§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2008202100395100
DOI 10.6846/TKU.2021.00521
論文名稱(中文) 基於有機金屬框架之次奈米孔道薄膜於高性能鹽差發電之應用
論文名稱(英文) Hybrid subnanochannel membranes based on metal-organic frameworks for high-performance osmotic power generation-modified
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 109
學期 2
出版年 110
研究生(中文) 王彥珵
研究生(英文) Yan-Cheng Wang
學號 608400122
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2021-07-15
論文頁數 65頁
口試委員 指導教授 - 許世杰
委員 - 葉禮賢
委員 - 許世杰
委員 - 彭晴玉
關鍵字(中) 有機金屬框架
聚碳酸酯薄膜
離子選擇性
鹽差能源轉換輸出
關鍵字(英) metal-organic frameworks
polycarbonate membrane
ion selectivity
salt difference energy conversion
第三語言關鍵字
學科別分類
中文摘要
藍色能源,是目前所知的環保能源之一,藉由含有高濃度鹽的海水與低濃度鹽的淡水所形成的濃度梯度,來產生電壓,進而產生電能,此外人們發現電鰻在受到外界刺激後,能藉由開啟身上數千個細胞膜上的離子通道,使離子通過形成電流並產生300~800 V的電壓,我們設計了一基於有機金屬框架之次奈米孔道薄膜,由有機金屬框架(Metal-organic framework,MOF)之一的ZIF-8與聚碳酸酯薄膜(Polycarbonate membranes)組合而成,藉此提高聚碳酸酯薄膜的離子選擇性,並添加強聚電解質聚苯乙烯磺酸,使小孔端由表面帶電轉變為空間帶電,從而增加離子傳輸以及鹽差能源轉換輸出。我們做了以下探討:(1)在不同濃度的聚苯乙烯磺酸實驗中,發現添加15 wt%聚苯乙烯磺酸的能源轉換輸出高於沒有添加的375%。(2)在不同鹽類的實驗中,發現使用氯化鉀能獲得比氯化鈉與氯化鋰還高約3倍與4倍的能源轉換輸出。(3)在不同pH值實驗中,在pH值為11的情況下,能源轉換輸出比pH值為3以及6還高約2倍與1.5倍。(4)在不同接觸面積影響實驗下,在接觸面積為7×102 µm2且鹽差梯度為500倍的情況下,獲得了1125 W/m2的能源轉換輸出,然而在接觸面積換成3×104 µm2時,也獲得了傑出的37 W/m2,此結果可歸因於ZIF-8結構上具有的4 Å窗口,由於孔徑足夠小,所以即使在高鹽濃度的環境下,依然能使孔道產生電雙層重疊,進而擁有離子選擇性。此研究中的有機金屬框架之次奈米孔道薄膜也為有機金屬框架應用於鹽差發電上的相關研究上有重要的參考價值。
英文摘要
Blue energy is the current summoning creatures on the earth. It is formed by the concentration of seawater with high concentration of salt and fresh water with low concentration of salt, the voltage generated, the voltage generated, the energy generated, and the electricity found by living things. After the birth of the eel, it can stimulate ionic currents on several cell membranes, and use the ionic currents to generate a voltage of 300-800V. We designed a subnanochannel membrane based on an metal-organic frameworks, which is a combination of ZIF-8 and a polycarbonate film to improve the ion selectivity of the polycarbonate membrane and add strong poly Electrolyte polystyrene sulfonic acid, so that the small hole ends from surface charge to space charge, thereby increasing ions Transmission and salinity energy conversion output. We have made the following discussions: (1) In experiments with different concentrations of polystyrene sulfonic acid, it was found that the power density of 15 wt% polystyrene sulfonic acid was higher than that of 375% without polystyrene sulfonic acid. (2) In experiments with different salts, it was found that the use of potassium chloride can obtain the power density that is about 3 times and 4 times higher than that of sodium chloride and lithium chloride. (3) In experiments with different pH values, when the pH value is 11, the power density is about 2 times and 1.5 times higher than the pH values of 3 and 6.(4) Under the influence experiment of different contact areas, when the contact area is 7×102 µm2 and the salt gradient is 500 times, the power density is 1125 W/m2 , but the contact area is changed to 3×104 µm2, and the power density is 37 W/m2. This result can be attributed to the 4 Å window on the ZIF-8 structure. Due to the small pore size, the channel can still generate electricity even in an environment with high salt concentration. The double layer overlaps, and thus possesses ion selectivity. In this research, the metal-organic frameworks and the nanoporous membrane also have important reference value for the related research on the application of metal-organic frameworks to salt-differential power generation.
