§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2106200515124900
DOI 10.6846/TKU.2005.00467
論文名稱(中文) 多孔型聚偏二氟乙烯薄膜固定離胺酸與己二胺
論文名稱(英文) Immobilization of lysine and 1,6-hexanediamine on porous poly(vinylidene fluoride) membranes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 張旭賢
研究生(英文) Hsu-Hsien Chang
學號 692360281
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-05-26
論文頁數 126頁
口試委員 指導教授 - 鄭廖平
委員 - 楊台鴻
委員 - 林達鎔
關鍵字(中) 多孔型薄膜
聚偏二氟乙烯
濕式相轉換
電漿接枝
聚甲基丙烯酯環氧丙烷
離胺酸
己二胺
關鍵字(英) poly(vinylidene fluoride)
plasma-induced polymerization
porous membrane
immobilization
第三語言關鍵字
學科別分類
中文摘要
本研究主要探討聚偏二氟乙烯(PVDF)多孔型薄膜之製備及改質。首先利用浸漬-沈澱法製備聚偏二氟乙烯薄膜,溶劑為磷酸三乙酯(TEP),非溶劑為水;藉由改變製膜液與沈澱槽之組成,製作出一系列不同孔隙結構之薄膜,並以SEM、DSC、XRD、Contact Angle等來作膜材物性分析。其次,利用電漿聚合法將聚甲基丙烯酯環氧丙烷(PGMA)接枝在各薄膜上,並探討電漿處理時間、電漿功率、薄膜孔隙結構、反應溫度、反應濃度等參數對接枝量的影響;再利用PGMA的環氧基分別與離胺酸及己二胺上的胺基反應形成共價鍵,而將此二者固定於薄膜表面,同樣地對各反應參數(例如反應溫度、反應濃度、pH值等)加以探討,預計本研究所製備之各種不同孔隙結構或化學組成的薄膜將可應用於神經細胞的培養,成為有用的生醫材料。
英文摘要
This research will focus on the investigations of the formation and modification of porous poly(vinylidene fluoride) (PVDF) membranes, and their applications in biomedical technology. First of all, immersion-precipitation method will be adopted to prepare PVDF membranes, for which process triethylphosphate (TEP) and water will be used as the solvent and nonsolvent, respectively. By varying the compositions of the casting dope and the precipitation bath, it is expect that a series of membranes with different porous structures will be formed. SEM, DSC, XRD, and Contact Angle measurement will be employed to characterize these membranes. Then, they will be grafted, on their top surfaces, with a certain amount of poly(glycidyl methacrylate) (PGMA) using the plasma-induced polymerization method. Process parameters, such as plasma treatment time, plasma power, membrane structure, reaction temperature, reactant concentrations, etc., will be investigated to see their effects on the grafting yield. Subsequently, lysine and 1,6-hexanediamine will be immobilize on various membranes by reaction of them with epoxy group of previously grafted PGMA. Similarly, various reaction conditions (e.g., reaction temperature, reactant concentrations, pH, etc.) will be the subjects of studies.
第三語言摘要
論文目次
目錄
論文提要內容	I
ABSTRACT	II
目    錄	III
圖  目  錄	IX
表  目  錄	XII
第一章  序  論	1
1-1 前  言	1
1-2 薄膜程序	2
1-3 PVDF薄膜	3
1-4 研究動機與實驗目的	7
第二章  基礎理論	10
2-1 高分子薄膜	10
2-1.1 薄膜之定義	10
2-1.2 薄膜之孔隙結構	12
2-1.3 薄膜製備	15
2-1.3.1 熱誘導式相轉換法(THERMAL INDUCED PHASE SEPARATION; TIPS)	15
2-1.3.2 乾式相轉換法(PRECIPITATION BY SOLVENT EVAPORATION)	15
2-1.3.3 濕式相轉換法(WET-PHASE INVERSION)	16
2-1.3.4 乾/濕式混合製程(DRY/WET PROCESS)	16
2-1.3.5 蒸氣相沉澱法(PRECIPITATION FROM THE VAPOR PHASE)	17
2-1.4 成膜理論	17
2-1.4.1 成膜理論-熱力學	18
2-1.4.2 成膜理論-質傳動力學	21
2-2 電漿基本原理	23
2-2.1 電漿產生方式	25
2-2.2 電漿誘導接枝聚合反應	26
第三章  PVDF薄膜之合成與物性分析	27
3-1 前言	27
3-2 實驗	27
3-2.1 實驗材料	27
3-2.2 實驗儀器	29
3-2.3 實驗方法與步驟	30
3-2.3.1 薄膜的製備	30
3-2.3.2 相圖的製作	31
3-2.3.3 薄膜結構與物性分析	32
3-3 結果與討論	33
3-3.1 WATER-TEP-PVDF三成分系統之相圖	33
3-3.2 薄膜SEM結構分析	34
3-3.3 薄膜成膜速率與孔隙度之量測	42
3-3.4 抗張強度檢測	45
3-3.5 滲透性與水通量檢測	47
3-3.6 接觸角分析	50
3-3.7 DSC測試	51
3-3.8 XRD測試	52
3-4 結論	55
第四章  PGMA/PVDF複合薄膜之合成	56
4-1 前言	56
4-2 實驗	56
4-2.1 實驗材料	56
4-2.2 實驗儀器	58
4-2.3 實驗方法與步驟	59
4-2.3.1 GMA單體除抑制劑	59
4-2.3.2 除氧	59
4-2.3.3 薄膜表面活化	60
4-2.3.4 接枝反應	60
4-2.3.5 定量分析	60
4-2.3.6 複合薄膜之化性分析	61
4-3 結果與討論	62
4-3.1 AR電漿處理後薄膜之整體重量分析	62
4-3.2 AR電漿處理PVDF表面接觸角及自由能變化	64
4-3.3 接枝PGMA薄膜之FTIR-ATR分析	66
4-3.4 接枝PGMA薄膜之1H-NMR分析	68
