淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2106200614541400
中文論文名稱 利用遺傳演算法串疊牛頓法重建介電物體之成像
英文論文名稱 Permittivity Distribution Reconstruction of Dielectric Objects by a Cascaded Method
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 陳穎鋒
研究生英文姓名 Ying-Feng Chen
學號 693350224
學位類別 碩士
語文別 中文
口試日期 2006-06-15
論文頁數 53頁
口試委員 指導教授-丘建青
委員-丘建青
委員-李慶烈
委員-楊成發
中文關鍵字 逆散射  介電物體  遺傳演算法  牛頓法 
英文關鍵字 inverse scattering  dielectric objects  genetic algorithms  Newton-type methods 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文提出一數值方法,主要目的為重建非均勻介電物體之成像。於逆散射方面,將逆散射問題轉換為最佳化問題之後,首先利用遺傳演算法(genetic algorithm),得一最佳化解或可接受之解,再串疊牛頓迭代法(Newton-type iterative method),以快速收斂至更精確之解。
數值方法之執行過程,其入射波採用多方向連續照射之方式,以收集較完整之材質特性資訊。於理論推導方面,本研究考慮完整之非線性公式,以提高解之精確度。即使介電物體具有較複雜之材質特性分佈(不平滑),或者介電體材質特性分佈與環境之材質特性具有較高之對比度,此數值方法亦能適用。
就大部分較簡單之例子而言,遺傳演算法即可得到相當良好之解。然而,對於較複雜之例子,即考驗著遺傳演算法之強健性。本論文以演傳演算法所得之解,當作牛頓法之初始猜測值。藉由遺傳演算法之全域搜尋特性,以求得可接受之解,期望此解對於區域性搜尋之牛頓法而言,可能為適當之初始猜測值。串疊之方法比較單一遺傳演算法,或者單一牛頓迭代法,其解之精確度勢必較高。本研究模擬之數值結果顯示,此串疊之數值方法運用於重建非均勻介電物體之材質特性分佈,得到良好之重建結果。
英文摘要 In this paper, we propose a method, which combines a genetic algorithm (GA) with a Newton-type iteration for the reconstruction of permittivity distribution of two-dimensional (2-D) dielectric objects. The method is based on a multi-illumination multiview processing. In particular, by taking account into the complete nonlinear formulations, the permittivity distribution of the objects could be highly-contrasted and complicated inhomogeneous. First, the inverse problem is recast as a global nonlinear optimization problem, which is solved by a GA. Then, the solution obtained by the GA is taken as an initial guess for the Newton-type iteration method. This method is tested by considering several numerical examples, and it is found that the performance of this combination method is better than the individual GA and the individual Newton-type iteration method. Numerical results show that satisfactory reconstruction has been obtained.
論文目次 第一章 簡介....................................1
1.1 研究動機與相關文獻...........................1
1.2 本研究之貢獻...............................................5
1.3 各章內容簡述...............................................6
第二章 非均勻介電物體之電磁成像................7
2.1 理論推導.................................7
2.2 數值方法.................................9
2.2.1 差動法於積分方程式之應用............9
2.2.2 散射場之計算與驗證.................11
2.2.3 遺傳演算法.........................14
2.2.4 遺傳演算法於逆散射之應用...........24
2.2.5 牛頓迭代法於逆散射之應用...........24
2.2.6 串疊方法於逆散射之應用.............27
第三章 數值模擬結果...........................33
第四章 結論...................................43
參考文獻........................................44

圖目錄
圖2.1 自由空間中二維問題之示意圖...................................................29
圖2.2 推導圓柱形勻均介電體之解析散射場值示意圖.......................30
圖2.3 模擬正散射場值驗證之示意圖...................................................31
圖2.4 遺傳演算法之流程圖...................................................................32
圖3.1 模擬之環境結構圖.......................................................................37
圖3.2 模擬一之介電係數分佈圖 (a) (b) (c)..........................................38
圖3.3 模擬二之介電係數分佈圖 (a) (b) (c)..........................................39
圖3.4 模擬三之介電係數分佈圖 (a) (b) (c)..........................................40
圖3.5 模擬四之介電係數分佈圖 (a) (b) (c)..........................................41
圖3.5 模擬四之介電係數分佈圖 (d) (e)...............................................42

表目錄
表2.1 遺傳演算法相關之名詞解釋與中英對照表................................22
參考文獻 [1] Ali Yapar, Hülya Şahintürk, Ibrahim Akduman, and Rainer Kress, “One-dimensional profile inversion of a cylindrical layer with inhomogeneous impedance boundary: a Newton-type iterative solution,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 10, pp. 2192-2199, Oct. 2005.

[2] V. A. Mikhnev and P. Vainikainen, “ Two-step inverse scattering method for one-dimensional permittivity profiles”, IEEE Transactions on Antennas and Propagation, Vol. 48, No.2, pp. 293-298, Feb. 2000.

[3] Ioannis T. Rekanos, Traianos V. Yioultsis, and Constantinos S. Hilas, “An inverse scattering approach based on the differential E-formulation,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 7, pp. 1456-1461, July 2004.

