§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2008202009191100
DOI 10.6846/TKU.2020.00601
論文名稱(中文) 以高級氧化程序分解含四環素水溶液之反應行為研究
論文名稱(英文) Study on the Reaction Behaviors of Tetracycline in Aqueous Solutions by Advanced Oxidation Processes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 108
學期 2
出版年 109
研究生(中文) 黃上權
研究生(英文) Shang-Quan Huang
學號 607480232
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2020-07-22
論文頁數 103頁
口試委員 指導教授 - 陳俊成
共同指導教授 - 申永順
委員 - 鄭耀文
委員 - 李柏青
委員 - 陳俊成
關鍵字(中) 高級氧化處理、過氧化氫、過硫酸鈉、四環素、Fenton、Photo-Fenton
關鍵字(英) Advanced oxidation processes、Hydrogen peroxide、Persulfate、Tetracycline、Fenton、Photo-Fenton
第三語言關鍵字
學科別分類
中文摘要
高級氧化處理(Advanced oxidation processes, AOPs)實際在環境上之應用及過去文獻討論中已相當成熟,然而如何找出最適合的反應條件以及高利用率,並結合多種程序,包括單用過氧化氫、紫外線,以及UV/H2O2、UV/SPS、Fenton、Photo-Fenton等程序比較,過去並無太多研究進行比較,故本研究將四環素水溶液經不同程序反應後,比較處理前後四環素降解效率。
    實驗結果顯示,四種程序在60分鐘的反應後,皆對四環素有明顯的降解效果,然 Photo-Fenton系統之去除效率為四種程序裡最佳的。在有使用紫外光照射的程序中,皆有光強度愈高去除率愈高的趨勢,但是因為污染物濃度條件未造成明顯光遮蔽效應,因此去除率差異不大。污染物濃度愈高在不同的程序皆有去除率愈低的趨勢,高濃度的四環素會降低UV光的穿透能力,以及降低鐵離子與氧化劑的碰撞。四種程序之氧化劑濃度設定皆無產生明顯的自身反應,因此氧化劑濃度愈高皆會使得自由基產生的效率愈高,間接導致四環素去除率提升。鐵離子在Fenton系統中有催化氧化劑的作用,因此愈高的鐵離子能增加與氧化劑的碰撞而提高自由基的產生,能更有效率的降解四環素。在降解四環素的四種不同程序中,pH是一個很關鍵的影響因子,因為四環素是兩性有機物,在不同的pH條件有不同的解離形式,實驗解果顯示愈高的pH有愈高的四環素去除率,但是在pH大於11時,會因為氧化劑自身的解離使得去除率下降,因此UV/H2O2系統以及UV/SPS系統pH=9為最佳的操作條件。
	電能量損耗效益(EE/O)於氧化劑濃度愈高之情況下所需耗能愈低,顯示愈高的氧化劑濃度可以增加自由基產生的效率,能在更短的時間達到相同的去除率,反應時間縮短因此電耗能降低。
英文摘要
The application of advanced oxidation treatment (AOPs) in the environment and the discussion of past literature are quite mature. However, how to find out the most suitable reaction conditions and high utilization rate, and combine a variety of procedures, including single-use oxidation process, ultraviolet line, and UV/H2O2、UV/SPS、Fenton、Photo-Fenton.
The experimental results show that the four procedures have a significant degradation effect on tetracycline after 60 minutes of reaction, but the removal efficiency of the Photo-Fenton system is the best among the four procedures. In the procedures that use ultraviolet light, the higher the light intensity, the higher the removal rate. However, because the pollutant concentration conditions did not cause a significant light shielding effect, the removal rate has little difference. The higher the concentration of pollutants, the lower the removal rate in different procedures. High concentrations of tetracycline will reduce the penetration of UV light and reduce the collision of iron ions with oxidants. The oxidant concentration settings of the four programs have no obvious self-reaction. Therefore, the higher the oxidant concentration, the higher the efficiency of free radical generation, which indirectly leads to the increase in the removal rate of tetracycline. Iron ions act as a catalytic oxidant in the Fenton system. Therefore, higher iron ions can increase collisions with oxidants and increase the generation of free radicals, which can degrade tetracycline more efficiently. Among the four different processes for the degradation of tetracycline, pH is a very critical factor, because tetracycline is an amphoteric organic matter, and has different dissociation forms under different pH conditions. The experimental results show that the higher the pH, the higher the removal of tetracycline. However, when the pH is greater than 11, the removal rate will decrease due to the dissociation of the oxidant itself. Therefore, the UV/H2O2 system and the UV/SPS system pH=9 are the best operating conditions.