4-3.5 接枝PGMA薄膜之ESCA分析	69
4-3.6接枝PGMA薄膜之EDS分析	73
4-3.7 接枝PGMA薄膜之SEM結構分析	77
4-3.8 電漿處理條件對薄膜接枝PGMA之影響	80
4-3.8.1 電漿功率對接枝PGMA之影響	80
4-3.8.2 電漿處理時間對接枝PGMA之影響	82
4-3.8.3 單體濃度對接枝PGMA之影響	84
4-3.8.4 反應溫度對接枝PGMA之影響	85
4-3.8.5 薄膜結構對PGMA接枝量之影響	86
4-4 結論	87
第五章  PVDF-G-PGMA薄膜固定離胺酸與己二胺	88
5-1 前言	88
5-2 實驗	89
5-2.1 實驗材料	89
5-2.2 實驗儀器	90
5-2.3 實驗方法與步驟	90
5-2.3.1 固定離胺酸與己二胺	90
5-2.3.2 離胺酸與己二胺定量分析	91
5-3 結果與討論	93
5-3.1 PH值變化對固定離胺酸與己二胺之影響	93
5-3.2 單體濃度對固定離胺酸與己二胺之影響	97
5-3.3 反應溫度對固定離胺酸與己二胺之影響	102
5-3.4 固定離胺酸與己二胺於複合薄膜之FTIR-ATR分析	105
5-3.5 固定離胺酸與己二胺於複合薄膜之接觸角分析	109
5-4 結論	111
第六章  總  結	112
第七章  參考文獻	114

圖目錄
Fig.1-1 Common material for making membranes	4
Fig.1-2 Immobilization of lysine on PVDF membranes	8
Fig.1-3 Immobilization of 1,6-hexanediamine on PVDF membranes	8
Fig.1-4 Epoxy groups hydrolyze to two alcohol groups	8
Fig.2-1 Schematic representation of the cross-sections of various types of membranes	11
Fig.2-2 Cellular sponge like structure in a membrane	13
Fig.2-3 Membrane consisting of spherical particles	13
Fig.2-4 Coexistence of cellular pores and crystalline particles in a membrane	14
Fig.2-5 Macrovoids in a membrane	14
Fig.2-6 Nodule structure in a membrane	14
Fig.2-7 Schematic representation of the isothermal phase behavion of a nonsolvent-solvent-polymer system consisting of a one-phase region (I), a two-phase region (II) and a gel region (III)	20
Fig.2-8 Schematic representation of mass transfer occurring at the membrane/coagulant interface, J1:Flux of coagulant, J2:Flux of solvent	22
Fig.2-9 Schematic representation of coagulation paths correspoing to the cases J2>>J1 (A) and J2<<J1 (B)	22
Fig.2-10 The reaction scheme of plasma-induced polymerization	26
Fig.3-1 Phase diagram of the Water-TEP-PVDF system	34
Fig.3-2 SEM micrographs of a PVDF membrane prepared from the Water/TEP/PVDF system, Bath : Pure water	37
Fig.3-3 SEM micrographs of a PVDF membrane, Bath : 40% TEP	38
Fig.3-4 SEM micrographs of a PVDF membrane, Bath : 50% TEP	39
Fig.3-5 SEM micrographs of a PVDF membrane, Bath : 60% TEP	40
Fig.3-6 SEM micrographs of a PVDF membrane, Bath : 70% TEP	41
Fig.3-7 Precipitation time for PVDF membrane formation	42
Fig.3-8 Thickness of membranes precipitated from with different TEP contents	44
Fig.3-9 Porosity of membranes precipitated from different baths	44
Fig.3-10 Average tensile strength of membranes precipitated from different baths	46
Fig.3-11 Average elongation at break of membranes precipitated from different baths	46
Fig.3-12 Water flux of membranes precipitated from different baths at different pressure	49
Fig.3-13 The contact angles of membranes precipitated from different baths	50
Fig.3-14 DSC themograms of PVDF membranes precipitated from different baths	51
Fig.3-15 XRD diffractograms of PVDF membranes precipitated from different baths	53
Fig.3-16 Deconvolation of XRD patterns of PVDF membranes precipitated from different baths	54
Fig.4-1 Weight loss of RF power at different plasma exposure time	63
Fig.4-2 Weight loss of plasma exposure time at different RF power	63
Fig.4-3 Contact angle of water on plasma treated PVDF surfaces as a function of plasma exposure time and RF power	65
Fig.4-4 Wetting tension of water on plasma treated PVDF surfaces as a function of plasma exposure time and RF power	65
Fig.4-5 FTIR-ATR spectra of GMA monomer, PVDF membrane, and PGMA/PVDF composite membrane	66
Fig.4-6 FTIR-ATR spectra of PGMA/PVDF composite membranes at different grafiting times	67