第三語言摘要
論文目次
目錄
中文摘要	i
英文摘要	iii
目錄	v
表目錄	vii
圖目錄	viii
第一章 緒論	1
1.1 前言	1
1.2 文獻回顧	2
1.3 研究動機	8
第二章 原理機制	10
2.1 ZIF 沸石咪唑骨架	10
2.2 電雙層理論	11
2.3 離子選擇性	12
2.4 鹽差能源轉換	13
第三章 實驗設備與方法	16
3.1 實驗藥品與設備	16
3.1.1 實驗藥品	16
3.1.2 實驗設備	18
3.1.3 實驗架設	18
3.1.4 分析儀器	20
3.2 實驗方法	22
3.2.1 有機金屬框架之次奈米孔道薄膜製備流程	22
3.2.2 離子傳輸及電導實驗	24
3.2.3 鹽差發電實驗	24
第四章 結果與討論	26
4.1 有機金屬框架之次奈米孔道薄膜分析	26
4.1.1 SEM分析結果	26
4.1.2 FTIR分析結果	26
4.1.3 XRD分析結果	27
4.1.4 BET分析結果	27
4.2 有機金屬框架之次奈米孔道薄膜上的離子傳輸行為分析	27
4.3 有機金屬框架之次奈米孔道薄膜在鹽差發電上之應用	28
4.3.1方向性測試	28
4.3.2擴散電位(Vdiff)與擴散電流(Idiff)	29
4.3.3 真實最大鹽差能源轉換功率密度	30
第五章 結論	59
第六章 參考文獻	60

	
表目錄
表 1-1 在500倍鹽濃差梯度下,各文獻的薄膜之能源轉換輸出功率密度比較。	7
表 3-1 製備基於有機金屬框架之次奈米孔道薄膜所需要品及材料。	17
表3-2 電流量測實驗以及滲透能源轉換實驗所需藥品表。	18
表4-1 還原電位量測結果。	57
表4-2 各種類之水合離子的有效半徑(取自文獻[43])。	58

 
圖目錄
圖1 1文獻回顧圖(a) PEO/AAO薄膜示意圖(取自文獻[29]),(b) PES/SPES膜示意圖(取自文獻[30])	4
圖1 2 文獻回顧圖(a) PES-Py/PAEK-HS膜示意圖(取自文獻[31]),(b) SNF/AAO複合膜示意圖(取自文獻[32])	5
圖1 3 文獻回顧圖(a) GO/ CNFs複合膜示意圖(取自文獻[33]),(b) 絲素蛋白所製造具有機械性能之超薄膜示意圖(取自文獻[34])	5
圖1 4文獻回顧圖(a) SPEEK/AAO薄膜示意圖(取自文獻[35]),(b) h-PEI 封端的奈米通道膜示意圖(取自文獻[37])	6
圖1 5 ZIF-8合成示意圖(取自文獻[38])	8
圖1 6 添加聚苯乙烯磺酸進ZIF-8示意圖(取自文獻[26])	9
圖2 1 ZIF-8結構示意圖	10
圖2 2 電雙層示意圖	11
圖2 3 不同鹽濃度下,孔道內電雙層厚度示意圖	12
圖2 4 鹽差能源轉換示意圖	13
圖3 1 離子傳輸及電導量測之實驗架設示意圖	19
圖3 2 鹽差發電之實驗架設示意圖	20
圖3 3 有機金屬框架之次奈米孔道薄膜製備流程圖	23
圖4 1 有機金屬框架之次奈米孔道薄膜SEM結果圖	35
圖4 2 含有聚苯乙烯磺酸15 wt%的有機金屬框架之次奈米孔道薄膜之FTIR測量結果圖	36
圖4 3 有機金屬框架之次奈米孔道薄膜X光繞射儀(XRD)分析結果圖	37
圖4 4 含有聚苯乙烯磺酸15 wt%的有機金屬框架之次奈米孔道薄膜薄膜端之BET測量結果	38
圖4 5 為使用氯化鋰溶液所測量的含有不同濃度的聚苯乙烯磺酸鈉之有機金屬框架之次奈米孔道薄膜以及聚碳酸酯薄膜的電導圖	39
圖4 6 使用氯化鋰溶液所測量的含有不同濃度的聚苯乙烯磺酸鈉之有機金屬框架之次奈米孔道薄膜以及聚碳酸酯薄膜的動態電流量測圖	40
圖4 7 含有15 wt%聚苯乙烯磺酸鈉有機金屬框架之次奈米孔道薄膜的方向性測試比較結果	41
圖4 8 高濃度為1000 mM氯化鉀,低濃度為0.1 mM氯化鉀環境下,VOC、Vred、Vdiff以及ISC、Idiff之間的關係圖	42
圖4 9 有機金屬框架之次奈米孔道薄膜之擴散電位(Vdiff)與擴散電流(Idiff)量測結果	43
圖4 10 有機金屬框架之次奈米孔道薄膜的鹽差能源轉換效率與鹽差梯度關係圖	44
圖4 11 鹽濃度差影響之真實能源轉換輸出量測結果	45
