§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2105201413011000
DOI 10.6846/TKU.2014.00811
論文名稱(中文) 經由fMRI檢測口譯測驗時腦部活動之研究
論文名稱(英文) AN FMRI STUDY OF HOW A SUPRA-MODAL DECODING NETWORK EXAMINES INTERPRETATION
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 英文學系博士班
系所名稱(英文) Department of English
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 王有慧
研究生(英文) Yu-Hui Wang
學號 898110183
學位類別 博士
語言別 英文
第二語言別
口試日期 2014-05-05
論文頁數 135頁
口試委員 指導教授 - 郭岱宗(93181wol@mail.tku.edu.tw)
委員 - 杜德倫(dardoty@mail.tku.edu.tw)
委員 - 李本京(tifx@www2.tku.edu.tw)
委員 - 張世明(smalex@mail.sju.edu.tw)
委員 - 梁一萍(lip@ntnu.edu.tw)
關鍵字(中) 雙語
口譯
腦科學
教學
語言學
認知語言學
功能性磁振造影
關鍵字(英) FMRI
interpretation
brain
bilingualism
processing
decoding
第三語言關鍵字
學科別分類
中文摘要
本論文探討以母語為中文的學生在接受英語口譯題目時(聽力及閱讀)大腦的激活反應:以功能性磁共振成像(functional magnetic resonance imaging, fMRI)來探索第二語言解碼聽覺及視覺訊號時之腦部激活情形,以及破解二種訊號時共區之腦網絡。實驗素材取自翻譯專業資格(水平)考試(China Accreditation Test for Translators and Interpreters, CATTI ),經校正長短及難度的一致性後在fMRI中螢幕上或耳機中播出。實驗總長度為2078秒,其中聽力實驗1014秒,閱讀實驗1064秒。實驗對象皆為中文母語人士,並慣用右手。

    腦區資料經SPM8統計之反應結果如下(p >.001):
一、聽力:左腦:額上回、額中回、顳上回、枕上回、枕中回、和小腦;
    右腦:額上回、額中回、顳上回、頂上回、小腦和尾狀核
二、閱讀:左腦:額中回、枕上回、枕中回、和海馬體;右腦: 枕中回
三、共區:左腦:額中回、枕上回、和枕中回 

    研究發現如下:
一、聽力題所激活之腦反應在程度及範圍上都較閱讀題大,腦激活程度可能與困難度相關,
	推測對實驗者而言,聽力較閱讀題困難。
二、聽力題在左右腦皆引起相似程度的反應,相較下,閱讀題則偏重左腦。
三、本次結果顯示,本次實驗對象使用全腦破解聽力題,與之前偏重左腦   
	的經典Wernicke-Geschwind Model模型相異。非傳統語言區與右腦的激活可能與語	言流利度有關(Leonard, et al., 2011)。
四、僅閱讀而言,之前以西方人士為實驗對象的結果(Models of 
	Wernicke-Geschwind, Friederici and Kotz, and Leonard, Torres et al.) 顯示其偏重顳葉,本實驗中的對象則在閱讀時則偏重枕葉。
五、破解聽力題及閱讀題時,激活度左腦皆高於右腦。共區網絡中枕葉及前額葉的激活, 顯	示受試者理解語言時仰賴視覺及控制。
六、實驗結果顥示,受試者破解聽力、閱讀及其共區之腦網絡和之前Wernicke-Geschwind模型的解碼腦區相異。

  本實驗-以華人為實驗對象所探得之語言解碼模型-與之前非華人為實驗對象之研究所導出之模型皆有明顯不同。於是,在為中文母語學員進行語言培訓時,應考慮其大腦之語言解碼模型,因此而調整教學及訓練方式,提升課程效率及教學教果。此外,本次實驗結果顯示,中文母語人士在做聽力題及閱讀題時,皆相當仰賴視覺區。因此,視覺輔助應在二語教學中更多地加以應用,以降低學習難度及提升學習成果,口譯尤屬高難度進階型的學科,更加需要視覺輔助及邏輯理解。
英文摘要
This dissertation investigated the involvement of supra-modal network when Chinese subjects processed English interpretation exams (listening and reading). The materials in the present research were derived from CATTI, programmed by E-prime, then transmitted through the headphone set (listening) or displayed on the screen (reading) in an fMRI machine. Each module contained two runs with a total period of 2078 seconds for listening (1014 secs) and reading (1064 secs). 