The more oxidant doze requires less energy to produce oxidants results in better energy efficiency, which shows that the higher the oxidant concentration can increase the efficiency of free radical generation, the same removal rate can be achieved in a shorter time, the reaction time is shortened, and the power consumption is reduced.
第三語言摘要
論文目次
目錄	I
第一章 前言	IV
1-1. 研究動機	1
1-2. 研究目的	2
第二章 文獻回顧	4
2-1. 抗生素	4
2-2. 四環素物化特性	5
2-3. 高級氧化程序	7
2-4. 過氧化氫特性及應用	11
2-5. 過硫酸鹽特性及應用	12
2-6. 硫化亞鐵特性及應用	14
2-7. 光化學反應及動力模式	15
2-7-1.無直接光解反應(He et al., 2014)	15
2-7-2.有直接光解反應(Baeza et al., 2011)	16
2-8.  UV/H2O2 反應機制及相關研究	17
2-8-1. pH之影響	19
2-8-2. H2O2 劑量之影響	21
2-8-3. 污染物濃度之影響	22
2-8-4. UV光之影響	23
2-9. UV/SPS 反應機制及相關研究	25
2-9-1. pH之影響	30
2-9-2. H2O2 劑量之影響	31
2-9-3. 污染物濃度之影響	32
2-9-4. UV光強度之影響	32
2-10. Fenton及Photo-Fenton反應機制及相關研究	34
2-10-1. Fenton反應機制	34
2-10-2. Photo-Fenton	35
第三章 研究方法與材料	37
3-1. 實驗設備	37
3-2. 實驗藥品及配比	38
3-2-1. 實驗藥品	38
3-2-2. 四環素水溶液製備 (400 mg/L)	39
3-2-3. 過氧化氫氧化劑儲存溶液製備	39
3-2-4. 硫酸亞鐵儲存溶液製備	39
3-2-5. 氧化劑殘餘量分析-碘定量法	39
3-3. 實驗裝置	39
3-4. 實驗方法	42
3-4-1.實驗架構	42
3-4-2.實驗流程	43
3-5. 分析測定方法	44
3-5-1. HPLC分析	44
3-5-2. 吸光度分析	45
第四章 結果與討論	46
4-1. 背景實驗	46
4-1-1. 單用氧化劑實驗	46
4-1-2. 直接光解實驗	47
4-2. 以UV/H2O2 系統降解含四環素水溶液之探討	49
4-2-1. 光強度效應	49
4-2-2. 污染物濃度效應	51
4-2-3. 氧化劑濃度效應	54
4-2-4. pH效應	56
4-3. 以UV/SPS 系統降解含四環素水溶液之探討	59
4-3-1. 光強度效應	59
4-3-2. 污染物濃度效應	62
4-3-3. 氧化劑濃度效應	64
4-3-4. pH效應	66
4-4. 以Fenton及Photo-Fenton程序降解含四環素水溶液之探討	70
4-4-1. 光強度效應	71
4-4-2. 污染物濃度效應	72
4-4-3. 氧化劑濃度效應	76
4-4-4. 鐵離子濃度效應	79
4-4-5. pH效應	83
4-5. 不同系統處理含四環素水溶液比較	88
4-5-1. 光強度效應	89
4-5-2. 污染物濃度效應	89
4-5-3. 氧化劑濃度效應	90
4-5-4. pH效應	91
第五章 結論與建議	93
5-1. 結論	93
5-2. 建議	96
參考文獻(英文)	97
參考文獻(中文)	103


圖目錄
圖2- 1 OECD國家管理水中藥物殘留現況	4
圖2- 2 四環素在不同pH水溶液環境中的物種分布。(Zhang et al., 2020)	6
圖2- 3 四環素在不同pKa之分子結構。(Zhang et al., 2020)	6
