§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2101201911184400
DOI 10.6846/TKU.2019.00613
論文名稱(中文) 以不同高級氧化程序及加藥形式處理含雙酚A水溶液之反應行為研究
論文名稱(英文) Study on the reaction behavior of aqueous solution containing Bisphenol A by different Advanced Oxidation Process and Dosing Forms.
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 1
出版年 108
研究生(中文) 王怡璇
研究生(英文) Yi-Syuan Wang
學號 606480092
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2019-01-03
論文頁數 202頁
口試委員 指導教授 - 陳俊成
共同指導教授 - 申永順
委員 - 李柏青
委員 - 鄭耀文
關鍵字(中) 高級氧化處理
過氧化氫
雙酚A
Fenton
Photo-Fenton
批次系統
半批次系統
關鍵字(英) Advanced oxidation processes
hydrogen peroxide
Bisphenol A
Fenton
Photo-Fenton
batch system
semi-batch system
第三語言關鍵字
學科別分類
中文摘要
高級氧化程序常用以處理難分解且濃度低的汙染物,因此該程序常會有過量使用氧化劑的問題。因此如何提高氧化劑的利用率,以減少氧化劑的使用,以節省成本及減少放流水內殘留氧化劑對生態的破壞,是應用高級氧化程序的重要課題。本研究比較以批次與半批次系統,進行以UV/H2O2與Fenton、Photo Fenton程序處理BPA,研究其最佳光催化效率,並探討光化學動力模式,以得出最好氧化劑利用率。
研究結果顯示四種氧化程序對於 BPA 之去除皆有顯著效果,然 Photo Fenton系統之去除效率為四種程序裡最佳的。光強度於三種程序皆呈現強度愈強其去除BPA效果愈佳之趨勢,顯示提高UV光穿透水溶液之能力可更快促使氧化劑產生自由基以去除污染物,然於UV/H2O2半批次系統中可改善批次系統的氧化劑利用率。BPA初始濃度會影響UV光催化氧化劑及亞鐵離子與過氧化氫碰撞機率,高濃度的BPA間接導致氧化劑之催化反應受阻,使BPA之去除效率下降。最佳pH 值在UV/H2O2批次與半批次系統降解BPA為5;Fenton及Photo Fenton系統則為3。
在所有操作條件下,Photo Fenton系統對BPA去除效率及反應動力常數皆較Fenton系統佳,且兩種程序之半批次系統的BPA最終去除率亦較佳。經比較化學反應劑量利用率於各操作條件,顯示氧化劑去除BPA之利用程度亦受各操作因子影響。電能量損耗效益(EE/O)於氧化劑濃度愈高之情況下所需耗能愈低,然過高的氧化劑量對於降低電能損耗並無明顯幫助,且所有批次系統之EE/O皆低於半批次系統。光促進效應亦受各操作因子影響而有所不同,但其中影響最大的操作因子為pH值。氧化劑促進比較顯示Fenton和Photo Fenton系統皆有隨著H2O2倍率增加氧化劑促進效應越高的趨勢,且Photo Fenton系統效果比Fenton系統更佳。經比較四種程序後發現Photo Fenton 系統降解 BPA 的能力,即使在低劑量的氧化劑下仍明顯優於 UV/H2O2 批次與半批次系統。
英文摘要
When applying advanced oxidation process in treating hardly degraded pollutants with low concentration, one has to overcome the challenge from excess dose of oxidants induced cost concern and impact on natural waterbody by effluent oxidant residues.  Therefore, how to improve oxidant utilization is concerned in AOPs application.  This study intends to explore whether the dosing procedure can improve the utilization of the oxidant.  This study compares the pollutant removal efficiency, oxidant utilization characterized as stoichiometric efficiencies(RSEs) and energy efficiency characterized as electrical energy per order(EE/O) of AOPs that include UV/H2O2, Fenton/Photo Fenton processes in both batch and semi-batch operations to obtain the optimal AOPs application in treating BPA solution with best oxidant utilization.
The considered parameters include applied UV or light intensity, initial BPA concentration and pH value.  The experimental results show that all processes can effectively remove BPA, while the removal efficiency of the Photo-Fenton system is the best among the four processes.  The stronger the light intensity the better BPA removal indicates the increased UV light intensity can penetrate more into BPA solution that prompts more generation of free radicals to react with BPA.  For the UV/H2O2 process, the RSEs in semi-batch operation is improved when compared to batch operation.  The initial concentration of BPA affects the UV photocatalytic oxidant generation.  The high concentration of BPA indirectly leads to the inhibition of the catalytic reaction of oxidant, which reduces the BPA removal efficiency.  The oxidant utilization in the semi-batch operation has been improved when compared with the batch operation.  Regarding the pH effect in BPA removal by the studied AOPs, the best pH setting in both UV/H2O2 batch and semi-batch operation is at pH 5; while the Fenton and Photo-Fenton systems perform the best BPA removal at pH 3.  Regardless of all operating conditions, the BPA removal efficiency and the reaction kinetics of the Photo-Fenton system were better than the Fenton system and the BPA removal capability of the semi-batch operation for both systems were improved compared with batch operation.
The more oxidant doze requires less energy to produce oxidants results in better energy efficiency, however excess oxidant doze does not improve energy efficiency significantly.  In this study, the energy efficiency or EE/O of the batch operation are all lower than that of semi-batch operation indicates batch operation has better energy efficiency than the semi-batch operation.  This study concludes that the semi-batch operation for various AOP systems can improve the oxidant utilization than the batch operation in the expense of more power consumption.