The collected data were analyzed by using SPM8, and the results were reported as the following: 
1.	ROIs of the listening tasks included SFG, MFG, STG, SOG, MOG, and the cerebellum in the left hemisphere (LH); SFG, MFG, STG, SPG, cerebellum and caudate in the right hemisphere (RH). 
2.	ROIs of reading tasks were found in MFG, SOG, MOG, and hippocampus in LH; MOG in RH.
3.	The supra-modal network involved MFG, SOG, and MOG in the left hemisphere. (p >.001)
 
This paper has achieved several insightful findings as listed below: 
1.	Listening tasks evoked greater and broader activation as compared to reading tasks, which might infer that even with the same level of difficulty, auditory materials were more challenging to process than visual materials for bilingual participants.          
2.	ROIs of listening tasks displayed a bilateral distribution, while the activation associated with the reading tasks remained to be left lateralized. 
3.	The bilateral activation associated with the listening task was different from the classical Wernicke-Geschwind Model. Also, the activation of non-classical areas of the right hemisphere may be associated with the difficulty of the method, auditory transmission.
4.	For these Chinese subjects, reading activation tended to be occipital-lobe focused, while in previous models (Models of Wernicke-Geschwind, Friederici and Kotz, and Leonard, Torres et al.), subjects (native/ nearly native with recruited languages) heavily relied on the temporal lobe. 
5.	The supra-modal network suggested that the recruited subjects capitalized on the occipital lobe and frontal lobe to achieve semantic processing regardless of the input modules. 
6.	The supra-modal network appeared different from the cognitive parts in the Wenickes-Geschwind Model, which might suggest that the subjects adopted a different network than subjects in previous study. 

Among a wealth of models of language processing, most of them were conducted with subjects acquiring the second language up to native or close to native level. This leads to the doubt of its generalizability to subjects learning a new language as a L2 or an FL. The present research verified that the recruited late bilingual subjects adopted a different network to process languages, opposed to models in the existing literature. Meanwhile, novel findings in the present experiment revealed that listening was comparatively more difficult for these subjects than reading. Moreover, the occipital lobe remained crucial for the recruited Chinese bilinguals to process materials with high levels of difficulty. Visualization is thus highly emphasized during future language instructions, especially for advanced materials, and for subjects of similar language backgrounds in the present research.
第三語言摘要
論文目次
Table of Contents

CHINESE ABSTRACT
ENGLISH ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF APPENDICES
ABBREVIATIONS
LIST OF FIGURES AND TABLES

CHAPTER ONE INTRODUCTION
1.1 Background and Motivation	1
1.2 The Statement of the Problem	4
1.3 The Purpose of the Study	12
1.4 Research Questions	14
1.5 Significance of the Study	15
1.6 Definition of Terms	17

CHAPTER TWO REVIEW OF THE LITERATURE
2.1 Translation Training	22
2.2 Translation Model 	24
2.3 Models of Language Processing	25
2.4 Sentence Processing	27
2.5 Syntactic Processing	28
2.6 Semantic Processing	29
2.7 LH/RH	31
2.8 Auditory Occipital Activations (AOAS)	32
2.9 Bilingualism& Brain Network 	34
2.10 LH/ RH & Chinese/English	36
2.11 LH/ RH & L1/ L2 & Fluency	37
2.12 ROIS of the Present Study	41

CHAPTER THREE METHODOLOGY
3.1 Subjects	46
3.2 Instrument	48
3.3 Pilot Study 	49
3.4 Materials	51
3.5 Design	56
3.6 FMRI Imaging Acquisition	59
3.7 FMRI Imaging Analysis	60

CHAPTER FOUR RESULTS & DISCUSSION
4.1 Session I: The Listening Task	62
4.1.1 ROIS 	62
4.1.2 LH/ RH	68
4.1.3 Comparison with previous models   	69
4.2 Session II: The Reading Task	72
4.2.1 ROIS	72
4.2.2 LH/ RH	76
4.2.3 Comparison with previous models	77
4.3 Session III: The Supra-Model Network	80
4.3.1 ROIS	83
4.3.2 LH/ RH	83
4.3.3 Comparison with previous models	83
4.4 Findings & Discussion	85
4.4.1 LH/ RH & Bilinguals	85
4.4.2 AOA	87
4.4.3 Novel Finding of the supra-model network	89

CHAPTER FIVE CONCLUSIONS
5.1 Contribution to Brain-Based Foreign Language Studies	92
5.2 The Importance of FMRI Applications to Neurocognitive EFL Research	94
5.3 Pedagogical Implications:Rethinking EFL Teaching from Scientific Evidence	97	
5.4 Limitations of the Study and Suggestions for Future Research	99
 
List of Appendices
Appendix A. Consent Form	118
Appendix B. Questionnaire of Being Right-Handed or Left-Handed	119
Appendix C. Subjects’ Background Questionnaire	120
Appendix D. Pretest [Listening]	121
Appendix E. Pretest [Reading]	125
Appendix F. Formal Test [Listening]	129
Appendix G. Formal Test [Reading]	133
 
Abbreviations

BA: Brodmann’s Area
HG: Heschl’s Gyrus
IFG: Inferior Frontal Gyrus
ITG: Inferior Temporal Gyrus
MFG: Middle Frontal Gyrus
MTG: Middle Temporal Gyrus
PFC: Prefrontal Cortex
SFG: Superior Frontal Gyrus
STG: Superior Temporal Gyrus
STS: Superior Temporal Sulcus
L1: the Native Language
L2: a Second Language
FL: a Foreign Language
LH: Left Hemisphere
RH: Right Hemisphere
AOA: Auditory Occipital Activations    
LOT: Lateral Occipital Temporal Areas
VOT: Ventral Occipital-Temporal Area
ROI: Region of Interest
LIFC: Left Inferior Frontal Cortex
MOG: Middle Occipital Gyrus
 