圖2- 4 用於去除污染物的化學處理方法概述	7
圖2- 5 藉由UV光催化氧化劑並進行污染物之降解作用 (Xu et al., 2016)	9
圖2- 6 由不同高級氧化程序產生氫氧自由基之機制 (Cheng et al., 2016)	9
圖2- 7 過氧化氫於不同pH值之成分分布 (申永順。1992)	11
圖2- 8 UV/H2O2 去除 EDCs 機制圖 (Zhang et al., 2014)	18
圖2- 9 UV/PS 反應機制(Xu et al., 2020)	25
圖2- 10 MPUV/PMS 反應機制(Ao et al., 2019)	25
圖2- 11 不同程序之氧化劑花費與電能量比較圖 (Antoniou et al., 2015)	33
圖2- 12 Fenton與UV照射時發生的反應(Juan M et al.2018)	36
圖3- 1 光反應槽示意圖	41
圖3- 2 以紫外光測定計測定UVC燈管之光強度	41
圖3- 3 實驗架構圖	42
圖3- 4 四環素檢量線	44
圖3- 5 四環素於不同pH值水溶液環境之吸光度分析	45
圖4- 1 H2O2 only直接氧化TC之去除率變化圖	47
圖4- 2 SPS only直接氧化TC之去除率變化圖	47
圖4- 3 UVonly不同光pH降解TC之變化圖	48
圖4- 4 UVonly不同光強度降解TC之變化圖	49
圖4- 5 UV/H2O2系統中不同光強度降解TC之變化圖	50
圖4- 6 UV/H2O2系統中不同光強度降解TC之反應動力常數變化圖	50
圖4- 7 UV/H2O2系統中不同光強度降解TC之動力學線性圖	50
圖4- 8 UV/H₂O₂ 系統中不同光強度之電耗能變化圖	51
圖4- 9 UV/ H₂O₂系統中不同TC初始濃度降解變化圖	52
圖4- 10 UV/ H₂O₂系統中不同TC初始濃度之反應動力常數變化圖	52
圖4- 11 UV/ H₂O₂系統中不同TC初始濃度之動力學線性圖	53
圖4- 12 UV/H₂O₂ 系統中不同污染物濃度之電耗能變化圖	53
圖4- 13 UV/ H₂O₂系統中不同氧化劑濃度降解TC之變化圖	54
圖4- 14 UV/ H2O2系統中不同氧化劑濃度降解TC之反應動力常數變化圖	55
圖4- 15 UV/H2O2系統中不同氧化劑濃度降解TC之動力學線性圖	55
圖4- 16 UV/H₂O₂ 系統中不同氧化劑濃度之電耗能變化圖	56
圖4- 17 UV/H₂O₂系統中不同pH水溶液環境降解TC之變化圖	57
圖4- 18 UV/H₂O₂系統中不同pH水溶液環境降解TC之反應動力常數變化圖	57
圖4- 19 UV/H2O2系統中不同pH水溶液環境降解TC之動力學線性圖	58
圖4- 20 UV/H₂O₂ 系統中不同pH之電耗能變化圖	59
圖4- 21 UV/SPS系統中不同光強度環境降解TC之變化圖	60
圖4- 22 UV/SPS系統中不同光強度降解TC之反應動力常數變化圖	60
圖4- 23 UV/SPS系統中不同光強度降解TC之動力學線性圖	61
圖4- 24 UV/SPS系統中不同光強度之電耗能變化圖	62
圖4- 25 UV/SPS系統中不同TC初始濃度降解變化圖	63
圖4- 26 UV/SPS系統中不同TC濃度之反應動力常數變化圖	63
圖4- 27 UV/SPS系統中不同TC濃度之動力學線性圖	63
圖4- 28 UV/SPS系統中不同TC初始濃度之電耗能變化圖	64
圖4- 29 UV/SPS系統中不同氧化劑濃度降解TC之變化圖	65
圖4- 30 UV/SPS系統中不同氧化劑濃度降解TC之反應動力常數變化圖	65
圖4- 31 UV/SPS系統中不同氧化劑濃度降解TC之動力學線性圖	66
圖4- 32 UV/SPS系統中不同氧化劑濃度之電耗能變化圖	67
圖4- 33 UV/SPS系統中不同pH水溶液環境降解TC之變化圖	68
圖4- 34 UV/SPS系統中不同pH水溶液環境降解TC之反應動力常數變化圖	69
圖4- 35 UV/SPS系統中不同pH水溶液環境降解TC之動力學線性圖	69