第三語言摘要
論文目次
圖目錄	IV
表目錄	XI
第一章 前言	1
1-1.	研究起源	1
1-2.	研究目的	3
1-3.	研究內容	3
第二章 文獻回顧	5
2-1.	環境荷爾蒙 (Endocrine Disrupting Chemicals, EDCS)	5
2-2.	高級氧化程序 (Advanced Oxidation Processes, AOPS)	6
2-3.	雙酚A (Bisphenol A, BPA) 之物化特性	9
2-4.	過氧化氫特性與應用	11
2-5.	UV/H2O2 反應機制及相關研究彙整	12
2-6.	UV/H2O2 程序操作因子之影響	21
2-6-1.	pH之影響	21
2-6-2.	H2O2 劑量之影響	24
2-6-3.	污染物濃度之影響	25
2-6-4.	UV光強度之影響	26
2-7.	光化學反應動力模式	28
2-8.	硫酸亞鐵特性與應用	30
2-9.	Fenton反應機制及相關研究彙整	31
2-10.	Fenton程序操作因子之影響	38
2-10-1.	pH 之影響	38
2-10-2.	[Fe2+]/[H2O2]莫耳比率之影響	39
2-10-3.	污染物濃度之影響	41
2-10-4.	H2O2濃度之影響	41
2-10-5.	溫度之影響	43
2-11.	Photo-Fenton反應機制及相關研究彙整	44
2-12.	Photo-Fenton程序操作因子之影響	50
2-12-1.	pH 之影響	50
2-12-2	[Fe2+]/[H2O2]莫耳比率之影響	51
2-12-3	污染物初始濃度之影響	54
2-12-4	H2O2濃度之影響	54
2-12-5	UV光強度之影響	56
第三章 實驗材料與方法	57
3-1.	實驗設備	57
3-2.	實驗藥品及藥品配置	58
3-2-1.	實驗藥品	58
3-2-2.	雙酚A水溶液製備	59
3-2-3.	過氧化氫氧化劑儲存溶液製備	59
3-2-4.	硫酸亞鐵儲存溶液製備	59
3-2-5.	氧化劑殘餘量分析-碘定量法	59
3-3.	實驗裝置	60
3-4.	實驗方法	61
3-4-1.	實驗架構	61
3-4-2.	化學實驗流程	62
3-5.	分析測定方法	63
3-5-1.	HPLC分析	63
3-5-2.	過氧化氫殘餘量測定-碘定量法	64
第四章 結果與討論	65
4-1.	背景實驗	65
4-1-1.	不照光實驗	65
4-1-2.	直接光解試驗	66
4-2.	以UV/H2O2程序降解含雙酚A水溶液之探討	67
4-2-1.	光強度效應	67
4-2-2.	汙染物初始濃度效應	80
4-2-3.	氧化劑加藥量效應	91
4-2-4.	pH效應	120
4-3.	以Fenton及Photo-Fenton程序降解含雙酚A水溶液之探討	131
4-3-1.	光強度效應(only Photo-Fenton process)	132
4-3-2.	污染物初始濃度效應	134
4-3-3.	氧化劑加藥量效應	142
4-3-4.	鐵離子劑量效應	152
4-3-5.	pH效應	160
4-3-6.	溫度效應(only Fenton process)	168
4-3-7.	H2O2加藥流速	170
4-4.	各類AOPS處理含雙酚A水溶液比較	176
4-4-1.	光強度效應	177
4-4-2.	汙染物初始濃度效應	179
4-4-3.	氧化劑加藥量效應	181
4-4-4.	pH效應	183
第五章 結論與建議	185
5-1.	結論	185
5-2.	建議	190
參考文獻	191

圖目錄
圖2- 1藉由UV光催化氧化劑並進行污染物之降解作用	8
圖2- 2由不同高級氧化技術產生氫氧自由基之機制	9
圖2- 3 UV/H2O2 去除 EDCs 機制圖	13
圖2- 4 Fenton反應示意圖	32
圖2- 5 Fenton用UV照射時發生的反應	45
圖3- 1光反應槽示意圖	60
圖3- 2整體實驗流程架構	61
圖3- 3雙酚A檢量線	63
圖4- 1 BPA = 20 ppm、molar ratio (BPA/H2O2) = 1:25時BPA之降解情形	65
圖4- 2 BPA = 20 mg/L、UV=5.96 mW/cm2,直接光解BPA之變化圖	66
圖4- 3 UV/H2O2系統中不同光強度降解BPA之變化圖	68
圖4- 4 UV/H2O2系統中不同光強度降解BPA之反應動力常數變化圖	68
圖4- 5 UV/H2O2系統中H2O2於不同光強度下之殘餘量變化圖	70
圖4- 6 UV/H2O2 系統中不同光強度下之瞬間利用率變化圖	70
圖4- 7 UV/H2O2 系統中不同光強度下之單位光強度利用率變化圖	71
圖4- 8 UV/H2O2 系統中不同光強度下之累積利用率變化圖	72
圖4- 9 UV/H2O2 系統中不同光強度所需之電耗能變化圖	73
圖4- 10 UV/H2O2 系統中實際投入水體之不同光強度所需電耗能變化圖	73
圖4- 11 UV/H2O2半批次系統中不同光強度降解BPA之變化圖	74
圖4- 12 UV/H2O2半批次系統中不同光強度降解BPA之反應動力常數變化圖	75
圖4- 13 UV/H2O2半批次系統中H2O2於不同光強度下之殘餘量變化圖	75
圖4- 14 UV/H2O2 半批次系統中不同光強度下之瞬間利用率變化圖	76
圖4- 15 UV/H2O2 半批次系統中不同光強度下之光瞬間利用率變化圖	77
圖4- 16 UV/H2O2 半批次系統中不同光強度下之累積利用率變化圖	77
圖4- 17 UV/H2O2半批次系統中不同光強度所需之電耗能變化圖	78
圖4- 18 UV/H2O2半批次系統中實際投入水體之不同光強度所需電耗能變化圖	78
圖4- 19 UV/H2O2 系統中不同BPA初始濃度降解變化圖	82
圖4- 20 UV/H2O2 系統中不同BPA初始濃度之反應動力常數變化圖	82
圖4- 21 UV/H2O2 系統中H2O2於不同BPA初始濃度之殘餘量變化圖	83
圖4- 22 UV/H2O2 系統中不同BPA初始濃度之瞬間利用率變化圖	84
圖4- 23 UV/H2O2 系統中不同BPA初始濃度下之累積利用率變化圖	84
圖4- 24 UV/H2O2 系統中不同BPA初始濃度所需之電耗能變化圖	85
圖4- 25 UV/H2O2半批次系統中不同BPA初始濃度降解之變化圖	86
圖4- 26 UV/H2O2 半批次系統中不同BPA初始濃度之反應動力常數變化圖	86
圖4- 27 UV/H2O2 半批次系統中H2O2於不同BPA初始濃度之殘餘量變化圖	87
圖4- 28 UV/H2O2 半批次系統中不同BPA初始濃度之瞬間利用率變化圖	88