List of Figures and Tables
Figure 1.1 Complex relationships of visual, orthographic, phonological and semantic system in Chinese.  	6
Figure 1.2 Wernicke-Geschwind Model –repeat a spoken word	8
Figure 1.3 Wernicke-Geschwind Model – repeat a written word	8
Figure 1.4 Cognitive process of a spoken word and a written word	8
Figure 1.5 Supra-modal Language Comprehension Network. (Braze et al., 2011)	9
Figure 1.6 Conjunction Analysis of Visual and Auditory Language Comprehension (Lindenberg & Scheef, 2007)	11
Figure 1.7 Blocked Design	19
Figure 1.8 Event-related Design	19
Figure 2.1 Nida’s Translation Model (Nida and Taber, 1969)	24
Figure 2.2 Phases of Language Processing in Friederici & Kotz (2003, p. s10)	26
Figure 3.1 Group dSPM images of the mean activity evoked by visual words from 350-400ms	38
Figure 3.2 Group dSPM images of the mean activity evoked by auditory words from 300-450ms	39
Figure 4 Supra-modal ROIs of Listening and Reading	45
Figure 5.1 Experiment Steps for Listening Task	57
Figure 5.2 Experiment Steps d for Reading Task	58
Figure 5.3 fMRI Laboratory in East China Normal University, Shanghai	59
Figure 6.1 Results of Listening	66
Figure 6.2 Results of Reading	74
Figure 6.3 Results of the Supramodal Network	81
Table 2.1 Studies regarding ROIs of Listening	42
Table 2.2 Studies regarding ROIs of Reading	43
Table 2.3 Studies regarding Supra-modal ROIs of Listening and Reading	45
Table 3.1 Readability of Contents - Formal Test	52
Table 3.2 Readability of Contents - Pre-Test	53
Table 3.3 Readability of Questions - Formal Test	54
Table 3.4 Readability of Questions - Pre-Test	55
Table 4.1 Results of Listening	67
Table 4.2 Results of Reading	75
Table 4.3 Results of the Supramodal Network	82
參考文獻
Abutalebi, J., Cappa, F. S., & Perani, D. (2001). The bilingual brain as revealed by functional neuroimaging. Bilingualism: Language and Cognition, 4(2), 179-190. 
Adams, R.B.,& Janata, P. (2002). A comparison of neural circuits underlying auditory and visual object categorization. NeuroImage,16, 361-377.
Addis, D. R., McIntosh, A. R., Moscovitch, M., Crawley, A. P., & McAndrews, M. P. (2004). Characterizing spatial and temporal features of autobiographical memory retrieval networks: A partial least squares approach. Neuroimage, 23, 1460-1471.	
April, R. S., & Han, M. (1980). Crossed aphasia in a right-handed bilingual Chineseman: A second case. Archives of Neurologv, 37, 342-346.
April, R. S., & Tse, P. C. (1977). Crossed aphasia in a Chinese bilingual dextral. Archives of Neurology, 34, 766-770.
Awad, M., Warren, J.E., Scott, S.K., Turkheimer, F.E., & Wise, R.J. (2007). A common system for the comprehension and production of narrative speech. Journal of Neuroscience, 27, 11455-11464.
Bajo, M.T., Padilla, P., & Padilla, F. (2000). Comprehension processes in simultaneousinterpreting. In A. Chesterman, Y. Gambier, & N. Gallardo (Eds.), Translation in context (pp. 127-142). Amsterdam: John Benjamins.
Booth, J.R., Burman, D.D., Meyer, J.R., Gitelman, D.R., Parrish, T.B., & Mesulam, M.M. (2002a). Functional anatomy of intra- and cross-modal lexical tasks. NeuroImage,16, 7-22.
Bottini, G., Corcoran, R., Sterzi, R., Paulesu, E., Schenone, P., Scarpa, P., et al.(1994). The role of the right hemisphere in the interpretation of figurative aspects of language:A positron emission tomography activation study. Brain, 117 (Pt. 6), 1241-1253.
Bottini, G., Sterzi, R., Paulesu, E., Vallar, G., Cappa, F., Erminio, F., et al. (1994). Identification of the central vestibular projections in man. Exp. Brain Res., 99, 164-169.						
Boyden, E.S., Katoh, A., & Raymond, J.L. (2004). Cerebellum-dependent learning: The role of multiple plasticity mechanisms. Annu. Rev. Neurosci., 27, 581-609.
Braze, D., Mencl, W. E., Tabor, W., Pugh, K. R., Constable, R. T., Fulbright, R. K., et al. (2011). Unification of Sentence Processing via Ear and Eye: An fMRI Study. Cortex, 47, 416-431.
Broca, P. (1861). Remarques sur le siege de la faculte du langage articule suivies d'une observation d'aphemie (perte de la parole). Bull. Soc. Anat., 6 (6), 330-357.
Brockway, J. P. (2000). Two functional magnetic resonance imaging f(MRI) tasks that may replace the gold standard, Wada testing, for language lateralization while giving additional localization information. Brain and Cognition, 43, 57-59.
Buchsbaum, B. R., & D'Esposito, M. (2009). Repetition suppression and reactivation in auditoryverbal short-term recognition memory. Cerebral Cortex, 19, 1474-1485.