Fig.4-7 1H-NMR spectra of PVDF membranes	68
Fig.4-8 ESCA spectrum of a PVDF membrane	70
Fig.4-9 ESCA spectrum of PVDF membrane grafted with PGMA	71
Fig.4-10 ESCA spectrum of PVDF membrane grafted with PGMA	72
Fig.4-11 EDS spectrum of a PVDF membrane	74
Fig.4-12 EDS spectrum of PVDF membrane grafted with PGMA	75
Fig.4-13 EDS spectrum of PVDF membrane grafted with PGMA	76
Fig.4-14 SEM of pure PVDF membrane and that grafted with PGMA	78
Fig.4-15 SEM of pure PVDF membrane and that grafted with PGMA	79
Fig.4-16 Effect of plasma power on grafting yield of PGMA	81
Fig.4-17 Effect of reaction time and plasma power on grafting yield of PGMA	81
Fig.4-18 Effect of plasma treatment time on grafting yield of PGMA	83
Fig.4-19 Effect of plasma treatment time on grafting yield of PGMA after reaction for different times	83
Fig.4-20 Effect of GMA concentration on grafting yield of PGMA	84
Fig.4-21 Effect of reaction temperature on grafting yield of PGMA	85
Fig.4-22 Effect of surface morphology on grafting yield of PGMA	86
Fig.5-1 UV spectra of acid orange 7 at different concentrations	92
Fig.5-2 UV absorption calibration curve of acid orange 7	92
Fig.5-3 Reaction between epoxy and amine by nucleophilic substitution	94
Fig.5-4 Titrations of lysine	95
Fig.5-5 Titrations of 1,6-hexanediamine	96
Fig.5-6 Effect of lysine concentration on immobilization yield as determined by weighting method	98
Fig.5-7 Effect of lysine concentration on immobilization yield as determined by UV colorimetry	98
Fig.5-8 FTIR-ATR spectra of lysine/PGMA/PVDF composite membranes immobilized for different times	99
Fig.5-9 FTIR-ATR spectra of lysine/PGMA/PVDF composite membranes immobilized with different lysine concentration	99
Fig.5-10 Effect of 1,6-hexanediamine concentration on immobilization yield as determined by weighting method	100
Fig.5-11 Effect of 1,6-hexanediamine concentration on immobilization yield as determined by UV colorimetry	100
Fig.5-12 FTIR-ATR spectra of 1,6-hexanediamine/PGMA/PVDF composite membranes immobilized for different times	101
Fig.5-13 FTIR-ATR spectra of 1,6-hexanediamine/PGMA/PVDF composite membranes immobilized with different 1,6-hexanediamine concentrations	101
Fig.5-14 Effect of temperature on immobilization yield of lysine	103
Fig.5-15 FTIR-ATR spectra of lysine/PGMA/PVDF composite membranes immobilized at different temperatures	103
Fig.5-16 Effect of temperature on immobilization yield of 1,6-hexanediamine	104
Fig.5-17 FTIR-ATR spectra of 1,6-hexanediamine/PGMA/PVDF composite membranes immobilized at different temperatures	104
Fig.5-18 FTIR-ATR spectra of PVDF membranes	106
Fig.5-19 FTIR-ATR spectra of PVDF membranes	107
Fig.5-20 The contact angles of different composite membranes	110

表目錄
Table 1-1 Membrane processes and the relationship between driving force and phase type	2
Table 1-2 Chemical lesion of PVDF membrane	5
Table 3-1 Porosity of PVDF membranes	43
Table 3-2 Tensile strengths of membranes precipitated from different baths	45
Table 3-3 Wettability of membranes precipitated from different baths	49
Table 3-4 Themal properties and crystallinity of PVDF membranes	52
Table 3-5 Crystal type of PVDF	52
Table 3-6 Crystallinity of PVDF membranes determined by XRD	53
Table 5-1 Typical ranges (v in cm-1)	108
Table 5-2 The contact angles of composite membranes	110
參考文獻
1.	鄭領英、王學松,膜的高科技應用,五南圖書出版有限公司,(2003)