[4] Jianglei Ma, Weng Cho Chew, Cai-Cheng Lu, and Jiming Song, “Image reconstruction from TE scattering data using equation of strong permittivity fluctuation,” IEEE Transactions on Antennas and Propagation, Vol. 48, No.6, pp. 860-867, June 2000.

[5] Theofanis A. Maniatis, Konstantina S. Nikita, and Nikolaos K. Uzunoglu, “Two-dimensional dielectric profile reconstruction based on spectral-domain moment method and nonlinear optimization,” IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, pp. 1831-1840, Nov. 2000.

[6] Cho-Ping Chou and Yean-Woei Kiang, “Inverse scattering of dielectric cylinders by a cascaded TE-TM method,” IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No.10, pp.1923-1930, Oct. 1999.

[7] Nadine Joachimowicz, Christian Pichot, and Jean-Paul Hugonin, “Inverse scattering: an iterative numerical method for electromagnetic imaging,” IEEE Transactions on Antennas and Propagation, Vol. 39, No. 12, pp. 1742-1752, Dec. 1991.

[8] A. Roger, “Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem,” IEEE Transactions on Antennas and Propagation, Vol. AP-29, No. 2, pp. 232-238, Mar. 1981.

[9] C. C. Chiu and Y. W. Kiang, “Microwave imaging of multiple conducting cylinders,” IEEE Transactions on Antennas and Propagation, Vol. 40, No. 8, pp. 933-941, Aug. 1992.

[10] G. P. Otto and W. C. Chew, “Microwave inverse scattering-local shape function imaging for improved resolution of strong scatterers,” IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 1, pp. 137-142, Jan. 1994.

[11] C. C. Chiu and P. T. L, “Image reconstruction of a perfectly conducting cylinder by the genetic algorithm,” IEE Proc.-Micro. Antennas Propagat., Vol. 143, pp.249-253, June 1996.

[12] Salvatore Caorsi, Andrea Massa, Matteo Pastorino, and Massimo Donelli, “Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, pp. 1386-1397, June 2004.

[13] Salvatore Caorsi, Antonio Costa, and Matteo Pastorino, “Microwave imaging within the second-order Born approximation: stochastic optimization by a genetic algorithm,” IEEE Transactions on Antennas and Propagation, Vol. 49, No. 1, pp. 22-31, Jan. 2001.

[14] Matteo Pastorino, Andrea Massa, and Salvatore Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 3, pp. 573-578, June 2000.

[15] Salvatore Caorsi, Andrea Massa, and Matteo Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, pp. 1697-1708, July 2000.

[16] Y. Zhou, J. Li, and H. Ling, “Shape inversion of metallic cavities using hybrid genetic algorithm combined with tabu list,” Electronics Letters, Vol. 39, pp. 280-281, Feb. 2003.

[17] Y. Zhou and H. Ling, “Electromagnetic inversion of Ipswich objects with the use of the genetic algorithm,” Microwave and Optical Technology Letters, Vol. 33, pp. 457-459, June 2002.

[18] A. Qing, “An experimental study on electromagnetic inverse scattering of a perfectly conducting cylinder by using the real-coded genetic algorithm,” Microwave and Optical Technology Letters, Vol. 30, pp. 315-320, Sept. 2001.

[19] W. Chien, Using the Genetic Algorithm to Reconstruct the Two-Dimensional Conductor. Master Thesis, Electrical Engineering Department, Tamkang University, Taipei, R.O.C., June 1999.

[20] Z. Q. Meng, T. Takenaka, and T. Tanaka, “Image reconstruction of two-dimensional impenetrable objects using genetic algoritm,” Journal of Electromagnetic Waves and Applications, Vol. 13, pp.95-118, 1999.

[21] T. Takenaka, Z. Q. Meng, T. Tanaka, and W. C. Chew, “Local shape function combined with genetic algorithm applied to inverse scattering for strips,” Microwave and Optical Technology Letters, Vol. 16, pp. 337-341, Dec. 1997.

[22] Tommaso Isernia, Lorenzo Crocco, and Michele D’Urso, “New tools and series for forward and inverse scattering problems in lossy media,” IEEE Geoscience and Remote Sensing Letters, Vol. 1, No. 4, pp. 327-331, Oct. 2004.

[23] Salvatore Caorsi, Massimo Donelli, and Andrea Massa, “Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method,” IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 4, pp. 1217-1228, Apr. 2004.

[24] Salvatore Caorsi, Andrea Massa, Matteo Pastorino, and Andrea Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 12, pp. 2745-2753, Dec. 2003.

[25] R. Pierri, A. Brancaccio, and F. De Blasio, “Multifrequency dielectric profile inversion for a cylindrically stratified medium,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, pp. 1716-1724, July 2000.

[26] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, vol. 6, pp. 635-641, Aug. 1990.

[27] V. A. Morozonv, Methods for Solving Incorrectly Posed Problems. New York: Spring-Verlag, 1984.