圖4- 29 UV/H2O2 半批次系統中不同BPA初始濃度下之累積利用率變化圖	88
圖4- 30 UV/H2O2半批次系統中不同BPA初始濃度所需之電耗能變化圖	89
圖4- 31 UV/H2O2系統中不同 H2O2 加藥量去除BPA之變化圖	92
圖4- 32 UV/H2O2系統中不同H2O2加藥量去除BPA之反應動力常數變化圖	93
圖4- 33 UV/H2O2系統中H2O2於不同氧化劑加藥量之殘餘量變化圖	94
圖4- 34 UV/H2O2系統中不同氧化劑加藥量之瞬間利用率變化圖	94
圖4- 35 UV/H2O2系統中不同氧化劑加藥量之累積利用率變化圖	95
圖4- 36 UV/H2O2系統中不同氧化劑加藥量所需之電耗能變化圖	96
圖4- 37 UV/H2O2批次與半批次系統中不同H2O2加藥流速去除BPA之變化圖	97
圖4- 38 UV/H2O2半批次系統不同H2O2加藥流速去除BPA之反應動力常數變化圖	97
圖4- 39 UV/H2O2半批次系統中不同H2O2加藥流速之氧化劑殘餘量變化圖	99
圖4- 40 UV/H2O2半批次系統中不同H2O2加藥流速之瞬間利用率變化圖	99
圖4- 41 UV/H2O2半批次系統中不同H2O2加藥流速之累積利用率變化圖	100
圖4- 42 UV/H2O2系統中不同氧化劑加藥流速所需之電耗能變化圖	101
圖4- 43 UV/H2O2批次與半批次系統中不同H2O2加藥流速去除BPA之變化圖	103
圖4- 44 UV/H2O2半批次系統中不同H2O2加藥流速之反應動力常數變化圖	103
圖4- 45 UV/H2O2半批次系統中不同H2O2加藥流速之氧化劑殘餘量變化圖	105
圖4- 46 UV/H2O2半批次系統中不同H2O2加藥流速之瞬間利用率變化圖	105
圖4- 47 UV/H2O2半批次系統中不同H2O2加藥流速之累積利用率變化圖	106
圖4- 48 UV/H2O2系統中不同氧化劑加藥流速所需之電耗能變化圖	107
圖4- 49 UV/H2O2批次與半批次系統中不同H2O2加藥流速去除BPA之變化圖	109
圖4- 50 UV/H2O2半批次系統中不同H2O2加藥流速之反應動力常數變化圖	109
圖4- 51 UV/H2O2半批次系統中不同H2O2加藥流速之氧化劑殘餘量變化圖	111
圖4- 52 UV/H2O2半批次系統中不同H2O2加藥流速之瞬間利用率變化圖	111
圖4- 53 UV/H2O2半批次系統中不同H2O2加藥流速之累積利用率變化圖	112
圖4- 54 UV/H2O2系統中不同氧化劑加藥流速所需之電耗能變化圖	113
圖4- 55 UV/H2O2批次與半批次系統中不同H2O2加藥流速去除BPA之變化圖	115
圖4- 56 UV/H2O2半批次系統中不同H2O2加藥流速之反應動力常數變化圖	116
圖4- 57 UV/H2O2半批次系統中不同H2O2加藥流速之氧化劑殘餘量變化圖	117
圖4- 58 UV/H2O2半批次系統中不同H2O2加藥流速之瞬間利用率變化圖	117
圖4- 59 UV/H2O2半批次系統中不同H2O2加藥流速之累積利用率變化圖	118
圖4- 60 UV/H2O2系統中不同氧化劑加藥流速所需之電耗能變化圖	119
圖4- 61 UV/H2O2系統中不同pH去除BPA之變化圖	122
圖4- 62 UV/H2O2系統中不同pH之反應動力常數變化圖	123
圖4- 63 UV/H2O2系統中不同pH之氧化劑殘餘量變化圖	123
圖4- 64 UV/H2O2系統中不同pH之瞬間利用率變化圖	124
圖4- 65 UV/H2O2系統中不同pH之累積利用率變化圖	125
圖4- 66 UV/H2O2 系統中不同pH所需之電耗能變化圖	125
圖4- 67 UV/H2O2半批次系統中不同pH去除BPA之變化圖	126
圖4- 68 UV/H2O2半批次系統中不同pH之反應動力常數變化圖	127
圖4- 69 UV/H2O2半批次系統中不同pH之氧化劑殘餘量變化圖	128
圖4- 70 UV/H2O2半批次系統中不同pH之瞬間利用率變化圖	128
圖4- 71 UV/H2O2半批次系統中不同pH之累積利用率變化圖	129
圖4- 72 UV/H2O2 半批次系統中不同pH所需之電耗能變化圖	129
圖4- 73 Photo-Fenton系統中不同光強度去除BPA之變化圖	132
圖4- 74 Photo-Fenton系統中不同光強度之反應動力常數變化圖	133
圖4- 75 Photo-Fenton系統中不同光強度所需之電耗能變化圖	133
圖4- 76 Photo-Fenton系統中實際投入水體之不同光強度所需之電耗能變化圖	134
圖4- 77 Fenton系統中不同BPA初始濃度去除BPA之變化圖	135
圖4- 78 Fenton系統中不同BPA初始濃度之反應動力常數變化圖	135
圖4- 79 Photo-Fenton系統中不同BPA初始濃度去除BPA之變化圖	136
圖4- 80 Photo-Fenton系統中不同BPA初始濃度之反應動力常數變化圖	137
圖4- 81 Photo-Fenton和Fenton系統中BPA初始濃度為10 mg/L之去除BPA變化圖	138
圖4- 82 Photo-Fenton和Fenton系統中BPA初始濃度為20 mg/L之去除BPA變化圖	139
圖4- 83 Photo-Fenton和Fenton系統中BPA初始濃度為35 mg/L之去除BPA變化圖	139
圖4- 84 Photo-Fenton和Fenton系統中BPA初始濃度為50 mg/L之去除BPA變化圖	140
圖4- 85 Photo-Fenton和Fenton系統中不同BPA初始濃度之反應動力常數變化圖	140
圖4- 86 Photo-Fenton系統中不同BPA初始濃度所需之電耗能變化圖	141
圖4- 87 Photo-Fenton和Fenton系統中不同BPA初始濃度之光促進因子效應	142
圖4- 88 Fenton系統中不同H2O2加藥量去除BPA之變化圖	143
圖4- 89 Fenton系統中不同H2O2加藥量之反應動力常數變化圖	144
圖4- 90 Photo-Fenton系統中不同H2O2加藥量去除BPA之變化圖	145
圖4- 91 Photo-Fenton系統中不同H2O2加藥量之反應動力常數變化圖	146
圖4- 92 Photo-Fenton和Fenton系統中H2O2加藥量為2.465 mg/L去除BPA之變化圖	147
圖4- 93 Photo-Fenton和Fenton系統中H2O2加藥量為4.93 mg/L去除BPA之變化圖	147