圖4 12 鹽濃度差影響之真實能源轉換輸出量測結果長條圖	46
圖4 13 聚苯乙烯磺酸鈉濃度影響之真實能源轉換輸出量測結果	47
圖4 14 聚苯乙烯磺酸鈉濃度影響之真實能源轉換輸出量測結果長條圖。	48
圖4 15 不同鹽類影響之真實能源轉換輸出量測結果	49
圖4 16 不同鹽類影響之真實能源轉換輸出量測結果長條圖	50
圖4 17 pH值影響之真實能源轉換輸出量測結果	51
圖4 18 pH值影響之真實能源轉換輸出量測結果長條圖	52
圖4 19 接觸面積影響之真實能源轉換輸出量測結果	53
圖4 20 接觸面積影響之真實能源轉換輸出量測結果長條圖。	54
圖4 21 相同量測條件下,有機金屬框架之次奈米孔道薄膜(This work)與其他文獻在500倍之鹽濃差梯度下的真實鹽差能源轉換功率比較圖	55
圖4 22 含有聚苯乙烯磺酸15 wt%的有機金屬框架之次奈米孔道薄膜的穩定性測試	56
參考文獻
[1] Bartle, A. J. E. p., Hydropower potential and development activities. Energy Policy 2002, 30 (14), 1231-1239.
[2] Moran, E. F.; Lopez, M. C.; Moore, N.; Müller, N.; Hyndman, D. W. J. P. o. t. N. A. o. S., Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (47), 11891-11898.
[3] Eriksson, S.; Bernhoff, H.; Leijon, M. J. r.; reviews, s. e., Evaluation of different turbine concepts for wind power. Renew. Sust. Energ. Rev. 2008, 12 (5), 1419-1434.
[4] Foley, A. M.; Leahy, P. G.; Marvuglia, A.; McKeogh, E. J. J. R. e., Current methods and advances in forecasting of wind power generation. Renew. Energ. 2012, 37 (1), 1-8.
[5] Bae, Y. H.; Kim, K. O.; Choi, B. H. J. O. E., Lake Sihwa tidal power plant project. Ocean Eng. 2010, 37 (5-6), 454-463.
[6] Sleiti, A. K. J. R.; Reviews, S. E., Tidal power technology review with potential applications in Gulf Stream. Renew. Sust. Energ. Rev. 2017, 69, 435-441.
[7] Hayat, M. B.; Ali, D.; Monyake, K. C.; Alagha, L.; Ahmed, N. J. I. J. o. E. R., Solar energy—A look into power generation, challenges, and a solar‐powered future. Int J Energy Res. 2019, 43 (3), 1049-1067.
[8] Okoro, O.; Madueme, T. J. R. E., Solar energy investments in a developing economy. Renew. Energ. 2004, 29 (9), 1599-1610.
[9] Ramon, G. Z.; Feinberg, B. J.; Hoek, E. M. J. E.; science, e., Membrane-based production of salinity-gradient power. Energy Environ. Sci. 2011, 4 (11), 4423-4434.
