trans. Power Systems, PWRS-2, No. 1, 1987, pp. 92-100.
[5]A.N. Andrey, E.Y. Shapiroand J.C. Chung, ”Eigenstructure assignment for linear systems,” IEEE Trans. Aerospace and Electronic Systems, AES-19, No. 5, 1983, pp.711-729.
[6]W.D. Stevenson, Elements of Power System Analysis, New York McGraw-Hill, 1982.
[7]E.V. Larsen and D.A. Swann, “Applying power system stabilizers, Part I: general concepts,” IEEE Trans. Power Apparatus and Systems, PAS-100, No. 6, 1981, pp. 3017-3024.
[8]E.V. Larsen and D.A. Swann, “Applying power system stabilizers, Part II: performance objectives and tuning concepts,” IEEE Trans. Power Apparatus and Systems, PAS-100, No. 6, 1981, pp. 3025-3033.
[9]E.V. Larsen and D.A. Swann, “Applying power system stabilizers, part III: practical considerations,” IEEE Trans. Power Apparatus and Systems, PAS-100, No. 6, 1981, pp. 3034-3046.
[10]C.M. Lim and S. Elangocan, “A new stabilizer design technique for multimachine power systems,” IEEE Trans. Power Apparatus and Systems, PAS-104, No. 10, 1985, pp. 2393-2400.
[11]C.M. Lim and S. Elangocan, “Design of stabilizers in multimachine power system,” IEE Proc., Vol. 132, Pt. C, No. 3, 1985, pp. 146-1531.
[12]R.T. Byerly, D.E. Sherman and D.K. Mclain, “Normal modes and mode shapes applied to dynamic stability analysis,” IEEE Trans. Power Apparatus and Systems, PAS-94, No. 2, 1975, pp. 224-229.
[13]H.A.M. Moussa and Y.N. Yu, “Optimal power system stabilization through excitation and/or governor control,” IEEE Trans. Power Apparatus and Systems, PAS-91, No. 3, 1972, pp. 1166-1174.
[14]O’Donnell, J. J, “Bounds on limit cycle in two –dimensional bang-bang control systems with an almost time-optimal switching curve,” JACC Preprint, pp. 199-206,1964.
[15]M. Athans, and P. L. Falb, “Optimal control: an introduction to the theory and its applications,” McGraw-Hill Book Company, 1984.
[16]D.E. Kirk, “Optimal Control Theory An Introduction,” Prentice-Hall, INC., pp.240-259, 1970.
[17]D.E. Kirk, “Optimal Control Theory An Introduction,” Prentice-Hall, INC., pp.172-185, 1970.
[18]F.L. Lewis, “Applied Optimal Control & Estimation,” Prentice -Hall, INC., pp.172-185, 1992.
[19]A. Feliachi, X. Zhang, and C. S. Sims, “Power system stabilizers Design using Optimal Reduced Order Models Part I:Model Reduction,” IEEE Trans. PWRS-3, pp. 1670-1685, 1988.
[20]A. Feliachi, X. Zhang, and C. S. Sims, “Power system stabilizers Design using Optimal Reduced Order Models Part II:Design,” IEEE Trans. PWRS-3, pp. 1676-1684, 1988.
[21]L. A. Azdeh, “Fuzzy set,” Information and Control, vol. 8, pp. 338-353, 1965.
[22]L. A. Zadeh, “Fuzzy algorithm,” Information and Control, vol. 12, pp. 94-102, 1968.
[23]余學承, “Fault Calculation and Stability Analysis for a Cogeneration System in Science Park”, 國立中山大學電機工程學系研究所碩士論文, 民90年
[24]A.R. Bargen, Vijay Vittal,Power System Analysis,2nd .ed. Prentice Hall, 2000
[25]Hadi Saadat, Power System Analysis, McGraw-Hill.Inc, 1999
[26]許益适,劉昌煥,AC伺服系統的理論與設計實務,文笙書局,民82年
[27]C.A. GROSS, Power System Analysis, second edition, 1986
[28]P.W. SAUER, M. A. PAI Power System Dynamics and Stability, Prentice-Hall. Inc, 1998
[29]F.P. demello and C. Concordia, “Concepts of synchronous machine stability as affected by excitation control,” IEEE Trans. Power Apparatus and Systems, PAS-88, No. 4, 1969, pp. 316-329.
[30]A. Feliachi, X. Zhang and C.S. Sims, “Power system stabilizers design using optimal reduced order models Part I:model reduction,” IEEE Trans. Power Systems, PWRS-3, No. 4, 1988, pp. 1670-1685.
[31]A. Feliachi, X. Zhang and C.S .Sims, “Power system stabilizers design using optimal reduced order models Part II:design,” IEEE Trans. Power Systems, PWRS-3, No. 4, 1988, pp. 1676-1684.
[32]Y.L. Abdel-Magid and G.M. Aly, “Two-level optimal stabilization in multi-machine power system,” Electric Power System Research, Vol. 6, No. 1, 1983, pp. 33-41.
[33]T. Kaikath, Linear Systems, Englewood Cliffs, New Jersey, Prentice-Hall, 1980.
[34]A.N. Andrey, E.Y. Shapiro and J.C. Chung, ”Eigenstructure assignment for linear systems,” IEEE Trans. Aerospace and Electronic Systems, AES-19, No. 5, 1983, pp. 711-729.
[35]P.H. Hung, “Power system dynamic stability study via eigstructure analysis.” Ph. D. dissertation, Dept. Elect. Eng., National Taiwan Univ., 1990.
[36]Y. N. Yu and C. Siggers, “Stabilization and optimal control signals for a power system,” IEEE Trans. PAS-90, 1971. pp. 1469-1481.
[37]T. L. Huang, J. A. Jiang, Y. T. Hsiao, and C. H. Chen, and ‘Maximum Power Tracking for photovoltaic system’, Tamkang Journal of science and Engineering, vol. 8. No. 2, pp. 147-153, June 2005.
[38]T. L. Huang, K. T. Lee , C. H. Chang and T. Y. Hwang, ” Two-Level Sliding Mode Controller Using Artificial Immue Algorithm,” WSEAS Transcations on Power Systems, Issue 10, Vol. 1, October 2006, pp. 1707~1712.
[39]T.L. Huang, K.T. Lee and Y.F. Huang, ”Dynamic Grey Prediction Stabilizer Design,” International Journal of Information and Technology, Vol. 1, No. 1, May 2006, pp. 7-12.
[40]T.Y. Hwang, T.L. Huang, and S.Y. Chang, System stabilizer design via Grey Prediction and time-vary method, International Journal of Information and Technology, Vol. 1, 2006, pp. 47-54
[41]T. L. Huang, T. Y. Hwang , C. H. Chang, K. T. Lee, C. C. Huang and C. M. Chung, “Controllable Performance System Stabilizer”, Journal of Information & Optimization Science, Vol.28, No.4, 2007, pp627~639.
[42]T. Y. Hwang, T. L. Huang, K. T. Lee, C. H. Chang, C. M. Chung, and C. C. Huang, “System Output Feedback Controller Design via O. S. A. Method”, Journal of Infornation & Optimization Science, Vol.28, No.4, 2007, pp603~618.
[43]T. L. Huang, K. T. Lee, T. Y. Hwang and Chia-Cheng Chao “System Time- Varying Controller Design Via E. A. Method”, Journal of Information & Optimization Science, Vol.29, No.2, 2008, pp.253-270.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-06-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信