圖4- 94 Photo-Fenton和Fenton系統中H2O2加藥量為10 mg/L去除BPA之變化圖	148
圖4- 95 Photo-Fenton和Fenton系統中H2O2加藥量為19.72 mg/L去除BPA之變化圖	148
圖4- 96 Photo-Fenton和Fenton系統中不同H2O2加藥量之反應動力常數變化圖	149
圖4- 97 Photo-Fenton系統中不同H2O2加藥量所需之電耗能變化圖	149
圖4- 98 Photo-Fenton和Fenton系統中不同H2O2加藥量之光促進因子效應	150
圖4- 99 Fenton系統中不同H2O2加藥倍率之氧化劑促進因子效應	151
圖4- 100 Photo-Fenton系統中不同H2O2加藥倍率之氧化劑促進因子效應	151
圖4- 101 Photo-Fenton和Fenton系統中不同H2O2加藥倍率之氧化劑促進因子效應	152
圖4- 102 Fenton系統中不同鐵離子劑量去除BPA之變化圖	153
圖4- 103 Fenton系統中不同鐵離子劑量之反應動力常數變化圖	154
圖4- 104 Photo-Fenton系統中不同鐵離子劑量去除BPA之變化圖	155
圖4- 105 Photo-Fenton系統中不同鐵離子劑量之反應動力常數變化圖	156
圖4- 106 Photo-Fenton和Fenton系統中鐵離子劑量為0.182 mg/L去除BPA之變化圖	157
圖4- 107 hoto-Fenton和Fenton系統中鐵離子劑量為1.62 mg/L去除BPA之變化圖	157
圖4- 108 Photo-Fenton和Fenton系統中鐵離子劑量為3.25 mg/L去除BPA之變化圖	158
圖4- 109 Photo-Fenton和Fenton系統中鐵離子劑量為6.49 mg/L去除BPA之變化圖	158
圖4- 110 Photo-Fenton和Fenton系統中不同鐵離子劑量之反應動力常數變化圖	159
圖4- 111 Photo-Fenton系統中不同鐵離子劑量所需之電耗能變化圖	159
圖4- 112 Photo-Fenton和Fenton系統中不同鐵離子劑量之光促進因子效應	160
圖4- 113 Fenton系統中不同pH去除BPA之變化圖	162
圖4- 114 Fenton系統中不同pH之反應動力常數變化圖	162
圖4- 115 Photo-Fenton系統中不同pH去除BPA之變化圖	163
圖4- 116 Photo-Fenton系統中不同pH之反應動力常數變化圖	164
圖4- 117 Photo-Fenton和Fenton系統中pH為2.5去除BPA之變化圖	164
圖4- 118 Photo-Fenton和Fenton系統中pH為3去除BPA之變化圖	165
圖4- 119 Photo-Fenton和Fenton系統中pH為3.5去除BPA之變化圖	165
圖4- 120 Photo-Fenton和Fenton系統中pH為4去除BPA之變化圖	166
圖4- 121 Photo-Fenton和Fenton系統中不同pH之反應動力常數變化圖	166
圖4- 122 Photo-Fenton系統中不同pH所需之電耗能變化圖	167
圖4- 123 Photo-Fenton和Fenton系統中不同pH之光促進因子效應	167
圖4- 124 Fenton系統中不同溫度去除BPA之變化圖	169
圖4- 125 Fenton系統中不同溫度之反應動力常數變化圖	169
圖4- 126 Fenton半批次系統中不同H2O2加藥流速去除BPA之變化圖	171
圖4- 127 Fenton半批次系統中不同H2O2加藥流速之反應動力常數變化圖	171
圖4- 128 Photo-Fenton半批次系統中不同H2O2加藥流速去除BPA之變化圖	172
圖4- 129 Photo-Fenton半批次系統中不同H2O2加藥流速之反應動力常數變化圖	173
圖4- 130 Photo-Fenton及Fenton半批次系統中不同H2O2加藥流速之反應動力常數變化圖	173
圖4- 131 Photo-Fenton系統中不同H2O2加藥流速所需之電耗能變化圖	174
圖4- 132 Photo-Fenton和Fenton系統中不同H2O2加藥流速之光促進因子效應	175
圖4- 133三種AOP主要反應機制圖	176
圖4- 134最佳BPA去除率條件下各種AOPs BPA降解變化圖(光強度)	178
圖4- 135不同光強度下各種AOPs之反應動力常數變化圖	178
圖4- 136最佳BPA去除率條件下各種AOPs BPA降解變化圖(汙染物初始濃度)	179
圖4- 137不同BPA初始濃度下各種AOPs之反應動力常數變化圖	180
圖4- 138最佳BPA去除率條件下各種AOPs BPA降解變化圖(氧化劑加藥量)	182
圖4- 139不同氧化劑加藥量下各種AOPs之反應動力常數變化圖	182
圖4- 140最佳BPA去除率條件下各種AOPs BPA降解變化圖(pH)	184
圖4- 141不同pH下各種AOPs之反應動力常數變化圖	184

 
表目錄
表2- 1常見的氧化劑標準還原電位	8
表2- 2雙酚A之物化特性	10
表2- 3過氧化氫之物化特性	11
表2- 4以 UV/H2O2 處理 EDCs、藥物等之相關研究	14
表2- 5硫酸亞鐵之物化特性	30
表2- 6 Fenton反應中可能的反應式和速率常數	34
表2- 7以Fenton處理汙染物之相關研究	35
表2- 8以Photo-Fenton處理汙染物之相關研究	46
表2- 9最佳 Fenton 試劑比值	52
表3- 1本研究所需各項實驗設備之來源與目的	57
表3- 2實驗藥品	58
表3- 3使用HPLC於雙酚A水溶液之操作條件	64
表4- 1 UV/H2O2 批次和半批次系統中不同光強度下之瞬間利用率	79
表4- 2 UV/H2O2 批次和半批次系統中不同光強度下之光瞬間利用率	80
表4- 3 UV/H2O2 批次和半批次系統中不同光強度下之累積利用率	80
表4- 4 UV/H2O2 批次和半批次系統中不同BPA初始濃度下瞬間利用率	90
表4- 5 UV/H2O2 批次和半批次系統中不同BPA初始濃度下累積利用率	90
表4- 6 UV/H2O2 批次和半批次系統中不同H2O2加藥流速下瞬間利用率	102
表4- 7 UV/H2O2 批次和半批次系統中不同H2O2加藥流速下累積利用率	102
表4- 8 UV/H2O2 批次和半批次系統中不同H2O2加藥流速下瞬間利用率	108
表4- 9 UV/H2O2 批次和半批次系統中不同H2O2加藥流速下累積利用率	108