2.	Marcel Mulder, “Basic principles of membrane technology”, Kluwer Academic Publishers, Dordrecht / Boston / London (1991)
3.	郭文正,曾添文,薄膜分離,高力圖書公司,台北 (1988)
4.	蔡宏斌,氟碳聚合體(2),科儀新知,第四期第14卷,(1993)
5.	江文彥,神奇的氟聚物,化工技術,第七期第7卷,(1999)
6.	Kang IK, Bae JS, Seo EJ, “Synthesis and characterization of heparinized polyurethanes using plasma glow discharge”, Biomaterials, 20, 529 (1999)
7.	Valuev IL, Chupov VV, Valuev LI, “Chemical modification of polymers with physiologically active species using water-soluble carbodiimides”, Biomaterials, 19, 43 (1998)
8.	Zhu Y, Gao C, Liu X., Shen J, “Surface Modification of Polycaprolactone Membrane via Aminolysis and Biomacromolecule Immobilization for Promoting Cytocompatibility of Human Endothelial Cells”, Biomacromolecules, 3, 1312 (2002)
9.	Zhang X, Yin Z, Li L, Yin J, “Grafting of Glycidyl Methacrylate onto Ethylene-Propylene Copolymer: Preparation and Characterization”, J. Appl. Polym. Sci., 61, 2253 (1996)
10.	Kato K, Ikada Y, “Immobilization of DNA onto a Polymer Support and Its Potentiality as Immunoadsorbent”, Biotechnology and Bioengineering, 51, 581 (1996)
11.	Clausen-Schaumann H, Gaub HE, “DNA Adsorption to Laterally Structured Charged Lipid Membranes”, Langmuir, 15, 8246 (1999)
12.	Lee SD, Hsiue GH, Kao CY, “Preparation and Characterization of a Homobifunctional Silicone Rubber Membrane Crafted with Acrylic Acid via Plasma-Induced Craft Copolymerization”, J. Polym. Sci., A: Polym. Chem., 34, 141 (1996)
13.	Sano S, Kato K, Ikada Y, “Introduction of functional groups onto the surface of polyethylene for protein immobilization”, Biomaterials, 14, 817 (1993)
14.	Wang C.C., Hsiue G.H., “Glucose oxidase immobilization onto a plasma-induced graft copolymerized polymeric membrane modified by poly(ethylene) as a spacer”, J. Appl. Polym. Sci., 50, 1141 (1993)
15.	Lee YM, Shim JK, “Plasma surface graft of acrylic acid onto a porous poly(viny1idene fluoride) membrane and its riboflavin permeation”, J. Appl. Polym. Sci., 61, 1245 (1996)
16.	Kang I.K., Choi S.H., Shin D.S., Yoon S.C., “Surface modification of polyhydroxyalkanoate films and their interaction with human fibroblasts”, Int. J. Bio. Macro., 28, 205 (2001)
17.	Fujimoto K, Tadokoro H, Ueda Y, Ikada Y, “Polyurethane surface modification by graft polymerization of acrylamide for reduced protein adsorption and platelet adhesion”, Biomaterials, 14, 442 (1993)
18.	Wavhal DS, Fisher ER, “Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling”, Langmuir, 19, 79 (2003)

19.	Wang H, Kazuhiro T, Hidetoshi K, Okamoto K-I, “Pervaporation of aromatic/non-aromatic hydrocarbon mixtures through plasma-grafted membranes”, J. Membr. Sci., 154, 221 (1999)
20.	張啟林,私立淡江大學化學工程系碩士論文 (2002)
21.	Van de Witte PV, Esselbrugge H, Dijkstra PJ, Van Den Berg JWA, Feijen J, “A morphological study of membranes obtained from the systems polylactide-dioxane-methanol, polylactide-dioxane-water, and polylactide-N-methyl pyrrolidone-water”, J. Polym. Sci., B: Polym. Phys., 34, 2569 (1996)
22.	Bulte AMW, Folker B, Mulder MHV, Smolders CA, “Membranes of semicrystalline aliphatic polyamide nylon 4, 6: formation by diffusion-induced phase separation”, J. Appl. Polym. Sci., 50, 13 (1993)
23.	Cheng LP, Young TH, You WM, “Formation of crystalline EVAL membranes by controlled mass transfer process in water-DMSO-EVAL copolymer systems”, J. Membr. Sci., 145, 77 (1998)