[28] C. De Mol, “A critical survey of regularized inversion methods,” in Inverse Problems in Scattering and Imaging, M. Bertero and E. R. Pike, Eds. Bristol, U.K.: Adam Ho; ger. 1992, pp. 345-370.

[29] B. Hofmann, “Regularization of nonlinear problems and the degree of ill-posedness,” in Inverse Problems: Principles and Applications in Geophysics, Technology, and Medicine, G. Anger, R. Gorenflo, and H. Jockmann, Eds. New York: Wiley 1993, pp. 174-188.

[30] N. N. Bojarski, “A survey of the physical optics inverse scattering identity,” IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989, Sept. 1982.

[31] T. H. Chu and N. H. Farhat, “Polarization effects in microwave diversity imaging of perfectly conducting cylinders,” IEEE Trans. Antennas Propagat., vol.37, pp. 235-244, Feb. 1989.

[32] D. B. Ge, “A study of Lewis method for target-shape reconstruction,” Inverse Problems, vol. 6, pp. 363-370, June 1990.

[33] T. H. Chu and D. B. Lin, “Microwave diversity imaging of perfectly conducting objects in the near-field region,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.

[34] T. S. Low and B. Chao, “The use of finite elements and neural networks for the solution of inverse electromagnetic problems,” IEEE Trans. Magn., vol. 28, pp. 3811-3813, May 1992.

[35] S. R. H. Hoole, ”Artificial neural networks in the solution of inverse electromagnetic field problems,” IEEE Trans. Magn., vol. 29, pp. 1931-1934, Feb. 1993.

[36] M. R. Azimi-Sadjadi and S. A. Stricker, “Detection and classification of buried dielectric anomalies using neural networks-Further results,” IEEE Trans. Instrum. Meas., vol. 43, pp. 34-39, Feb. 1994.

[37] I. Elshafiey, L. Upda, and S. S. Upda, “Solution of inverse problems in electromagnetics using Hopfield neural networks,” IEEE Trans. Magn., vol. 31, pp. 852-861, Jan. 1995.

[38] A. K. Hamid and M. AlSunaidi, “Inverse scattering by dielectric circular cylindrical scatterers using a neural network approach,” in 1997 IEEE Int. Symp. Antennas Propagat., Montreal, QC, Canada, pp. 2278-2281, July 1997.

[39] F. C. Morabito, A. Formisano, and R. Martone, “Wavelet tools for improving the accuracy of neural network solution of electromagnetic inverse problems,” IEEE Trans. Magn., vol. 34, pp. 2968-2971, May 1998.

[40] A. Qing, “Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy,” Antennas and Propagation, IEEE Transactions, vol. 51, Issue 6, pp. 1251-1262, June 2003.

[41] A. Qing, “Electromagnetic inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES),” Antennas and Propagation, IEEE Transactions, vol. 52, Issue 5, pp. 1223-1229, May 2004.

[42] M. M. Ney, A. M. Smith, and S. S. Stuchly, “A solution of electromagnetic imaging using pseudoinverse transformation,“ IEEE Trans. Med. Imag., Vol. MI-3, pp. 155-162, Dec. 1984.

[43] S. Caorsi, G. L. Gragnani, and M. Pastorina, “An approach to microwave imaging using a multiview moment method solution for a two-dimensional infinite cylinder,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1062-1067, June 1991.

[44] S. Caorsi, G. L. Gragnani, and M. Pastorino, “Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 581-589, May 1994.

[45] Z. Xiong and A. Kirsch, “Three-dimensional earth conductivity inversion,” J. omput. Appl. Math., vol. 42, pp. 109-121, 1992.

[46] T. M. Habashy and M. L. Oristaglio, “Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity,” Radio Science, vol. 29, pp. 1101-1118, July-Aug., 1994.

[47] W. Wang and S. Zhang, “Unrelated illumination method for electromagnetic inverse scattering of inhomogeneous lossy dielectric bodies,” IEEE Trans. Antennas Propagat., Vol. AP-40, pp. 1292-1296, Nov. 1992.

[48] R. F. Harrington, Field Computation by Moment Methods. New York: Macmillan, 1968.

[49] A. Ishimaru, Electromagnetic Wave Propagation, Radiation and Scattering. Englewood Cliffs, NJ: Prentice-Hall, 1991.

[50] J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Transactions on Antennas and Propagation. Vol. 13, pp. 334-341, May 1965.

[51] D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning. Addison Wesley, 1989.

[52] J. Michael Johnson and Yahya Rahmat-Samii, ”Genetic algorithms in engineering electromagnetics,” IEEE Antennas and Propagation Magazine, Vol. 39, No.4, pp.7-21, Aug. 1997.

[53] J.A. Vasconcelos, J. A. Ramírez, R. H. C. Takahashi, and R. R. Saldanha, “Improvements in genetic algorithms,” IEEE Transactions on Magnetics, Vol. 37, No. 5, pp. 3414-3417, Sept. 2001.

[54] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in FORTRAN, Second Edition. The Press Syndicate of the University of Cambridge, 1992.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-06-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2007-06-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信