[10] Post, J. W.; Veerman, J.; Hamelers, H. V.; Euverink, G. J.; Metz, S. J.; Nymeijer, K.; Buisman, C. J. J. J. o. m. s., Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. J. Membr. Sci. 2007, 288 (1-2), 218-230.
[11] Brauns, E. J. D., Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output. Desalination 2009, 237 (1-3), 378-391.
[12] Gao, J.; Guo, W.; Feng, D.; Wang, H.; Zhao, D.; Jiang, L. J. J. o. t. A. C. S., High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 2014, 136 (35), 12265-12272.
[13] Jia, Z.; Wang, B.; Song, S.; Fan, Y. J. R.; Reviews, S. E., Blue energy: Current technologies for sustainable power generation from water salinity gradient. Renew. Sust. Energ. Rev. 2014, 31, 91-100.
[14] Nijmeijer, K.; Metz, S. J. S. S.; Engineering, Salinity gradient energy. Sustain Sci. 2010, 2, 95-139.
[15] Keramidas, A.; Moorhouse, A. J.; Schofield, P. R.; Barry, P. H. J. P. i. b.; biology, m., Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog. Biophys. Mol. Biol. 2004, 86 (2), 161-204.
[16] Roux, B. J. E. i. b., Ion channels and ion selectivity. Essays Biochem 2017, 61 (2), 201-209.
[17] Asthagiri, D.; Dixit, P.; Merchant, S.; Paulaitis, M.; Pratt, L.; Rempe, S. B.; Varma, S. J. C. p. l., Ion selectivity from local configurations of ligands in solutions and ion channels. Chem. Phys. Lett. 2010, 485 (1-3), 1-7.
[18] Zhu, Q.-L.; Xu, Q. J. C. S. R., Metal–organic framework composites. Chem. Soc. Rev. 2014, 43 (16), 5468-5512.
[19] Li, B.; Wen, H. M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. J. A. M., Emerging multifunctional metal–organic framework materials. Adv. Mater. 2016, 28 (40), 8819-8860.
[20] Gangu, K. K.; Maddila, S.; Mukkamala, S. B.; Jonnalagadda, S. B. J. I. C. A., A review on contemporary metal–organic framework materials. Inorganica Chim. Acta. 2016, 446, 61-74.
[21] Wang, C.; Liu, F. F.; Tan, Z.; Chen, Y. M.; Hu, W. C.; Xia, X. H. J. A. F. M., Fabrication of Bio‐Inspired 2D MOFs/PAA Hybrid Membrane for Asymmetric Ion Transport. Adv. Funct. Mater. 2020, 30 (9), 1908804.
[22] Yang, G.; Xie, Z.; Doherty, C. M.; Cran, M.; Ng, D.; Gray, S. J. J. o. M. S., Understanding the transport enhancement of poly (vinyl alcohol) based hybrid membranes with dispersed nanochannels for pervaporation application. J. Membr. Sci. 2020, 603, 118005.
[23] Zhang, Z.; Xian, S.; Xi, H.; Wang, H.; Li, Z. J. C. E. S., Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chem. Eng. Sci. 2011, 66 (20), 4878-4888.
[24] Pan, Y.; Li, T.; Lestari, G.; Lai, Z. J. J. o. M. S., Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 2012, 390, 93-98.
[25] Jing, H.-P.; Wang, C.-C.; Zhang, Y.-W.; Wang, P.; Li, R. J. R. A., Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014, 4 (97), 54454-54462.
[26] Li, R.; Jiang, J.; Liu, Q.; Xie, Z.; Zhai, J. J. N. E., Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy 2018, 53, 643-649.
[27] Guo, Y.; Huang, H.; Li, Z.; Wang, X.; Li, P.; Deng, Z.; Peng, X. J. A. a. m.; interfaces, Sulfonated sub-nanochannels in a robust MOF membrane: Harvesting salinity gradient power. ACS Appl. Mater. Interfaces 2019, 11 (38), 35496-35500.
[28] Zhang, Z.; Sui, X.; Li, P.; Xie, G.; Kong, X.-Y.; Xiao, K.; Gao, L.; Wen, L.; Jiang, L. J. J. o. t. A. C. S., Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 2017, 139 (26), 8905-8914.