圖4- 36 UV/SPS系統中不同pH之電耗能變化圖	70
圖4- 37 Photo-Fenton系統中不同光強度降解TC之變化圖	71
圖4- 38 Photo-Fenton系統中不同光強度降解TC之反應動力常數變化圖	71
圖4- 39 Photo-Fenton系統中不同光強度降解TC之動力學線性圖	72
圖4- 40 Photo-Fenton系統中不同光強度之電耗能變化圖	72
圖4- 41 Fenton系統中不同TC初始濃度降解變化圖	73
圖4- 42 Fenton系統中不同TC初始濃度之反應動力常數變化圖	74
圖4- 43 Fenton系統中不同TC初始濃度之動力學線性圖	74
圖4- 44 Photo-Fenton系統中不同TC初始濃度降解變化圖	75
圖4- 45 Photo-Fenton系統中不同TC初始濃度之反應動力常數變化圖	75
圖4- 46 Photo-Fenton系統中不同TC初始濃度之電耗能變化圖	76
圖4- 47 Fenton系統中不同氧化劑濃度降解TC之變化圖	77
圖4- 48 Fenton系統中不同氧化劑濃度降解TC之反應動力常數變化圖	77
圖4- 49 Fenton系統中不同氧化劑濃度降解TC之動力學線性圖	77
圖4- 50 Photo-Fenton系統中不同氧化劑濃度降解TC之變化圖	78
圖4- 51 Photo-Fenton系統中不同氧化劑濃度降解TC之反應動力常數變化圖	78
圖4- 52 Photo-Fenton系統中不同氧化劑濃度之電耗能變化圖	79
圖4- 53 Fenton系統中不同鐵離子濃度降解TC之變化圖	80
圖4- 54 Fenton系統中不同鐵離子濃度降解TC之反應動力常數變化圖	81
圖4- 55 Fenton系統中不同鐵離子濃度降解TC之動力學線性圖	81
圖4- 56 Photo-Fenton系統中不同鐵離子濃度降解TC之變化圖	82
圖4- 57 Photo-Fenton系統中不同鐵離子濃度降解TC之反應動力常數變化圖	82
圖4- 58 Photo-Fenton系統中不同鐵離子濃度降解TC之動力學線性圖	83
圖4- 59 Photo-Fenton系統中不同鐵離子濃度之電耗能變化圖	83
圖4- 60 Fenton系統中不同pH水溶液環境降解TC之變化圖	84
圖4- 61 Fenton系統中不同pH水溶液環境降解TC之反應動力常數變化圖	85
圖4- 62 Fenton系統中不同pH水溶液環境降解TC之動力學線性圖	85
圖4- 63 Photo-Fenton系統中不同不同pH水溶液環境降解TC之變化圖	86
圖4- 64 Photo-Fenton系統中不同pH降解TC之反應動力常數變化圖	87
圖4- 65 Photo-Fenton系統中不同pH之電耗能變化圖	87
圖4- 66 三種AOP主要反應機制圖(Qiu et al., 2019)	88
圖4- 67不同AOPs探討光強度效應	89
圖4- 68不同AOPs探討污染物濃度效應	90
圖4- 69以UV/H₂O₂ & UV/SPS 程序探討氧化劑濃度效應	91
圖4- 70 以Fenton & Photo-Fenton探討氧化劑濃度效應	91
圖4- 71以UV/H₂O₂ & UV/SPS 程序探討pH效應	92
圖4- 72以Fenton & Photo-Fenton探討pH效應	92
 
表目錄
表2- 1四環素物化特性	5
表2- 2常見的氧化劑標準還原電位 (Latimer., 1952)	10
表2- 3過氧化氫之物化特性	12
表2- 4過硫酸鹽之物化特性	13
表2- 5硫酸亞鐵之物化特性	14
表2- 6有機物存在UV/S2O82-時之反應機制 (Xie et al., 2015)	28
表3- 1本研究所需各項實驗設備之來源與目的	37
表3- 2實驗藥品	38
表3- 3使用HPLC於四環素水溶液之操作條件	44
表4- 1不同光強度之貢獻率比較	51
表4- 2 UV/ H2O2系統中不同氧化劑濃度之貢獻率	56
表4- 3 UV/ H₂O₂系統中不同pH水溶液環境之貢獻率	58