Burton, H., Diamond, J. B., & McDermott, K. B. (2003). Dissociating cortical regions activated by semantic and phonological tasks: a FMRI study in blind and sighted people. Journal of Neurophysiol, 90, 1965-1982.
Burton, M.W., Locasto, P.C., Krebs-Noble, D., & Gullapalli, R.P. (2005). A systematic investigation of the functional neuroanatomy of auditory and visual phonological processing. NeurIimage, 26, 647-661.
Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magnetic Resonance in Medicine, 39, 855-864.
Carpentier, A., Pugh, K.R., Westerveld, M., Studholme, C., Skrinjar, O., Thompson, J.L., et al. (2001). Functional MRI of language processing: Dependence on input modality and temporal lobe epilepsy. Epilepsia, 42, 1241-1254.
Cate, A.D., Herron, T.J., Yund, E.W., Stecker, G.C., Rinne, T,, Kang, X,, et al. (2009). Auditory attention activates peripheral visual cortex. PLoS One, 4(2), e4645. 
Chee, M. W. L., O'Craven, K. M., Bergida, R., Rosen, B. R., & Savoy, R. L. (1999). Auditory and visual word processing studied with fMRI. Human Brain Mapping, 7(1), 15-28.
Chee, M. W. L., Soon C. S., Lee, H. L, & Pallier, C. (2004). Left insula activation:A marker for language attainment in bilinguals. Proceedings for NationalAcademy of Sciences, 101 (42), 15265-15270.
Chee, M. W. L., Soon, C. S., & Lee, H. L. (2003). Common and segregatedneuronal networks for different languages revealed using functional magnetic resonance adaptation. Journal of Cognitive Neuroscience, 15(1), 85-97.
China Aptitude Test for Translators and Interpreters. (2003). Retrieved from May 22, 2013, http://www.catti.net.cn/2009-11/05/content_228439.htm
Cho, S., Metcalfe, A. W. S., Young, C. B., Ryali, S., Geary, D. C., & Menon, V. (2012). Hippocampal-Prefrontal Engagement and Dynamic Causal Interactions in the Maturation of Children's Fact Retrieval. Journal of Cognitive Neuroscience, 24(9), 1849-1866.				
Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton. 
Christison, M. A. (2005). Brain-based research as a bridge between teaching and learning. Paper presented at the 14th ETA conference. Taipei; Crane.
Christoffels, I. K., De Groot, A. M. B., & Kroll, J. F. (2006). Memory and language skills in simultaneous interpreters: the role of expertise and language proficiency. Journal of Memory and Language, 54, 324-345.
Constable, R.T., Pugh, K.R., Berroya, E., Mencl,W.E., Westerveld, M., Ni,W., et al. (2004). Sentence complexity and input modality effects in sentence comprehension: An fMRI study. NeuroImage,22,1121.		
Crinion, J.T., Lambon-Ralph, M.A., Warburton, E.A., Howard, D., & Wise, R.J. (2003). Temporal lobe regions engaged during normal speech comprehension. Brain, 126, 1193-1201.
Dapretto, M., & Bookheimer, S.Y. (1999). Form and content: Dissociating syntax and semantics in sentence comprehension. Neuron, 24, 427-432, 
De Bleser, R., Dupont, P., Postler, J., Bormans, G., Speelman, D., Mortelmans, L., et al. (2003). The organization of the bilingual lexicon: A PET study. Journal of Neurolinguistics, 16(4-5), 439-456.
De Zubicaray, G.I., Williams, S.C., Wilson, S.J., Rose, S.E., Brammer, M.J., Bullmore, E.T., et al. (1998). Prefrontal cortex involvement in selective letter generation: a functional magnetic resonance imaging study. Cortex, 34, 389-401.
Degerman, A., Rinne, T., Salmi, J., Salonen, O., & Alho, K. (2006). Selective attention to sound location or pitch studied with fMRI. Brain Res 1077, 123-134.
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., et al. (1997). Anatomical variability in the cortical representation of first and second language. NeuroReport, 8, 3809-3815.
Dejerine, J. (1891). Sur un cas de cecite verbale avec agraphie: Suivi d'autopsie. Mem. Soc. Biol., 3, 197-201.
Dick, A.S., Goldin-Meadow, S., Hasson, U., Skipper, J.I., & Small, S.L. (2009). Co-speech gestures influence neural activity in brain regions associated with processing semantic information. Human Brain Mapping,30, 3509-3526.
Eisenberg, D.P., London, E.D., Matochik, J.A., Derbyshire, S., Cohen, L.J., et al. (2005). Education-associated cortical glucose metabolism during sustained attention. Neuroreport,16, 1473-1476. 
Evans, A., Marrett, S., Neelin, P., Collins, L., Worsley, K., Dai, W., Milot, S., Meyer, E., Bub, D.(1992). Anatomical mapping of functional activation in stereotaxic coordiante space. NeuroImage, 1, 43-53.
Fabbro, F., & Daro, V. (1995). Delayed auditory feedback in polyglot simultaneous interpreters. Brain and Language, 48, 309-319.