表4- 10 UV/H2O2 批次和半批次系統中不同H2O2加藥流速下瞬間利用率	114
表4- 11 UV/H2O2 批次和半批次系統中不同H2O2加藥流速下累積利用率	114
表4- 12 UV/H2O2 批次和半批次系統中不同H2O2加藥流速下瞬間利用率	120
表4- 13 UV/H2O2 批次和半批次系統中不同H2O2加藥流速下累積利用率	120
表4- 14 UV/H2O2 批次和半批次系統中不同pH條件下之瞬間利用率	131
表4- 15 UV/H2O2 批次和半批次系統中不同pH條件下之累積利用率	131
參考文獻
(英文)
1.	A.Z. Aris, A.S. Shamsuddin, S.M. Praveena (2014)“Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review ”Environ. Int, 69, pp. 104-119
2.	A. Babuponnusami, K. Muthukumar (2014)“A review on Fenton and improvements to the Fenton process for wastewater treatment.”J. Environ. Chem. Eng, pp. 557-572
3.	A.L.N. Mota, L.F. Albuquerque, L.T.C. Beltrame, O. Chiavone-Filho, A. Machulek Jr., C.A.O. Nascimento (2009)“Advanced oxidation processes and their application in the petroleum industry: a review. ”Braz. J. Pet. Gas, pp. 122-142
4.	A. Bedoui, L. Elalaoui, A. Abdel-Wahab, N. Bensalah (2011)“Photo-Fenton treatment of actual agro-industrial wastewaters.”Ind Eng Chem Res, pp. 6673-6680
5.	A.S. Ameta R, Kumar A, P.B. Punjabi, Advanced oxidation Processes: Basics and Principles, in: F.S. Rao DG, R. Senthilkumar, J. Anthony Byrne (2013)“Wastewater Treat. Adv. Process. Technol., 2013th.”
6.	A. Henglein (1987)“Sonochemistry: historical developments and modern aspects ” Ultrasonics, pp. 6-16
7.	Ayman E. Shafei, Maggie M. Ramzy, Abdelhares I. Hegazy,Ahmed K. Husseny, Usama G. EL-hadary, Mazen M. Taha, Ali A. Mosa (2018)“ The molecular mechanisms of action of the endocrine disrupting chemical bisphenol A in the development of cancer. ” Gene ., 235-243
8.	A. Bernabeu, S. Palacios, R. Vicente, R.F. Vercher, S. Malato, A. Arques, A.M. Amat (2012)“Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants”Chem. Eng. J., 198–199 , pp. 65-72
9.	A. Bedoui, M. Hasni, L. Elaloui, N. Bensalah (2009)“Degradation and mineralization of organic pollutants contained in actual pulp and paper mill wastewaters by a UV/H2O2 process. ”Ind Eng Chem Res, pp. 3370-3379
10.	A.L.N. Mota, L.F. Albuquerque, L.T.C. Beltrame, O. Chiavone-Filho, A. Machulek Jr., C.A.O. Nascimento (2009)“Advanced oxidation processes and their application in the petroleum industry: a review”Braz. J. Pet. Gas., pp. 122-142
11.	Anirudh Gupta, Anurag Garg (2018)“Degradation of ciprofloxacin using Fenton's oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment”Chemosphere 1181-1188
12.	A. Safarzadeh-Amiri, J.R. Bolton, S.R. Cater (1997)“Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water.”Water Res., pp. 787-798
13.	A. Riga,K. Soutsas, K. Ntampegliotis,V. Karayannis,G. Papapolymerou (2007)“Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV/Fenton, TiO2 /UV and TiO2 /UV/H2O2 processes.”Desalination 72–86
14.	Błędzka, D.,M. Gmurek,M. Gryglik,M. Olak,J. S. Miller,S. Ledakowicz (2010)“Photodegradation and advanced oxidation of endocrine disruptors in aqueous solutions.”Catalysis Today 125-130.