24.	Cheng LP, Lin DJ, Shih CH, Dwan AH, Gryte CC, “PVDF membrane formation by diffusion-induced phase separation- morphologyprediction based on phase behavior and mass transfer modeling”, J. Polym. Sci., B: Polym. Phys., 37, 2079 (1999)
25.	Lin DJ, Beltsios K, Chang CL, Cheng LP, “Fine structure and formation mechanism of particulate phase-inversion poly(vinylidene fluoride) membranes”, J. Polym. Sci., B: Polym. Phys., 41, 1578 (2003)
26.	J.S. Huang, W.I. Goldburg, A.W. Bjerkaas, “Study of phase separation in a critical binary liquid mixture: spinodal decomposition”, Phys. Rev. Lett., 32, 921 (1974)
27.	L. Broens, D.M. Koenhen, C.A. Smolder, “On the mechanism of formation of asymmetric ultra- and hyper-filtration membranes”, Desalination, 22, 205 (1977)
28.	M.A. Frommer, R.M. Messalem, “Mechanism of membrane formation VI. Convective flows and large void formation during membrane precipitation”, Ind. Eng. Chem. Prod. Res. Develop., 12, 328 (1973)
29.	H. Strathmann, K. Kock, P. Amar, R.W. Baker, “The formation mechanism of phase inversion membrane”, Desalination, 16, 179 (1975)
30.	C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk, “Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids”, J. Membr. Sci., 73, 259 (1992)
31.	F.C.Lin, D.M.Wang, C.L.Lai, J.Y.Lai, “Effect of surfactants on the structure of PMMA membranes”, J. Membr. Sci. 123, 281 (1997) 
32.	D.M. Wang, F.C. Lin, T.T. Wu, J.Y. Lai, “Formation mechanism of the macrovoids induced by surfactant additives”, J. Membr. Sci. 142, 191 (1998) 
33.	J.Y. Lai , F.C. Lin, T.T. Wu, D.M. Wang, “On the formation of macrovoids in PMMA membranes”, J. Membr. Sci. 155, 31 (1999)
34.	K. Kamide and S. Mannabe, in: D. Lloyd (Ed.), “Materials science of synthetic membranes”, ACS Symp. Series 269, Am.Chem. Soc., Washington, DC (1985)
35.	M. Panar, H. H. Hoehn, and R.R. Hebert, “The nature of asymmetry in reverse osmosis membranes”, Macromolecules, 6, 777 (1973)
36.	D.Lloyd, “Microporous membrane formation via thermally induced phase separation I. solid-liquid phase separation”, J. Membr. Sci. 52, 239 (1990)
37.	D.Lloyd, “Microporous membrane formation via thermally induced phase separation II. liquid-liquid phase separation”, J. Membr. Sci. 64, 1 (1991)
38.	M.Shang, H.Matsuyama, T.Maki, M.Teramoto, D.Lloyd, “Preparation and Characterization of poly(ethylene-co-vinyl alcohol) Membranes via Thermally Induced Liquid–Liquid Phase Separation”, J. Appl. Polym. Sci. 87, 853 (2003)
39.	P. Vandeweerdt and H. Berghmans, “Temperature-concentration behavior of solution polydisperse, atactic poly(methyl methacrylate) and its influence on the formation of amorphous, microporous membranes”, Macromolecules, 24, 3547 (1991)
40.	R. H. Mehta, D. A. Madsen and D. S. Kalika, “Microporous membranes based on poly(ether ether ketone) via thermally-induced phase separation”, J. Membr. Sci., 107, 93 (1995)
41.	M. Kurata, “Thermodynamics of polymer solutions”, Harwood Academic, London, (1982)
42.	R.E. Kesting, “Concerning the microstructure of dry-RO membrane”, J. Appl. Polym. Sci. 17, 1771 (1973)
43.	L. Zeman, T. Fraser, “Formation of air-cast cellulose acetate membranes, Part I. Study the macrovoid formation”, J. Membr. Sci., 84, 93 (1993)
44.	T.H. Young, J.H. Huang, W.Y. Chuang, “Effect of evaporation temperature on the formation of particulate membranes from crystalline polymers by dry-cast process”, Europ. Polym. J. 38, 63 (2002)
45.	L. Zeman, T. Fraser, “Formation of air-cast cellulose acetate membranes, Part II. Kinetic of demixing and macrovoid growth”, J. Membr. Sci., 87, 267 (1993)