Fotos, S. (2001). Cognitive approaches to grammar instruction. In M. Celce-Murcia (Ed.), Teaching English as a second or foreign language (3rd ed., pp. 267-283). Boston: Heinle & Heinle.
Friederici, A.D. & Kotz, S. A. (2003). The brain basis of syntactic process: Functional imaging and lesion studies. NeuroImage,20 (Suppl.1), s8-s17.
Friederici, A.D., Makuuchi, M., & Bahlmann, J. (2009). The role of the posterior superior temporal cortex in sentence comprehension. Neuroreport, 20, 563-568.
Friederici, A.D., Meyer, M., & von Cramon, D.Y. (2000). Auditory language comprehension: an event-related fMRI study on the processing of syntactic and lexical information. Brain and Language, 75, 289-300.
Friston, K., Holmes, A.P., & Ashburner, J. (1999). Statistical Parameter Mapping (SPM). Retrieved May 10, 2013, from http://www.fil.ion.ucl.ac.uk/spm/.
Friston, K.J., Josephs, O., Zarahn, E., Holmes, A.P., Rouquette, S., & Poline, J. (2000). To smooth or not to smooth? Bias and efficiency in fMRI timeseries analysis. NeuroImage, 12, 196-208. 
Gabrieli, J.D., Poldrack, R.A., & Desmond, J.E. (1998). The role of left prefrontal cortex in language and memory. Proc. Natl. Acad. Sci. U. S. A., 95, 906-913.
Garcia, M. (2013). Brain activity during translation: A review of the neuroimaging evidence as a testing ground for clinically-based hypotheses. Journal of Neurolinguistics, 26, 370-383
Grosjean, F. (1994). Individual bilingualism. In R. E. Asher (Ed.), The encyclopedia of language and linguistics (pp. 1656-1660). Oxford: Pergamon Press.
Hahne, A., & Friederici, A. D. (2001). Processing a second language: Late learners' comprehension mechanisms as revealed by event-related brain potential. Bilingualism: Language and Cognition, 4(2), 123-141.
Hairston, W.D., Hodges, D.A., Casanova, R., Hayasaka, S., Kraft, R., et al. (2008) Closing the mind’s eye: Deactivation of visual cortex related to auditory task difficulty. Neuroreport, 19, 151-154.
Harris, B., & Sherwood, B. (1978). Translating as an innate skill. In D. Gerver, & H. Wallace Sinaiko (Eds.), Language interpretation and communication. Proceedings from the NATO symposium, Venice, Italy, September 26–October 1, 1977 (pp. 155–170). New York & London: Plenum Press.
Hasegawa, M., Carpenter, P.A., Just, M.A. (2002). An fMRI study of bilingual sentence comprehension and workload. NeurIimage, 15, 647-660.
Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Science., 4(4), 131-138.
Holle, H., Obleser, J., Rueschemeyer, S.A., & Gunter, T.C. (2010). Integration of iconic gestures and speech in left superior temporal areas boosts speech comprehension under adverse listening conditions. NeuroImage, 49, 875-884.
Homae, F., Hashimoto, R., Nakajima, K., Miyashita, Y., & Sakai, K.L. (2002). From perception to sentence comprehension: The convergence of auditory and visual information of language in the left inferior frontal cortex. NeuroImage, 16, 883-900.
Huettel, S. A., Song, A. W., & McCarthy, G. (2009). Functional Magnetic Resonance Imaging (2nd ed.). Massachusetts: Sinauer.
Hurtado Albir, A. (1999). La competencia traductora y su adquisicion. Un modelo holistico y dinamico. Perspectives: Studies in Translatology, 7(2), 177-188.
Jack, A.I., Shulman, G.L., Snyder, A.Z., McAvoy, M., & Corbetta, M. (2006). Separate modulations of human V1 associated with spatial attention and task structure. Neuron, 51, 135-147.
Janata, P., Tillmann, B., & Bharucha, J.J. (2002). Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn Affect Behav Neurosci, 2, 121-140.
Jobard, G., Vigneau, M., Mazoyer, B., & Tzourio-Mazoyer, N. (2007). Impact of modality and linguistic complexity during reading and listening tasks. NeuroImage,34, 784-800.
Johnson, J.A., & Zatorre, R.J. (2005). Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. Cerebral Cortex, 15, 1609-1620.
Just, M.A., Newman, S.D., Keller, T.A., McEleney, A., & Carpenter, P.A. (2004). Imagery in sentence comprehension: An fMRI study. NeuroImage, 21, 112-124. 
Kang, A.M., Constable, R.T., Gore, J.C., & Avrutin, S. (1999). An event-related fMRI study of implicit phrase-level syntactic and semantic processing. NeuroImage, 10, 555-561.
Kawashima, R., Imaizumi, S., Mori, K., & Okada, K., Goto, R., et al. (1999). Selective visual and auditory attention toward utterances-a PET study. NeuroImage, 10, 209-215.
Kim, K. H., Relkin, N. R., Lee, K., & Hirsch, J. (1997). Distinct cortical areas associated with native and second language. Nature, 388(6638), 171-174.