15.	B.C. Faust, J. Hoigne (1990)“Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain.”Atmos. Environ., pp. 79-89
16.	Caio Rodrigues-Silva, Milena Guedes Maniero, Susanne Rath, José Roberto Guimarães (2013)“Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity.”Science of the Total Environment 337–346
17.	C. Sirtoria,b, A. Zapata, I. Oller, W. Gernjak, A. Agu¨era, S. Malato (2009)“Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment.”Water Research 661–668
18.	D.R. Raman, E.L. Williams, A.C. Layton, R.T. Burns, J.P. Easter, A.S. Daugherty (2004)“Estrogen content of dairy and swine wastes” Environ. Sci. Technol, pp. 3567-3573
19.	D. Vogna, R. Marotta, R. Andreozzi, A. Napolitano, M. d’Ischia (2004)“Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine.”Chemosphere, pp. 497-505
20.	D. Shahidi, R. Roy, A. Azzouz (2015)“Advances in catalytic oxidation of organic pollutants – prospects for thorough mineralization by natural clay catalysts. ”Appl. Catal. B Environ., 174–175, pp. 277-292
21.	Disni Gamaralalage, Osamu Sawai, Teppei Nunoura (2018)“Degradation behavior of palm oil mill effluent in Fenton oxidation”Journal of Hazardous Materials Available online 6 July 2018
22.	E. Rott, R. Minke, U. Bali, H. Steinmetz (2017)“Removal of phosphonates from industrial wastewater with UV/Fell, Fenton and UV/Fenton treatment.”Water Res, pp. 345-354
23.	E. Neyens, J. Baeyens (2003) “A review of classic Fenton’s peroxidation as an advanced oxidation technique.” J. Hazard. Mater. 33–50. 
24.	Giusy Lofrano , Luigi Rizzo , Mariangela Grassi , Vincenzo Belgiorno (2009)“Advanced oxidation of catechol: A comparison among photocatalysis, Fenton and photo-Fenton processes.”Desalination 878–883
25.	G. Divyapriya, I.M. Nambi, J. Senthilnathan (2016)“Nanocatalysts in Fenton based advanced oxidation process for water and wastewater treatment.”J Bionanosci, pp. 356-368
26.	Geens T., Goeyens L., Kannan K., Neels H., Covaci A. (2012).“ Levels of bisphenol-A in thermal paper receipts from Belgium and estimation of human exposure. ”Sci Total Environ.; 435-436:30-33.
27.	G.G. Ying, R.S. Kookana, Y.J. Ru (2002)“Review article. Occurrence and fate of hormone steroids in the environment”Environ. Int, pp. 545-551
28.	Gerona, R. R., Pan, J., Zota, A. R., Schwartz, J. M., Friesen, M., Taylor, J. A.,Hunt, P. A., and Woodruff, T. J. (2016)“Direct measurement of Bisphenol A (BPA), BPA glucuronide and BPA sulfate in a diverse and low-income population of pregnant women reveals high exposure, with potential implications for previous exposure estimates: a cross-sectional study.”Environ Health 15-50.
29.	H. Hossaini, G. Moussavi, M. Farrokhi (2014)“The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water”Water Res, pp. 130-144
30.	Inmaculada Velo-Gala, Jesús J. López-Peñalver, Manuel Sánchez-Polo, José Rivera-Utrilla (2014)“Comparative study of oxidative degradation of sodium diatrizoate in aqueous solution by H2O2/Fe2+, H2O2/Fe3+, Fe (VI) and UV, H2O2/UV,K2S2O8/UV. ”Chemical Engineering Journal 504–512
31.	J.J. Pignatello, E. Oliveros, A. MacKay (2006)“Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry.”Crit. Rev. Environ. Sci. Technol., pp. 1-84
32.	J.L. Wang, L.J. Xu (2012)“Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application.”Crit. Rev. Environ. Sci. Technol.,pp. 251-325
33.	Jing Deng , Yisheng Shao, Naiyun Gao a , Shengji Xia, Chaoqun Tan, Shiqing Zhou, Xuhao Hu (2013)“Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water”Chemical Engineering Journal 150–158
34.	J.J. Pignatello, E. Oliveros, A. Mackay (2006) “Advanced Oxidation Processes for organic contaminant destruction based on the Fenton reaction and related chemistry.” Environ. Sci. Technol., pp. 273-275
35.	Jing Deng , Yisheng Shao, Naiyun Gao, Shengji Xia , Chaoqun Tan , Shiqing Zhou , Xuhao Hu (2013)“Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water.”Chemical Engineering Journal 150–158
36.	Jing Deng, Yisheng Shao, Naiyun Gao, Shengji Xia, Chaoqun Tan, Shiqing Zhou, Xuhao Hu (2013)“Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water.”Chemical Engineering Journal Volume 222, Pages 150-158
37.	Jyoti Sharma, I.M.Mishra, Vineet Kumar (2015)“Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O82- oxidation systems.”Journal of Environmental Management Volume 156, Pages 266-275
38.	J.J. Lopez-Penalver, M. Sanchez-Polo, C.V. Gomez-Pacheco, J. Rivera-Utrilla (2016)“Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes.”J. Chem. Technol. Biotechnol.,pp. 1325-1333
39.	Juan M. Peralta-Herna´ndez, Shraddha Vijay, Oscar Rodrı´guez-Narva´ez, Martin A. Pacheco-A´ lvarez (2018)“Photo and Solar Fenton Processes for Wastewater Treatment.” Electrochemical Water and Wastewater Treatment
40.	K. Ayoub, E.D. van Hullebusch, M. Cassir, A. Bermond (2010)“Application of advanced oxidation processes for TNT removal: a review. ” J. Hazard. Mater., pp. 10-28
41.	K. Suslick, D. Hammerton, R. Cline (1986)“The sonochemical hot spot. ” J. Am. Chem. Soc., pp. 5641-5642
42.	Lakind, J. S., and Naiman, D. Q. (2011)“Daily intake of bisphenol A and potential sources of exposure: 2005–2006 National Health and Nutrition Examination Survey.” Journal of Exposure Science and Environmental Epidemiology 272-279.