46.	L.P. Cheng, A.W. Dwan, C.C. Gryte, “Membrane formation by isothermal precipitation in polyamide-formic acid-water systems I. Description of membrane morphology”, J. Polym. Sci.: Part B: Polym. Phys. 33, 211-222 (1995)
47.	L.P. Cheng, A.W. Dwan, C.C. Gryte, “Membrane formation by isothermal precipitation in polyamide-formic acid-water systems II. Precipitation dynamics”, J. Polym. Sci.: Part B: Polym. Phys. 33, 223-235 (1995)
48.	I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann, “Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers”, J. Membr. Sci. 113, 361-371 (1996)
49.	A.M.W. Bulte, B.Folkers, M.H.V. Mulder, C.A. Smolders, “Membranes of semi-crystalline aliphatic polyamide Nylon 4,6:Formation by diffusion-induced phase separation”, J. Appl. Polym. Sci. 50, 13-26 (1993)
50.	H. Strathmann, K. Kock, “The formation mechanism of phase inversion membrane”, Desalination, 21,241, (1977)
51.	J. Y. Lai, M. J. Liu, K. R. Lee, “Polycarbonate membrane prepared via a wet phase inversion method for oxygen enrichment from air”, J. Membr. Sci., 86, 103 (1994)
52.	F. C. Lin, D. M. Wang, J. Y. Lai, Asymmetric, “TPX membranes with high gas flux”, J. Membr. Sci., 110, 25 (1996)
53.	H. Yanagishita, T. Nakane, H. Yoshitome, “Selection criteria for solvent and gelation medium in the phase inversion process”, J. Membr. Sci., 89,251 (1994)
54.	R. Zsigmongy and Bachman, Filter and method for producing same, US Patent 1,421,341 (1992)
55.	T.H. Young, D.T. Lin, L.Y. Chen, Y.H. Huang, W.Y. Chiu, “Membranes with a particulate morphology prepared by a dry-wet casting process”, Polym., 40, 5257-5264 (1999)
56.	H. Strathmann, K. Kock, “The formation mechanism of phase inversion membrane”, Desalination, 21, 241 (1977)
57.	T.H. Young, Y.H. Huang, Y.S. Huang, “The formation mechanism of EVAL membranes prepared with or without the nonsolvent absorption process”, J. Membr. Sci., 171, 197-206 (2000)
58.	R. M. Boom, T. V. Boomgaard, C. A. Smolders, “Mass transfer and thermodynamics during immersion precipitation for two-polymer system: Evaluation with the system PES-PVP-NMP-water”, J. Membr. Sci., 90, 231 (1994)
59.	F. W. Altena, C. A. Smolders, “Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent”, Macromolecules, 15, 1491 (1982)

60.	L. Zeman, G. Tkacik, “Thermodynamic analysis of a membrane- forming system water/n-methyl-2-pyrrolidone/polysulfone”, J. Membr. Sci., 36, 119 (1988)
61.	P. J. Flory, “Principles of polymer chemistry”, Cornell UniversityPress. New York, (1953)
62.	H. Tompa, “Polymer solutions”, Butterworths, London, (1956)
63.	K. Kamide, “Thermodynamics of polymer solutions”, Elsevier Science Publishers B. V., Amsterdam, The Netherlands, (1990)
64.	J. K. KiM, Y. D. Kim, T. Kanamori, H. K. Lee, K. J. Balk, “Vitrification phenomena in polysulfone/NMP/water system”, J. Appl. Polym. Sci., 71,431 (1999)
65.	J. Y. Lai, S. F. Lin, F. C. Lin, D. M. Wang, “Constructure of ternary phase diagrams in nonsolvent/solvent/PMMA systems”, J. Polym. Sci.: Part B: Polym. Phys., 36, 607 (1998)
66.	J. Y. Kim, H. K. Lee, K. J. Bank, S. C. Kim, “Liquid-liquid phase separation in polysulfone/solvent/water systems”, J. Appl. Polym. Sci., 65, 2643 (1997)
67.	C. Stropnik, V. Musil, M. Brumen, “Polymeric Membrane Formation by Wet-Phase Separation; Turbidity and Shrinkage Phenomena as Evidence for the Elementary Processes”, Polymer, 41, 9227 (2000)