Kircher, T., Sass, K., Sachs, O., & Krach, S. (2009a). Priming words with pictures: neural correlates of semantic associations in a cross-modal priming task using fMRI. Human Brain Mapping, 30, 4116-4128.
Kircher, T., Straube, B., Leube, D., Weis, S., Sachs, O., Willmes, K., et al. (2009b). Neural interaction of speech and gesture: differential activations of metaphoric co-verbal gestures. Neuropsychologia, 47, 169-179.
Klein, D., Milner, B., Zatorre, R.J., Meyer, E., & Evans, A.C. (1995). The neural substrates underlying word generation: A bilingual functionalimaging study. Proc. Natl. Acad. Sci. U. S. A., 92, 2899- 2903.
Klein, D., Watkins, K. E., Zatorre, R. J., & Milner, B. (2006). Word and nonword repetition in bilingual subjects: A PET study. Human Brain Mapping, 7(2),153-161.
Koelsch, S., Schulze, K., Sammler, D., Fritz, T., Muller, K., & Gruber, O. (2009). Functional architecture of verbal and tonal working memory: An FMRI study. Human Brain Mapping, 30, 859-873.
Kuperberg, G.R., McGuire, P.K., Bullmore, E.T., Brammer, M.J., Rabe-Hesketh, S., & Wright, I.C., et al. (2000). Common and distinct neural substrates for pragmatic, semantic, and syntactic processing of spoken sentences: An fMRI study. Jpurnal of Cognitive Neuroscience,12, 321-341.
Kurz, I. (1994). A look into the ‘black box’ : EEG probability mapping during mental simultaneous interpreting. In M. Snell- Hornby, F. Pochhacker, & K. Kaindl (Eds.), Translation studies. An interdiscipline (pp. 199-207). Amsterdam & Philadelphia: John Benjamins.
Kurz, I. (1995). Watching the brain at work : An exploratory study of EEG changes during simultaneous interpreting (SI). The Interpreters’ Newsletter, 6, 3-16. 
Kurz, I. (2003). Physiological stress during simultaneous interpreting:A comparison of experts and novices. The Interpreters’ Newsletter, 12, 51-67.
Language Training & Testing Center. (2012). Retrieved from May 22, 2013, http://www.lttc.ntu.edu.tw/TranslationExam/notice.htm
Laurienti, P.J., Burdette, J.H., Wallace, M.T., Yen, Y.F., Field, A.S., et al. (2002). Deactivation of sensory-specific cortex by cross-modal stimuli. Journal of Cognitive Neuroscience, 14, 420-429.
Leonard, M.K., Torres, C., Travis, K.E., Brown, T.T., Hagler, D.J. Dale, A. M.,, et al. (2011). Language Proficiency Modulates the Recruitment of Non-Classical Language Areas in Bilinguals. PLoS One, 6(3), e18240. 
Lewis, J.W., Beauchamp, M.S., & Deyoe, E.A. (2000). A comparison of visual and auditory motion processing in human cerebral cortex. Cerebral Cortex, 10, 873-888.
Lewis, J.W., Wightman, F.L., Brefczynski, J.A., Phinney, R.E., Binder, J.R., et al. (2004). Human brain regions involved in recognizing environmental sounds. Cerebral Cortex, 14, 1008-1021.
Li, H., Peng, H. & Shu, H. (2006). A study on the emergence and development of Chinese orthographic awareness in preschool and school children. Psychological Development and Education, 18(1), 35–38 (in Chinese).
Lichtheim, L. (1885). On aphasia. Brain, 7, 433-484.
Lindenberg, R. & Scheef, L. (2007). Supramodal language comprehension: Role of the left temporal lobe for listening and reading. Neuropsychologia, 45,2407-2415.
Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150-157.
Lyman, R. S., Kwan, S. T., & Chao, W. H. (1938). Left occipital-parietal brain tumour with observations on alexia and agraphia in Chinese and English. The Chinese Medical Journal, 3,491-515.
Maeder, P.P., Meuli, R.A., Adriani, M., Bellmann, A., Fornari, E., et al. (2001). Distinct pathways involved in sound recognition and localization: A human fMRI study. NeuroImage, 14, 802-816.
Maguire, E. A., Frith, C. D., & Morris, R.G., (1999). The functional neuroanatomy of comprehension and memory: The importance of prior knowledge. Brain, 122 (Pt. 10), 1839-1850.
Mahendra, N., Plante, E., Magloire, J., Milman, L., & Trouard, T. P. (2003). FMRI variability and the localization of languages in the bilingual brain. NeuroReport, 14(9), 1225-1228.
Malakoff, M. M. (1992). Translation ability: A natural bilingual and metalinguistic skill. In R. Jackson Harris (Ed.), Cognitive processing in bilinguals (pp. 515-529). Amsterdam: North Holland.
Mandeville, J. B., & Rosen, B. R. (2002). Functional MRI. In A. W. Toga & J. C. Massiotta (Eds.), Brain mapping: The method (pp. 315-349). Amesterdam: Academic press.
Mayer, A.R., Harrington, D., Adair, J.C., & Lee, R. (2006). The neural networks underlying endogenous auditory covert orienting and reorienting. NeuroImage, 30, 938-949.