表4- 4 UV/SPS 系統中不同光強度之貢獻率	61
表4- 5 UV/SPS 系統中不同氧化劑濃度之貢獻率	66
表4- 6 UV/SPS 系統中不同pH水溶液環境之貢獻率	70
參考文獻
參考文獻(英文)
1.	A.Z. Aris, A.S. Shamsuddin, S.M. Praveena (2014)“Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review ”Environ. Int 69: 104-119
2.	A. Babuponnusami, K. Muthukumar (2014)“A review on Fenton and improvements to the Fenton process for wastewater treatment.”J. Environ. Chem. Eng 557-572
3.	A.L.N. Mota, L.F. Albuquerque, L.T.C. Beltrame, O. Chiavone-Filho, A. Machulek Jr., C.A.O. Nascimento (2009)“Advanced oxidation processes and their application in the petroleum industry: a review. ”Braz. J. Pet. Gas 122-142
4.	A. Bedoui, L. Elalaoui, A. Abdel-Wahab, N. Bensalah (2011)“Photo-Fenton treatment of actual agro-industrial wastewaters.”Ind Eng Chem Res 6673-6680
5.	A.S. Ameta R, Kumar A, P.B. Punjabi, Advanced oxidation Processes: Basics and Principles, in: F.S. Rao DG, R. Senthilkumar, J. Anthony Byrne (2013)“Wastewater Treat. Adv. Process. Technol 2013th.”
6.	A. Bernabeu, S. Palacios, R. Vicente, R.F. Vercher, S. Malato, A. Arques, A.M. Amat (2012)“Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants”Chem. Eng. J 198–199: 65-72
7.	A. Safarzadeh-Amiri, J.R. Bolton, S.R. Cater (1997)“Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water.”Water Res 787-798
8.	Disni Gamaralalage, Osamu Sawai, Teppei Nunoura (2018)“Degradation behavior of palm oil mill effluent in Fenton oxidation”Journal of Hazardous Materials Available online 6 July 2018
9.	E. Rott, R. Minke, U. Bali, H. Steinmetz (2017)“Removal of phosphonates from industrial wastewater with UV/Fell, Fenton and UV/Fenton treatment.”Water Res 345-354
10.	E. Neyens, J. Baeyens (2003) “A review of classic Fenton’s peroxidation as an advanced oxidation technique.” J. Hazard. Mater 33–50. 