68.	R. J. Ray, W. B. Krantz, R. L. Sani, “Linear stability theory model for finger formation in asymmetric membranes”, J. Membr. Sci., 23,155 (1985)
69.	C. A. Smolders, A. J. Reuvers, R. M. Boom, I. M. Wienk, “Microstructure in phase-inversion membranes Part 1: Formation of macrovoids”, J. Membr. Sci., 73, 259 (1992)
70.	F.C. Lin, D.M. Wang, J.Y. Lai, “Asymmetric TPX Membranes with High Gas Flux”, J. Membrane Sci., 110, 25 (1996)
71.	S. P. Nunes, T. Inoue, “Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation”, J. Membr. Sci., 111, 99 (1996)
72.	C. S. Tsay, A. J. Mchugh, “Dynamics of the phase inversion process”, J. Appl. Polym. Sci., 46, 2011 (1992)
73.	J. J. Shieh, R. Y. M. Huang, “Pervaporation with chitosan membranes II. Biend membranes of chitosan and polyacrylic acid and comparison of homogeneous and composite membrane based on polyelectrolyte complexes of chitosan and polyacrylic acid for the seporation of ethanol-water mixtures”, J. Membr. Sci., 127, 185 (1997)
74.	Lawrence F. Hancock, Stephen M. Fagan, Melissa S. Ziolo, “Hydrophilic semipermeable membranes fabricated with poly(ethylene oxide)-polysulfone block copolymer”, Biomaterials, 21, 725 (2000) 
75.	M. Yoshikawa, K. Tsubouchi, M. D. Guiver, G. P. Robertson, “Modified Polysulfone Membrane lll. Pervaporation Separation of Benzene-Cyclohexan Mixtures through Carboxlated Polysulfone Membranes”, J. Appl. Polym. Sci., 74, 407 (1999) 
76.	J. Y. Lai, R. Y. Chen, and K. R. Lee, “Pervaporation of ethanol-water mixture by Co60 γ-ray irradiation modified Nylon 4 membrane”, J. Appl. Polym. Sci., 47, 1849 (1993)
77.	H. Cooperes, K. J. Gifkins, “Gas Plasma Treatment of Polymer Surfaces”, J. Macromol. Sci., Chem., A17, 217 (1982)

78.	Grill, “Cold Plasma in Materials Fabrication: From Fundamentals to Applications”, 1-23. IEEE Press (1994)
79.	高正雄, “超LSI時代-電漿化學”,復漢出版社, 台南 (1997)
80.	S.D. Lee, G..H. Hsiue, P.C. T. Chang, C.Y. Kao, “Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials”, Biomaterials, 17, 1599 (1996)
81.	J. Chen, Y. C. Nho, J. S. Park, “Grafting polymerization of acrylic acid onto preirradiated polypropylene fabric”, Radiation Physics and Chemistry, 52, 201 (1998)
82.	T. Boccaccio, A. Bottino, G. Capannelli, P. Piaggio, “Characterization of PVDF membranes by vibrational spectroscopy”, J. Membr. Sci., 210, 315 (2002)
83.	O. Monticelli, A. Bottino, G. Capannelli, P. Piaggio, “Poly(vinylidene fluoride) with improved functionalization for membrane production”, J. Membr. Sci., 166, 23 (2000)
84.	D.J. Lin, C.C. Chang, F.M Huang, L.P. Cheng, “Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system”, Polymer, 44, 413 (2003)
85.	D.J. Lin, C.C. Chang, T.C. Chen, L.P. Cheng, “Microporous PVDF membrane formation by immersion precipitation from water/TEP/PVDF system”, Desalination, 145, 25 (2002)


86.	G. Teyssedre, A. Bernes, C. Lacabanne, “Influence of the crystalline phase on the molecular mobility of PVDF”, J. Polym. Sci.: Part B: Polym. Phys., 31, 2027 (1993)
87.	D. Naegele, D. Y. Yoon, M. G. Broadhurst, S. C. Roth, “Formation of a New Crystal Form (αp) of Poly(vinylidene fluoride) under Electric Field”, Macromolecular, 11, 1297 (1978)
88.	G. T. Davis, J. E. Mckinney, M. G. Broadhurst, S. C. Roth, “Electric-field-induced phase changes in Poly(vinylidene fluoride)”, J. Appl. Phys., 49, 4998 (1978)
89.	W. M. Prest, Jr. and D. J. Luca, “The formation of the γ phase form the α and β polymorphs of polyvinylidene fluoride”, J. Appl. Phys., 49, 5042 (1978)