[29] Zhu, X.; Hao, J.; Bao, B.; Zhou, Y.; Zhang, H.; Pang, J.; Jiang, Z.; Jiang, L. J. S. a., Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. Sci. Adv. 2018, 4 (10), eaau1665.
[30] Huang, X.; Zhang, Z.; Kong, X.-Y.; Sun, Y.; Zhu, C.; Liu, P.; Pang, J.; Jiang, L.; Wen, L. J. N. E., Engineered PES/SPES nanochannel membrane for salinity gradient power generation. Nano Energy 2019, 59, 354-362.
[31] Sui, X.; Zhang, Z.; Li, C.; Gao, L.; Zhao, Y.; Yang, L.; Wen, L.; Jiang, L. J. A. a. m.; interfaces, Engineered nanochannel membranes with diode-like behavior for energy conversion over a wide pH range. ACS Appl. Mater. Interfaces 2018, 11 (27), 23815-23821.
[32] Xin, W.; Zhang, Z.; Huang, X.; Hu, Y.; Zhou, T.; Zhu, C.; Kong, X.-Y.; Jiang, L.; Wen, L. J. N. c., High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat. Commun. 2019, 10 (1), 1-10.
[33] Wu, Y.; Xin, W.; Kong, X.-Y.; Chen, J.; Qian, Y.; Sun, Y.; Zhao, X.; Chen, W.; Jiang, L.; Wen, L. J. M. H., Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting. Mater. Horiz. 2020, 7 (10), 2702-2709.
[34] Chen, J.; Xin, W.; Kong, X.-Y.; Qian, Y.; Zhao, X.; Chen, W.; Sun, Y.; Wu, Y.; Jiang, L.; Wen, L. J. A. E. L., Ultrathin and robust silk fibroin membrane for high-performance osmotic energy conversion. ACS Energy Lett. 2019, 5 (3), 742-748.
[35] Hou, S.; Zhang, Q.; Zhang, Z.; Kong, X.; Lu, B.; Wen, L.; Jiang, L. J. N. E., Charged porous asymmetric membrane for enhancing salinity gradient energy conversion. Nano Energy 2021, 79, 105509.
[36] Zhao, X.; Lu, C.; Yang, L.; Chen, W.; Xin, W.; Kong, X.-Y.; Fu, Q.; Wen, L.; Qiao, G.; Jiang, L. J. N. E., Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy 2021, 81, 105657.
[37] Li, C.; Wen, L.; Sui, X.; Cheng, Y.; Gao, L.; Jiang, L. J. S. A., Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Sci. Adv. 2021, 7 (21), eabg2183.
[38] Lee, Y.-R.; Jang, M.-S.; Cho, H.-Y.; Kwon, H.-J.; Kim, S.; Ahn, W.-S. J. C. E. J., ZIF-8: A comparison of synthesis methods. Chem. Eng. J. 2015, 271, 276-280.
[39] Hu, Y.; Kazemian, H.; Rohani, S.; Huang, Y.; Song, Y. J. C. c., In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem. Commun. 2011, 47 (47), 12694-12696.
[40] Kohonen, M. M.; Karaman, M. E.; Pashley, R. M. J. L., Debye length in multivalent electrolyte solutions. Langmuir 2000, 16 (13), 5749-5753.
[41] Tadmor, R.; Hernández-Zapata, E.; Chen, N.; Pincus, P.; Israelachvili, J. N. J. M., Debye length and double-layer forces in polyelectrolyte solutions. Macromolecules 2002, 35 (6), 2380-2388.
[42] Zhang, Z.; Yang, S.; Zhang, P.; Zhang, J.; Chen, G.; Feng, X. J. N. c., Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10 (1), 1-9.
[43] Impey, R.; Madden, P.; McDonald, I. J. T. J. o. P. C., Hydration and mobility of ions in solution. J. Phys. Chem. 1983, 87 (25), 5071-5083.
論文全文使用權限
校內
校內紙本論文延後至2023-08-31公開
同意電子論文全文授權校園內公開
校內電子論文延後至2023-08-31公開
校內書目立即公開
校外
同意授權
校外電子論文延後至2023-08-31公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信