§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2009201612054300
DOI 10.6846/TKU.2016.00635
論文名稱(中文) 非平坦介質表面之微波成像
論文名稱(英文) Microwave Imaging of the Rough Surface
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 吳長恩
研究生(英文) Chang-En Wu
學號 603440271
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-07-20
論文頁數 63頁
口試委員 指導教授 - 丘建青
委員 - 林丁丙
委員 - 李慶烈
關鍵字(中) 微波成像
子空間演算法
非平坦介質表面
自我適應之差異型演化法
整數型自我適應之差異型演化法
關鍵字(英) Microwave Imaging
Subspace-based Algorithm
Rough Surface
Integer type
Self-Adaptive Dynamic Differential Evolution (SADDE)
第三語言關鍵字
學科別分類
中文摘要
本論文探討非平坦介質表面進行重建的問題,吾人利用掩埋物體法進行重建,即將非平坦部分之介質視為一連串之物體,埋藏於平坦之半空間中,計算出這些掩埋物體之介電常數,就可以重建出非平坦介質表面之形狀,吾人利用積分方程式及量到的散射場,將逆散射問題轉化成最佳化問題,搭配自我適應之動態差異型演化法來處理大量未知數的電磁成像問題。本論文將會以非平坦介質表面為主軸,探討在此環境下,給予不同的初始條件,使用自我適應之動態差異型演化法(SADDE)重建,測試其對非平坦介質表面的搜尋速度及強建性。
    將非平坦介質表面視為一連串之物體掩埋於平坦之半空間中,一組為凸起之物體,另一組為凹陷之物體,並分別對兩組物體進行重建,首先推導其數學式,利用等效電流導出兩組物體的積分方程式,並使用動差法將其轉為矩陣,交由電腦計算散射場,並進行數值模擬。
    最後利用自我適應之動態差異性演化法重建出非平坦介質之表面,不論初始的猜測值如何,自我適應之動態差異性演化法總會收歛到整體的極值(global extreme),因此在數值模擬顯示中,即使最初的猜測值遠大於實際值,我們仍可求得準確的數值解,成功的重建出表面區域的介電常數。另外模擬結果亦顯示無論在低於5%雜訊的情況下,吾人都可重建出近似的結果
英文摘要
This thesis presents the reconstruction of rough surface ,we use the buried object approach to reconstruct the shape and dielectric constant of the rough surface. The rough surface is regarded as a series of objects buried in the flat half space which located alternately on both sides of a plan on interface between two half space .By calculating the dielectric constant of these buried objects, we can reconstruct the shape of rough surface use through the application of the integral equations and the measured scattered field, the inverse scattering problem is transformed into an optimization problem and solved by self-adaptive dynamic differential evolution(SADDE) which can process a lot of unknowns for the electromagnetic imaging problems. The thesis tests the search speed for SADDE by different initial guesses for the rough surface.                                       
    The rough surface is regarded as a series of objects buried on the both sides of the flat half space. A group of convex objects, and a group of concave objects are to be reconstructed. The mathematical formula for the equivalent current is derived by applying two integral equations, then the moment method is employed to solve these equations by computer.
    By using the SADDE to reconstruct the rough surface, numerical results show that the SADDE converges to the overall extreme value (global extreme) regardless of the initial guess. Even if the initial guess is far away from the actual value, SADDE can get the correct shape and the dielectric constant of the rough surface. Simulation results also show that when the noise in less than 5%, we can also reconstruct the similar result.