11.	G. Divyapriya, I.M. Nambi, J. Senthilnathan (2016)“Nanocatalysts in Fenton based advanced oxidation process for water and wastewater treatment.”J Bionanosci 356-368
12.	J.J. Pignatello, E. Oliveros, A. Mackay (2006) “Advanced Oxidation Processes for organic contaminant destruction based on the Fenton reaction and related chemistry.” Environ. Sci. Technol 273-275
13.	J.J. Lopez-Penalver, M. Sanchez-Polo, C.V. Gomez-Pacheco, J. Rivera-Utrilla (2016)“Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes.”J. Chem. Technol. Biotechnol 1325-1333
14.	Juan M. Peralta-Herna´ndez, Shraddha Vijay, Oscar Rodrı´guez-Narva´ez, Martin A. Pacheco-A´ lvarez (2018)“Photo and Solar Fenton Processes for Wastewater Treatment.” Electrochemical Water and Wastewater Treatment
15.	Mohammad Boshir Ahmed , John L. Zhou , Huu Hao Ngo , Wenshan Guo , Nikolaos S. Thomaidis , Jiang Xu (2017) “Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review”Journal of Hazardous Materials 274–298
16.	Marta Gmurek, Magdalena, Olak-Kucharczyk, Stanisław, Ledakowicz (2017)“Photochemical decomposition of endocrine disrupting compounds  – A review.” Chemical Engineering Journal 437-456
17.	Nahid Hassanshahi, Ayoub Karimi-Jashni (2018)“Comparison of photo-Fenton, O3/H2O2/UV and photocatalytic processes for the treatment of gray water.” Ecotoxicology and Environmental Safety 683–690
18.	Niloofar Abedinzadeh, MahmoodShariat, Sayed Masoud Monavari, Alireza Pendashteh (2018)“Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater.” Process Safety and Environmental Protection 116: 82-91
19.	Semanur Giray Cetinkaya, Mehmet Hakan Morcali, Sümeyye Akarsu, Cengiz AyhanZiba, MustafaDolaz (2018)“Comparison of classic Fenton with ultrasound Fenton processes on industrial textile wastewater.”Sustainable Environment Research 165-170
20.	Shizong Wang, Jianlong Wang (2018)“Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes.”Chemosphere 97-105
21.	Wenhui Qiu, Ming Zheng, Jing Sun, Yiqun Tian, Meijuan Fang (2019)“Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H2O2, UV/Fe(II), and UV/H2O2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos.”Science of the Total Environment 1457-1468
22.	Yao-Yao Chen, Yu-Long Ma, Jin Yang, Li-Qiong Wang, Jun-Min Lv, Cui-JuanRen (2017) “Aqueous tetracycline degradation by H2O2 alone: Removal and transformation pathway.” Chemical Engineering Journal 307:15-23
23.	Nuanqin Zhang, Junyi Chen, Zhanqiang Fang, Eric Pokeung Tsang (2019) “Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline.” Chemical Engineering Journal 369: 588-599
24.	Yiqing Zhang, Yongjun Xiao, Yang Zhong, Teik-Thye Lim (2019) “Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: Reaction kinetics, degradation pathways, and antibacterial activity.” Chemical Engineering Journal 372: 420-428
25.	Mengyuan Xu, Jing Deng, Anhong Cai, Xiaoyan Ma, Jun Li, Qingsong Li, Xueyan Li (2020) “Comparison of UVC and UVC/persulfate processes for tetracycline removal in water.” Chemical Engineering Journal 384: 123320
26.	J.J. López-Peñalver, M. Sánchez-Polo, C.V. Gómez-Pacheco, J. Rivera-Utrilla (2010) “Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes.” J. Chem. Technol. Biotechnol 85: 1325-1333
27.	Y.F. Ji, Y. Yang, L. Zhou, L. Wang, J.H. Lu, C. Ferronato, J. Chovelon (2018) “Photodegradation of sulfasalazine and its human metabolites in water by UV and UV/peroxydisulfate processes.” Water Res 133: 299-309
28.	M.Q. Cai, P.Z. Sun, L.Q. Zhang, C.H. Huang (2017) “UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation.” Environ. Sci. Technol. 51: 14217-14224