90.	Hirohisa Yoshida, “Dynamic analysis of the melting behavior of polymers showing polymorphism observed by simultaneous DSC/X-ray diffraction measurements”, Thermochimica Acta, 267, 239 (1995)
91.	Y. W. Park, N. Inagaki, “A new approach for selective surface modification of fluoropolymers by remote plasmas”, J. Appl. Polym. Sci., 93, 1012 (2004)
92.	Mariana D. Duca, Carmina L. Plosceanu, Tatiana Pop, “Surface modifications of polyvinylidene fluoride (PVDF) under rf Ar plasma”, Polymer Degradation and stability, 61, 65 (1998)
93.	Y. W. Park, N. Inagaki, “Surface modification of poly(vinylidene fluoride) film by remote Ar, H2, and O2 plasmas”, Polymer, 44, 1569 (2003)

94.	S. Tasaka, Y. Goto, N. Inagaki, “Surface modification of poly(tetrafluoroethylene) film by plasma graft polymerization of sodium vinylsulfonate”, J. Appl. Polym. Sci., 66, 77 (1997)
95.	Sung Han, Won-Kook Choi, Ki Hyun Yoon, Seok-Keun Koh, “Surface reaction on polyvinylidenefluoride (PVDF) irradiated by low energy ion beam in reactive gas environment”, J. Appl. Polym. Sci., 72, 41 (1999)
96.	R. N. Kumar, C. K. Woo, A. Abusamah, “UV curing of surface coating system consisting of cycloaliphatic diepoxide-ENR-glycidyl methacrylate by cationic photoinitiators-characterization of the cured film by FTIR spectroscopy”, J. Appl. Polym. Sci., 73, 1569 (1999)
97.	Philippe Bussi, Hatsuo Ishida, “Partially miscible blends of epoxy resin and epoxidized rubber: Structural characterization of the epoxidized rubber and mechanical properties of the blends”, J. Appl. Polym. Sci., 53, 441 (1994)
98.	J. Guiot, B. Ameduri, B. Boutevin, “Radical homopolymerization of vinylidene fluoride initiated by tert-Butyl peroxypivalate. investigation of the microstructure by 19F and 1H NMR spectroscopies and mechanisms”, Macromolecules, 35, 8694 (2002)
99.	N. Papke, J. Karger-Kocsis, “Determination methods of the grafting yield in glycidyl methacrylate-grafted ethylene/propylene/diene rubber (EPDM-g-GMA): Correlation between FTIR and 1H-NMR analysis”, J. Appl. Polym. Sci., 74, 2616 (1999)
100.	C. -H. Kim, K. Y. Cho, J. -K. Park, “Grafting of glycidyl methacrylate onto polycaprolactone: preparation and characterization”, Polymer, 42, 5135 (2001)
101.	 smet Kaya, Z&uuml;lfiye  lter, Dilek  enol, “Thermodynamic interactions and characterisation of poly[(glycidyl methacrylate-co- methyl, ethyl, butyl) methacrylate] by inverse gas chromatography”, Polymer, 43, 6455 (2002)
102.	Zhang Zhaobin, Ying Shengkang, Shi Zhiqing, “Synthesis of fluorine-containing block copolymers via ATRP 1. Synthesis and characterization of PSt-PVDF-PSt triblock copolymers ”, Polymer, 40, 1341 (1999)
103.	N. Papke, J. Karger-Kocsis, “13C- und 1H-NMR analyse eines nitrilkautschuks mit und ohne glycidylmethacrylat pfropfung”, European Polymer Journal, 37, 547 (2001)
104.	E. Uchida, Y. Uyama, Y. Ikada, “Sorption of Low-Molecular- Weight Anions into Thin Polycation Layers Grafted onto a Film”, Langmuir, 9, 1121 (1993)
105.	T. H. Young, W. W. Hu, “Covalent bonding of lysine to EVAL membrane surface to improve survival of cultured cerebellar granule neurons”, Biomaterials, 24, 1477 (2003)
106.	Campbell MK. Biochemistry, 3rd ed. USA: Harcourt Brace & Company, 89 (1999)
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後4年公開
校外
同意授權
校外電子論文於授權書繳交後4年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信