第三語言摘要
論文目次
目錄
第一章  簡介	1
1.1  研究動機與相關文獻	1
1.2  本研究之貢獻	10
1.3  各章內容簡述	10
第二章  非平坦介質表面在半空間中的正散射理論	12
2.1  Green's Function(格林函數)推導	12
2.1.1  前言                              12
2.1.2  線電流位於上半平面之Green's Function 13
2.1.3  線電流位於下半平面之Green's Function 13 
2.2  正散射的理論公式推導 14  
2.3  數值方法	19
第三章  自我適應之動態差異型演化法在逆散射的應用	22
3.1  自我適應之動態差異型演化法 22
3.2  整數型自我適應之動態差異型演化法 31
3.3  子空間演算法 32
第四章  數值分析及模擬結果	37
第五章  結論	58
參考文獻	60

















圖目錄
圖2-1-1  線電流源位於區域1時的示意圖	17
圖2-1-2  線電流源位於區域2時的示意圖	17
圖2-2-1  二維非平坦介質表面在半空間的示意圖	18
圖3-1  自我適應之動態差異型演化法流程圖	23
圖3-2  自我適應之動態差異型演化法中突變方法一的示意圖	25
圖3-3  自我適應之動態差異型演化法中突變方法二的示意圖	26
圖3-4  自我適應之動態差異型演化法中的交配向量於一個二維目標函數等位線圖描述的示意圖	28
圖4-1-1  物體切格數同為2X2之正方形原始型狀	39
圖4-1-2  以SADDE搭配CSI重建物體同為2X2之情形	40
圖4-1-3  以SADDE搭配SOM重建物體同為2X2之情形	40
圖4-1-4  物體同為2X2不同分佈之原始型狀	41
圖4-1-5  SADDE搭配CSI重建物體同為2X2不同分佈之情形	42
圖4-1-6  SADDE搭配SOM重建物體同為2X2不同分佈之情形	42
圖4-1-7  以SADDE搭配CSI重建物體加入雜訊之情形(A)~(E) 43
圖4-1-8  以SADDE搭配SOM重建物體加入雜訊之情形(A)~(E) 44
圖4-1-9  無雜訊錯誤率和迭代次數之比較圖 45
圖4-1-10  雜訊和錯誤率之比較圖 45
圖4-2-1  物體切格數上為2X2下為3X3之原始型狀	47
圖4-2-2  以SADDE搭配CSI重建物體上為2X2下為3X3之情形	48
圖4-2-3  以SADDE搭配SOM重建物體上為2X2下為3X3之情形	48
圖4-2-4  物體切格數上為2X2下為3X3不同分佈之原始型狀	49
圖4-2-5  SADDE搭配CSI重建物體上為2X2下為3X3不同分佈之情形 50
圖4-2-6  SADDE搭配SOM重建物體上為2X2下為3X3不同分佈之情形 50
圖4-2-7  以SADDE搭配CSI重建物體加入雜訊之情形(A)~(E) 51
圖4-2-8  以SADDE搭配SOM重建物體加入雜訊之情形(A)~(E) 52
圖4-2-9  無雜訊錯誤率和迭代次數之比較圖 53
圖4-2-10  雜訊和錯誤率之比較圖 53
圖4-3-1  物體切格數上為4X4下為3X3之型狀	55
圖4-3-2  以SADDE搭配CSI重建物體上為4X4下為3X3之情形	56
圖4-3-3  以SADDE搭配SOM重建物體上為4X4下為3X3之情形	56
圖4-3-4  無雜訊錯誤率和迭代次數之比較圖 57
參考文獻
參考文獻
[1]	E. Wolf, “Three-dimensional structure determination of      semi-transparentobjects from holographic data,” Opt. Commun., Vol. 1, pp.153–164, Sep.-Oct. 1969.
[2]	O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
[3]	S. Genovesi, E. Salerno, A. Monorchio and G. Manara, “Permittivity range profile reconstruction of multilayered structures from microwave backscattering data by using particle swarm optimization,” Microwave and Optical Technology Letters, Vol. 51, No. 10, pp. 2390 - 2394, Oct. 2009.
[4]	T. Rubæk, O. S. Kim, P. Meincke, “Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 7, Jul. 2009.
[5]	M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, R. Benjamin, “Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.
[6]	J. Bourqui, M. Okoniewski, E. C. Fear, “Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging.”, IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, Jul 2010.
[7]	 A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, Vol. 6, pp. 635-641, Aug.1990.
[8]	V. Isakov, “Uniqueness and stability in multidimensional inverse problems,” Inverse Problems, Vol. 9, pp. 579–621, 1993.
[9]	O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Sci., Vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
[10]	D. Colton and L. Paivarinta, “The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,” Arc. Ration. Mech. Anal., Vol. 119, pp. 59–70, 1992.
[11]	S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, no. 4, pp. 1162-1173, Apr. 2003.
[12]	M. Bertero and E. R. Pike, Inverse Problems in Scattering and Imaging, ser. Adam HilgerSeries on Biomedical Imaging. Bristol, MA: Inst. Phys., 1992.
[13]	A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996.
[14]	A. M. Denisov, Elements of Theory of Inverse Problems. Utrecht, The Netherlands: VSP, 1999.
[15]	A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[16]	S. Boutami,; M. Fall, , “Calculation of Free-Space Periodic Green’s Function Using Equivalent Finite Array,” IEEE Transactions on Antennas and Propagation.,Vol. 60, pp.4725-4731,2012.
[17]	D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: a review,” IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, pp. 343- 353, Mar. 1997.
[18]	J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, pp. 397–407, Feb. 2004.
[19]	P. Rocca, G. Oliveri, and A. Massa,“Differential Evolution as Applied to Electromagnetics ,” IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, pp. 38–49, May. 2011.
[20]	R. M. Lewis, "Physical optics inverse diffraction," IEEE Trans.   Antennas Propagat., vol. 17, pp. 308-314, May 1969.
[21]	N. N. Bojarski, "A survey of the physical optics inverse scattering identity," IEEE Trans. Antennas Propagat., vol. 30, pp. 980-989,Sept. 1982. 