29.	P. Wang, Y.L. He, C.H. Huang (2011) “Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine.” Water Res. 45: 1838-1846
30.	L. Wojnárovits, E. Takács (2019) “Rate constants of sulfate radical anion reactions with organic molecules: A review.” Chemosphere 220: 1014-1032
31.	J. Xu, X.Y. Shen, D.L. Wang, C.X. Zhao, Z.Z. Liu, I.P. Pozdnyakov, F. Wu, J. Xia. (2018) “Kinetics and mechanisms of pH-dependent direct photolysis of p-arsanilic acid under UV-C light.” Chem. Eng. J. 336: 334-341
32.	Z.C. Hua, X.J. Kong, S.D. Hou, S.Q. Zou, X.B. Xu, H. Huang, J.Y. Fang (2019) “DBP alteration from NOM and model compounds after UV/persulfate treatment with post chlorination.” Water Res. 158: 237-245
33.	Xiuwei Ao, Wenjun Sun, Simiao Li, Chao Yang, Chen Li, Zedong Lu(2019) “Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: Influencing factors, degradation pathways, and toxicity evaluation.” Chemical Engineering Journal 361: 1053-1062
34.	P. Xie, J. Ma, W. Liu, J. Zou, S. Yue, X. Li, M.R. Wiesner, J. Fang (2015) “Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals.”  Water Res. 69: 223-233
35.	A. Nezamzadeh-Ejhieh, Z. Ghanbari-Mobarakeh (2015) “Heterogeneous photodegradation of 2,4-dichlorophenol using FeO doped onto nano-particles of zeolite P. ” J. Ind. Eng. Chem. 21: . 668-676
36.	M. Mahdi-Ahmed, S. Chiron (2014) “Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater.” J. Hazard. Mater., 265: 41-46
37.	F. Jiang, B. Qiu, D. Sun (2018) “Advanced degradation of refractory pollutants in incineration leachate by UV/Peroxymonosulfate.” Chem. Eng. J. 349: 338-346
38.	X. Ao, W. Liu, W. Sun, C. Yang, Z. Lu, C. Li (2018) “Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process. ”Chemosphere 212: 365-375
39.	Y. Ji, Y. Shi, W. Dong, X. Wen, M. Jiang, J. Lu (2016)“Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution.”Chem. Eng. J. 298: 225-233
40.	S. Jiao, S. Zheng, D. Yin, L. Wang, L. Chen (2008) “Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria.”Chemosphere 73: 377-382
41.	G.H. Safari, M. Hoseini, M. Seyedsalehi (2015)“Photocatalytic degradation of tetracycline using nanosizedtitanium dioxide in aqueous solution. ”Int. J. Environ. Sci. Tech 12: 603-616
42.	L. Hou, L. Wang, S. Royer (2016)“Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst.”J. Hazard Mater. 302: 458-467
43.	Yihan Zhang, Jing Shi, Zhengwen Xu, Yue Chen, Duanmei Song (2018)“Degradation of tetracycline in a schorl/H2O2 system: Proposed mechanism and intermediates.” Chemosphere 202: 661-668
44.	Ting Luo, Haopeng Feng, Lin Tang, Yue Lu, Wangwang Tang, Song Chen, Jiangfang Yu, Qingqing Xie, Xilian Ouyang, Zhaoming Chen (2020) “Efficient degradation of tetracycline by heterogeneous electro-Fenton process using Cu-doped Fe@Fe2O3: Mechanism and degradation pathway.”Chemical Engineering Journal 382: 122970
45.	Xiaogang Zheng, Wendi Fu, Fuyan Kang, Hao Peng, Jing Wen (2018) “Enhanced photo-Fenton degradation of tetracycline using TiO2-coated α-Fe2O3 core–shell heterojunction.” Journal of Industrial and Engineering Chemistry 68: 14-23
46.	D.P. Ojha, H.P. Karki, H.J. Kim (2018)“Design of ternary hybrid ATO/g-C3N4/TiO2 nanocomposite for visible-light-driven photocatalysis. ”J. Ind. Eng. Chem. 61: 87
47.	L. Wu, H. Yan, J. Xiao, X. Li, X. Wang, T. Zhao (2017) “Characterization and photocatalytic properties of nano-Fe2O3–TiO2 composites prepared through the gaseous detonation method Ceram. ” Int. 43:14334