McKiernan, K.A., Kaufman, J.N., Kucera-Thompson, J., & Binder, J.R. (2003). A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of Cognitive Neuroscience, 15, 394-408.
Meyer, M., Friederici, A.D., & von Cramon, D.Y., (2000). Neurocognition of auditory sentence comprehension: event related fMRI reveals sensitivity to syntactic violations and task demands. Cogn. Brain Res, 9, 19-33.
Michael, E.B., Keller,T.A., Carpenter, P.A., & Just, M.A. (2001). FMRI investigation of sentence comprehension by eye and by ear: Modality fingerprints on cognitive processes. Human Brain Mapping, 13, 239-252.
Moro, A., Tettamanti, M., Perani, D., Donati, C., Cappa, S.F., & Fazio, F. (2001). Syntax and the brain: Disentangling grammar by selective anomalies. NeuroImage, 13, 110-118.
Nakai, T., Matsuo, K., Kato, C., Matsuzawa, M., Okada, T., Glover, G.H., et al. (1999). A functional magnetic resonance imaging study of listening comprehension of languages in human at 3 Tesla-comprehension level and activation of the language areas. Neuroscience Letters, 263, 33-36.
National Accreditation Examinations for Translators and Interpreters. (2001). Retrieved from May 22, 2013, http://sk.neea.edu.cn/wyfyzs/
Newman, S.D., & Twieg, D. (2001). Differences in auditory processing of words and pseudowords: An fMRI study. Human Brain Mapping, 14, 39-47.
Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J.-B. (2005). Valid conjunction inference with the minimum statistic. NeuroImage, 25, 653-660.Nida, E. A. & Taber ,C. R. (1969). The Theory and Practice of Translation. Leiden: E.J. Brill. 
Noesselt, T., Shah, N.J., & Jancke, L. (2003). Top-down and bottom-up modulation of language related areas: An fMRI study. BMC Neuroscience, 4, 13.
Noppeney, U., & Price, C.J. (2002). A PET study of stimulus- and task-induced semantic processing. NeuroImage,15, 927-935.
PACTE. (2000). Acquiring translation competence: hypotheses and methodological problems of a research project. In A. Beeby, D. Ensinger, & M. Presas (Eds.), Investigating translation: Selected papers from the 4th international congress on translation (pp. 99-106). Amsterdam: John Benjamins.
Perani, D. (2005). The neural basis of language talent in bilinguals. Trends in Cognitive Science, 9(5), 211-213.
Platel, H., Price, C., Baron, J.C., Wise, R., Lambert, J., et al. (1997). The structural components of music perception: A functional anatomical study. Brain, 120 (Pt. 2), 229-243.
Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816-847. 
Price, C. J., & Friston, K. J. (1997). Cognitive conjunction: a new approach to brain activation experiments. NeuroImage, 5, 261-270.
Raettig, T., Frisch, S., Friederici, A.D., & Kotz, S.A. (2010). Neural correlates of morphosyntacticand verb-argument structure processing: An EfMRI study. Cortex, 46, 613-620.
Richardson, F.M., Thomas, M.S., & Price, C.J. (2010). Neuronal activation for semantically reversible sentences. Journal of Cognitive Neuroscience, 22, 1283-1298.
Rinne, J. O., Tommola, J., Laine, M., Krause, B. J., Schmidt, D., Kaasineni, V., et al. (2000). The translating brain: Cerebral activation patterns during simultaneous interpreting. Neuroscience Letters, 294, 85-88.
Robertson, D.A., Gernsbacher, M.A., Guidotti, S.J., Robertson, R.R., Irwin, W., Mock, B.J., et al. (2000). Functional neuroanatomy of the cognitive process of mapping during discourse comprehension. Psychol. Sci., 11 (3), 255-260.
Robins, D.L., Hunyadi, E., & Schultz, R.T. (2009). Superior temporal activation in responseto dynamic audio-visual emotional cues. Brain and Cognition, 69, 269-278.
Ruschemeyer, S. A., Zysset, S., & Friederici, A.D. (2006). Native and non-native reading of sentences: An fMRI experiment. NeuroImage, 31, 354-365.
Sabri, M, Binder, J.R., Desai, R., Medler, D.A., Leitl, M.D., et al. (2008). Attentional and linguistic interactions in speech perception. NeuroImage, 39, 1444-1456.
Saito, D.N., Yoshimura, K., Kochiyama, T., Okada, T., Honda, M., et al. (2005). Cross-modal binding and activated attentional networks during audio-visual speech integration: A functional MRI study. Cerebral Cortex, 15, 1750-1760.
Schmalhofer, F., & Perfetti, C. A. (2007). Neural and behavioral indicators of integration processes across sentence boundaries. In F. Schmalhofer & C.A. Perfetti (Eds.), Higher level language processes in the brain: Inference and comprehension processes (pp. 161–188). Mahwah, NJ: Erlbaum.
Scott, S.K. et al. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 2400-2406.