[22]	T. H. Chu and N. H. Farhat, "Polarization effects in microwave diversity imaging of perfectly conducting cylinders," IEEE Trans. Antennas Propagar., vol.37, pp. 235-244, Feb. 1989.
[23]	D. B. Ge, "A study of Lewis method for target-shape reconstruction," Inverse Problems, vol. 6, pp. 363-370, June 1990.
[24]	D. Colton, H. Haddar and Piana," The linear sampling method in inverse electromagnetic scattering theory," Inverse Problems, vol. 19, pp. 105-137, December 2003.
[25]	M. Brignone and M. Piana, " The use of constraints for solving inverse scattering problems: physical optics and the linear sampling method," Inverse Problems, vol. 21, pp. 207-222, February 2005.
[26]	T. H. Chu and D. B. Lin, "Microwave diversity imaging of perfectly conducting objects in the near-field region," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
[27]	D. Van Orden,;V. Lomakin, “Rapidly Convergent Representations for Periodic Green’s Functions of a Linear Array in Layered Media,” IEEE Transactions on Antennas and Propagation., vol 60, issue 2, pp.870 - 879, 2012.
[28]	G. W. Hohmann, "Electromagnetic scattering by conductors in the earth near a line source of current," Geophysics, vol. 36, pp. 101-131,Feb. 1971.
[29]	N. Osumi and K. Ueno, "Microwave holographic imaging of underground objects," IEEE Trans. Antennas Propagat., vol. AP-33,pp. 152-159, Feb. 1985.
[30]	L. Chommeloux, C. Pichot, and J. C. Bolomey, "Electromagnetic modeling  for microwave  imaging  of cylindrical  buries inhomogeneities," IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 1064-1076, Oct. 1986.
[31]	B. Duchene, D. Lesselier, and W. Tabbara, "Acoustical imaging of 2D fluid targets buried in a half-space: a diffraction tomography approach," IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. UFFC-34, pp. 540-549, Sept. 1987.
[32]	W. Tabbara, B. Duchene, C. Pichot, D. Lesselier, L. Chommelous,and N. Joachimowicz, "Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics, "Inverse Problems, vol. 4, pp. 305- 331, May 1988.
[33]	R. F. Harrmgton, Field Computation by Moment Method, New York: Macmillan, 1968.
[34]	T. Moriyama, Z. Meng, and T. Takenaka, "Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection", Microwave and Optical Technology Letters, Vol. 53, No. 2, pp.438-442, 2011.
[35]	R. Persico, R. Bernini, and F. Soldovieri, “The Role of the Measurement Configuration in Inverse Scattering From Buried Objects Under the Born Approximation,” IEEE Transactions on Antennas and Propagation, Vol. 53, No.6, pp. 1875-1887, Jun. 2005.
[36]	G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
[37]	A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999
[38]	Gu Jun and Wang Xiaobing, “Near Field Electomagnetic Scattering Model Studying for Rough Land Surface,” Antennas and Propagation (APCAP), 2014 3rd Asia-Pacific Conference on,2014.
[39]	TolgaUla¸sGürbüz, BirolAslanyürek, E. Pınar Karabulut, Ibrahim Akduman, “An Efficient Nonlinear Imaging Approach for Dielectric Objects Buried Under a Rough Surface”, IEEE Transactions On Geoscience And Remote Sensing, Vol. 52, No. 5, Pp.3013-3022, May 2014
[40]	Shamsaddini M.,Tavakoli A.,Dehkhoda P.,“Inverse electromagnetic scattering of a dielectric cylinder buried below a slightly rough surface using a New intelligence approach,” Electrical Engineering (ICEE), 2015 23rd Iranian Conference on, May 2015.
[41]	R. Storn, and K. Price, “Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report TR-95-012,International Computer Science Institute, Berkeley, 1995.
[42]	C. H. Sun and C. C. Chiu “Inverse Scattering of Dielectric Cylindrical Target Using Dynamic Differential Evolution and Self-Adaptive Dynamic Differential Evolution,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 23, Issue 5, pp. 579–585,  Sept. 2013.
[43]	C. C. Chiu, C. H. Sun, C. L. Li and C. H. Huang, “Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two- Dimensional Perfectly Conducting Cylinder in Slab Medium,” IEEE Transactions on Geoscience and Remote Sensing, vol. 51, pp. 2302–2315, Apr. 2013.
[44]	X. Chen, " The role of regularization parameter of subspace-based optimization method in solving inverse scattering problems",IEEE Microwave Conference, 2009. APMC 2009. Asia Pacific,pp.1549-1552, 7-10 Dec. 2009.
[45]	William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in FORTRAN, Second Edition. The Press Syndicate of the University of Cambridge, 1992.
[46]	X. Chen, "Subspace-based Optimization Method for Solving Inverse Scattering Problems", IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, pp. 42-49, 2010.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信