48.	R. Ahmad, J.K. Kim, J.H. Kim, J. Kim (2018) “Effect of polymer template on structure and membrane fouling of TiO2/Al2O3 composite membranes for wastewater treatment. ”J. Ind. Eng. Chem. 57: 55
49.	J. Park (2017) “Visible and near infrared light active photocatalysis based on conjugated polymers. ”J. Ind. Eng. Chem. 51: 27
50.	G. Cheng, F. Xu, J. Xiong, Y. Wei, F.J. Stadler, R. Chen (2017) “A novel protocol to design TiO2-Fe2O3 hybrids with effective charge separation efficiency for improved photocatalysis. ”Adv. Powder Technol. 28:665
51.	L.A. Constantin, I. Nitoi, N.I. Cristea, M.A. Constantin (2018) “Possible degradation pathways of triclosan from aqueous systems via TiO2 assisted photocatalyis. ” J. Ind. Eng. Chem. 25: 155
52.	G.B. Ren, M.H. Zhou, M.M. Liu, L. Ma, H.J. Yang (2016) “A novel vertical-flow electro-Fenton reactor for organic wastewater treatment. ”Chem. Eng. J. 298: 55-67
53.	Yaoyao Wang, Haoran Dong, Long Li, Ran Tian, Jie Chen, Qin Ning, Bin Wang, Lin Tang, Guangming Zeng(2019) “Influence of feedstocks and modification methods on biochar’s capacity to activate hydrogen peroxide for tetracycline removal. ” Bioresource Technology
291: 121840
54.	R.AnjaliS.Shanthakumar (2019) “Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. ” Journal of Environmental Management 246: 51-62
55.	C. Lai, F. Huang, G. Zeng, D. Huang, L. Qin, M. Cheng, C. Zhang, B. Li (2019) “Fabrication of novel magnetic MnFe2O4/bio-char composite and heterogeneous photo-Fenton degradation of tetracycline in near neutral pH. ”Chemosphere 224: 910-921
56.	L. Li, C. Lai, F. Huang, M. Cheng, G. Zeng, D. Huang (2019) “Degradation of naphthalene with magnetic bio-char activate hydrogen peroxide: synergism of bio-char and Fe-Mn binary oxides. ”Water Res 160: 238-248
57.	M.Khodadadi, Ayat Hossein  Panahi, Tariq J.Al-Musawi, M.H. Ehrampoush, A.H. Mahvi (2019) “The catalytic activity of FeNi3@SiO2 magnetic nanoparticles for the degradation of tetracycline in the heterogeneous Fenton-like treatment method. ”Journal of Water Process Engineering 32: 100943
58.	H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao, T. Xiong, H. Ang, X. Yuan, J.W. Chew (2018) “Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. ”Water Res 144: 215-225
59.	Z. Zhang, P. Gao, J. Cheng, G. Liu, X. Zhang, Y. Feng (2018) “Enhancing anaerobic digestion and methane production of tetracycline wastewater in EGSB reactor with GAC/NZVI mediator. ” Water Res 136: 54-63
60.	Qingchun Zhang, Lei Jiang, Jun Wang, Yongfa Zhu, Yujuan Pu, Weidong Dai (2020) “Photocatalytic degradation of tetracycline antibiotics using three-dimensional network structure perylene diimide supramolecular organic photocatalyst under visible-light irradiation. ”Applied Catalysis B: Environmental 277: 119122
61.	Feige Wang, Wenjing Wang, Shoujun Yuan, Wei Wang, Zhen-HuHu(2017) “Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution. ” Journal of Photochemistry and Photobiology A: Chemistry 348: 79-88





參考文獻(中文)
1.	黃昱閔(2016) 。《以紫外線結合不同氧化劑程序處理含雙酚A水溶液之光氧化與生物反應研究》。淡江大學水資源與環境工程學系,未出版,新北市。
2.	高偉哲(2015)。《以光芬頓程序處理抗生素氯四環素廢水之研究》。國立中興大學環境工程學系,未出版,台中市。
3.	李聖儒(2012)。《以芬頓及電芬頓技術處理水溶液中聚乙烯醇之研究》。弘光科技大學職業安全與防災研究所,未出版,台中市。
4.	邱品嘉(2014)。《以Fenton法及Photo-Fenton法降解含磺胺甲基噁作之研究》。國立中興大學環境工程學系,未出版,台中市。
5.	謝政憲(2011)。《電化學氧化程序處理含抗生素廢水》。淡江大學水資源與環境工程學系,未出版,新北市。
6.	王怡璇(2019)。《以不同高級氧化程序及加藥形式處理含雙酚A水溶液之反應行為研究》。淡江大學水資源與環境工程學系,未出版,新北市。
7.	吳翰典(2015)。《四環素與非離子型界面活性劑改質膨潤土的交互作用》。國立中興大學土讓環境科學系研究所,未出版,台中市。
8.	科技政策研究與資訊中心(2020)。《焦點主題—水中藥物殘留的政策因應與2030年塑膠回收市場預測》
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信