43.	Mariana Neamtu , Ayfer Yediler , Ilie Siminiceanu , Antonius Kettrup (2003)“Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes.”Journal of Photochemistry and Photobiology A: Chemistry 87–93
44.	Marco S. Lucas, Jose´ A. Peres (2006)“Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. ”Dyes and Pigments 236-244
45.	M. Gavrilescu, K. Demnerová, J. Aamand, S. Agathos, F. Fava (2015) “Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation.”New Biotechnol., pp. 147-156
46.	M. De Falco, A. Sellitti, R. Sciarrillo, A. Capaldo, S. Valiante, G. Iachetta, M. Forte, V. Laforgia (2014)“Nonylphenol effects on the HPA axis of the bioindicator vertebrate, Podarcis sicula lizard” Chemosphere, pp. 190-196
47.	Mohammad Boshir Ahmed , John L. Zhou , Huu Hao Ngo , Wenshan Guo , Nikolaos S. Thomaidis , Jiang Xu (2017) “Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review”Journal of Hazardous Materials 274–298
48.	Marta Gmurek, Magdalena, Olak-Kucharczyk, Stanisław, Ledakowicz (2017)“Photochemical decomposition of endocrine disrupting compounds  – A review.” Chemical Engineering Journal, Pages 437-456
49.	Mónica S.F. Santos, A. Alves, Luis M. Madeira (2011)“Paraquat removal from water by oxidation with Fenton’s reagent.” Chemical Engineering Journal 279–290
50.	Nahid Hassanshahi, Ayoub Karimi-Jashni (2018)“Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water.” Ecotoxicology and Environmental Safety 683–690
51.	Niloofar Abedinzadeh, MahmoodShariat, Sayed Masoud Monavari, Alireza Pendashteh (2018)“Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater.” Process Safety and Environmental Protection Volume 116, Pages 82-91
52.	O. Legrini, E. Oliveros, A. Braun  (1993)“ Photochemical processes for water treatment”Chem. Rev., pp. 671-698
53.	Pan, J.,Y. Chen (2010) “Oxidation deradation of Bisphenol A (BPA) by UV/H2O2 process.”ICBEE 5517101.
54.	P. Ghosh, A.N. Samanta, S. Ray (2010)“COD reduction of petrochemical industry wastewater using Fenton’s oxidation”Can. J. Chem. Eng. 1021–1026.
55.	P. Maletzky, R. Bauer (1998) “The Photo-Fenton method - degradation of nitrogen containing organic compounds.” Chemosphere, Vol. 37, No. 5, pp. 899-909
56.	Qiongfang Wang, Yisheng Shao, Naiyun Gao, Wenhai Chu, Xiang Shen, Xian Lu, Juxiang Chen, Yanping Zhu (2016)“Degradation kinetics and mechanism of 2,4-Di-tert-butylphenol with UV/persulfate.”Chemical Engineering Journal 201–208 
57.	R. Patel, T. Bhingradiya, A. Deshmukh, V. Gandhi (2016)“Response surface methodology for optimization and modeling of photo-degradation of Alizarin Cyanine Green and Acid Orange 7 dyes using UV/TiO2 process.”Mater Sci Forum, pp. 94-104
58.	R.A. Rudel, L.J. Perovich (2009) “Endocrine disrupting chemicals in indoor and outdoor air. ” Atmos. Environ., pp. 170-181
59.	R.C. Weast (1969)“Handbook of chemistry and physics”Am. J. Med. Sci., pp. 423
60.	Sanches, S.,M. T. Barreto Crespo,V. J. Pereira (2010) “Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes.” Water Res 1809-1818.
61.	Sheng H. Lin and Cho C. Lo (1997)“Fenton process for treatment of desizing wastewater.” Water Research, Pages 2050-2056
62.	San Sebastian N., Figuls J., Font X., Sanchez A. (2003) “Pre-oxidation of an extremely polluted industrial wastewater by the Fenton’s reagent” J. Hazard. Mater 315-322.
63.	Semanur Giray Cetinkaya, Mehmet Hakan Morcali, Sümeyye Akarsu, Cengiz AyhanZiba, MustafaDolaz (2018)“Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater.”Sustainable Environment Research 165-170
64.	S. Goldstein, D. Meyerstein, G. Czapski (1993)“The Fenton reagents.”Free Radic. Biol. Med., pp. 435-445
65.	Staples, C. A., Woodburn, K., Caspers, N., Hall, A. T., & Kleĉka, G. M. (2002)“A Weight of Evidence Approach to the Aquatic Hazard Assessment of Bisphenoi A.” Human and Ecological Risk Assessment, 1083-1105.
66.	S. Esplugas, P.L. Yue, M.I. Pervez (1994)“Degradation of 4-chlorophenol by photolytic oxidation. ” Water Res., pp. 1323-1328
67.	S.R. Hutchins, M.V. White, F.M. Hudson, D.D. Fine“Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogens conjugates ” Environ. Sci. Technol, pp. 738-744
68.	S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak (2009)“Decontamination and disinfection of water by solar photocatalysis: recent overview and trends”Catal. Today, pp. 1-59
69.	S. De Coster, N. van Lerebeke (2012)“Endocrine-disrupting chemicals: associated disorders and mechanism of action.”J. Environ. Public Health
70.	Shizong Wang, Jianlong Wang (2018)“Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes.”Chemosphere 97-105
71.	T.Krutzler, R.Bauer (1999)“Optimization of a photo-fenton prototype reactor.” Chemosphere, pp. 2517-2532
72.	Torrades F., Perez M., Mansilla H.D., Peral J. (2003)“ Experimental design of Fenton and photo Fenton reactions for the treatment of cellulose bleaching effluents.” Chemosphere 1211-1220.
73.	T. Mandal, S. Maity, D. Dasgupta, S. Datta (2010) “Advanced oxidation process and biotreatment:their roles in combined industrial wastewater treatment.”Desalination 87–94.