Shanghai Interpretation Accreditation. (1995). Retrieved from May 22, http://web.shwyky.net/
Shu, H. & Anderson, R.C. (1997). Role of radical awareness in the characters and word acquisition of Chinese children. Reading Research Quarterly, 32(1), 78–89. Retrieved from http://www.jstor.org/stable/748144.
Shu, H. & Anderson, R.C. (1998). Learning to read Chinese: The development of metalinguistic awareness. In J. Wang, A.W. Inhoff & H.-C. Chen (Eds.), Reading Chinese script: A cognitive analysis. (pp. 1–19). Mahwah, NJ: Lawrence Erlbaum.
Siok, W. T., Niu, Z., Jin, Z., Perfetti, C. A., & Tan, L. H. (2008). A structural-functional basis for dyslexia in the cortex of Chinese readers. Proceedings of The National Academy of Sciences, 105(14), 5561-5566.
Siok, W. T., Perfetti, C. A., Jin, Z., & Tan, L. H. (2004). Biological abnormality of impaired reading is constrained by culture. Nature, 431, 71–76.
Smith, E. E. & Kosslyn, S. M. (2007). Cognitive Psychology: Mind and Brain. New Jersey: Prentice Hall. pp. 21, 194-199, 349.
Smith, E.E., Jonides, J., Marshuetz, C., & Koeppe, R.A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proc. Natl. Acad. Sci. U. S. A., 95, 876-882.
Snijders, T.M., Vosse, T., Kempen, G., Van Berkum, J.J., Petersson, K.M., & Hagoort, P. (2009). Retrieval and unification of syntactic structure in sentence comprehension: An fMRI study using word-category ambiguity. Cerebral. Cortex, 19, 1493-1503.
Specht, K., & Reul, J. (2003). Functional segregation of the temporal lobes into highly differentiated subsystems for auditory perception: An auditory rapid event-related fMRI-task. NeuroImage, 20, 1944-1954.
Spitsyna, G., Warren, J. E., Scott, S. K., Turkheimer, F. E., & Wise, R. J. S. (2006). Converging language streams in the human temporal lobe. Journal of Neuroscience, 26(28), 7328-7336.
Squire, L., R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psych. Rev., 99 (2), 195-231.
Tan, L. H., & Siok, W. T. (2006). How the brain reads the Chinese language: Recent neuroimaging findings. In P. Li, L. H. Tan, E. Bates & O. Tzeng (Eds.), The Handbook of East Asian Psycholinguistics (Volume 1: Chinese, pp. 58-371). Cambridge, UK: Cambridge University.
Tan, L. H., Spinks, J.A., Eden, G., Perfetti, C.A., & Siok,W. T. (2005). Reading depends on writing, in Chinese. Proceedings of the National Academy of Sciences of the United States of America, 102, 8781–8785.
Ugurbil, K. (2002). High-field Magnetic Resonance. In A. W. Toga & J. C. Massiotta (Eds.), Brain mapping: The method (pp. 291-313). Amsterdam: Academic press. 
Vandenberghe, R., Price, C., Wise, R., Josephs, O., & Frackowiak, R.S. (1996). Functional anatomy of a common semantic system for words and pictures. Nature, 383, 254-256.
Vanni, S., Tanskanen, T., Seppa, M., Uutela, K., & Hari, R. (2001). Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proc. Natl. Acad. Sci. U.S.A., 98, 2776-2780				
von Kriegstein, K., Eiger E, Kleinschmidt A, Giraud AL. (2003). Modulation of neural responses to speech by directing attention to voices or verbal content. Cogn Brain Res 17, 48-55.Walraff, B. (2000). What global language? The Atlantic Monthly, 286, 52-63.
Wartenburger, I., Heekeren, R. H., Abutalebi, J., Cappa, F. S., Villringer, A., & Perani, D. (2003). Early setting of grammatical processing in the bilingual brain. Neuron, 37, 159-170.
Wernicke, C. (1874). Der aphasische Symptomencomplex. Breslau: Cohn & Weigert.
Wernicke-Geschwind Model. (2013). In Wikipedia, The Free Encyclopedia. Retrieved from May 22, http://faculty.washington.edu/chudler/lang.html
Whitney, C., Jefferies, E., & Kircher, T. (2011). Heterogeneity of the left temporal lobe in semantic representation and control, priming multiple versus single meanings of ambiguous words. Cerebral Cortex, 21, 831-844.
Yang, H.Y. (2009). The Cognitive Effect of English Garden-path Sentences on the Comprehension of EFL Learners in Taiwan. (Doctoral dissertation). Retrieved from http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/29934.
Yoo, S.S., Lee, C.U., & Choi, B.G. (2001). Human brain mapping of auditory imagery: Event-related functional MRI study. Neuroreport, 12, 3045-3049.
Zhuang, J., Randall, B., Stamatakis, E.A., Marslen-Wilson, W.D., & Tyler, L.K. (2011). The interaction of lexical semantics and cohort competition in spoken word recognition: An fMRI study. Journal of Cognitive Neuroscience, 23 (12), 3778-3790.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信