74.	T.M. Crisp, E.D. Clegg, R.L. Cooper, W.P. Wood, D.G. Anderson, K.P. Baetcke, J.L. Hoffmann, M.S. Morrow, D.J. Rodier, J.E. Schaeffer, L.W. Touart, M.G. Zeeman, Y.M. Patel (1998)“Environmental endocrine disruption: an effects assessment and analysis.”Environ. Health Perspect., pp. 11-56
75.	V. Kavitha, K. Palanivelu (2004)“The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol.”Chemosphere 1235–1243
76.	V. Nogueira, I. Lopes, T. Rocha-Santos, F. Gonçalves, R. Pereira (2017)“Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents.”Environ Technol, pp. 1-11
77.	V. Kavitha, K. Palanivelu (2004)“The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol”Chemosphere 1235–1243.
78.	V. Kavitha,K. Palanivelu (2007)“Degradation of 2-Chlorophenol by Fenton and Photo-Fenton Processes—A Comparative Study.”Toxic/Hazardous Substances & Environmental Engineering, pp. 1215–1231
79.	Wenhui Qiu, Ming Zheng, Jing Sun, Yiqun Tian, Meijuan Fang (2019)“Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H2O2, UV/Fe(II), and UV/H2O2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos.”Science of the Total Environment 1457-1468
80.	Wael H.M. Ab delraheem, Xuexiang He, Xiaodi Duan, Dionysios D. Dionysiou (2015)“Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254 nm/H2O2. ”Journal of Hazardous Materials 233–240
81.	Yiqing Zhang, Jiefeng Zhang, Yongjun Xiao, Victor W.C. Chang, Teik-Thye Lim (2016) “Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate ”Chemical Engineering Journal 526–534
82.	Y. Tsumura, S. Ishimitsu, A. Kaihara, K. Yoshii, Y. Nakamura, Y. Tonogai (2001)“Di(2-ethylhexyl) phthalate contamination of retail packed lunches caused by PVC gloves used in the preparation of foods ”Food Addit. Contam.,pp. 569-579
83.	Yiqing Liu, Xuexiang He, Xiaodi Duan, Yongsheng Fu, Dionysios D. Dionysiou (2015)“ Photochemical degradation of oxytetracycline: Influence of pH and role of carbonate radical.”Chemical Engineering Journal 113–121
84.	Yin Xu, Ziyan Lin, Hui Zhang (2016)“Mineralization of sucralose by UV-based advanced oxidation processes:UV/PDS versus UV/H2O2. ”Chemical Engineering Journal 392–401
85.	Y. Combarnous (2017)“Endocrine Disruptor Compounds (EDCs) and agriculture: The case of pesticides”Comptes Rendus Biologies, pp. 406-409
86.	Yiqing Liu, Xuexiang He, Yongsheng Fu, Dionysios D. Dionysiou (2016) “Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes” Chemical Engineering Journal 1317–1327
87.	Yamamoto, T.,A. Yasuhara, H. Shiraishi, O. Nakasugi (2001) “Bisphenol A in hazardous waste landfill leachates.”Chemosphere 415-418.
88.	Zhe Wang, Jiangbo Li, Weihua Tan, Xiaogang Wua, Heng Lin, Hui Zhang (2018)“Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis.”Separation and Purification Technology Available online 19 June 2018
89.	Z. Fan, J. Hu, W. An, M. Yang (2013)“ Detection of occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: comparison to the parent compounds.” Environ. Sci. Technol., pp. 10841-10850
90.	Zhang, Y. Li (2014)“Removal of phenolic endocrine disrupting compounds from waste activated sludge using UV, H2O2, and UV/H2O2 oxidation processes: effects of reaction conditions and sludge matrix.”Sci Total Environ 307-323.
91.	ZilongZhao, ZekunLiu, HongjieWang, WenyiDong, WeiWan (2018)“Sequential application of Fenton and ozone-based oxidation process for the abatement of Ni-EDTA containing nickel plating effluents.“ Chemosphere Volume 202, Pages 238-245
92.	Zhang, Z.,Y. Feng,Y. Liu,Q. Sun,P. Gao,N. Ren (2010) “Kinetic degradation model and estrogenicity changes of EE2 (17alpha-ethinylestradiol) in aqueous solution by UV and UV/H2O2 technology.”J Hazard Mater 1127-1133.

(中文)
1.黃昱閔(2016) 。《以紫外線結合不同氧化劑程序處理含雙酚A水溶液之光氧化與生物反應研究》。淡江大學水資源與環境工程學系,未出版,新北市。
2.高偉哲(2015)。《以光芬頓程序處理抗生素氯四環素廢水之研究》。國立中興大學環境工程學系,未出版,台中市。
3.李聖儒(2012)。《以芬頓及電芬頓技術處理水溶液中聚乙烯醇之研究》。弘光科技大學職業安全與防災研究所,未出版,台中市。
4.邱品嘉(2014)。《以Fenton法及Photo-Fenton法降解含磺胺甲基噁作之研究》。國立中興大學環境工程學系,未出版,台中市。
5.陳佩茹(2010)。《Fenton相關程序去除色度與DOC之研究》。淡江大學水資源與環境工程學系,未出版,新北市。
6.姜欣伶(2012)。《以光芬頓程序處理含有界面活性劑(Triton X-100)廢水之研究》。國立中興大學環境工程學系,未出版,台中市。
7.賴佩嵐(2011)。《Fenton相關程序過氧化氫分解與有機物礦化之研究》。淡江大學水資源與環境工程學系,未出版,新北市。
8.陳祈偉(2016)。《以芬頓法降解水中的界面活性劑》。大同大學化學工程研究所,未出版,台北市。
9.游非庸(2005)。《Photo-Fenton相關程序氫氧自由基生成及分解染料之研究》。淡江大學水資源與環境工程學系,未出版,新北市。
10.王德修(1999)。《Fenton相關程序處理硝基酚類化合物之研究》。淡江大學水資源與環境工程學系,未出版,新北市。
11.張芳淑(1995)。《Fenton反應之最適化控制因子探討》。淡江大學水資源與環境工程學系,未出版,新北市。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信