淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2008201903252400
中文論文名稱 不對稱嵌入式/電容去離子系統應用於鈉離子去除
英文論文名稱 Asymmetric Intercalation/Capacitive Deionization Systems for Sodium Ion Removal
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 107
學期 2
出版年 108
研究生中文姓名 童筱雯
研究生英文姓名 Hsiao-Wen Tung
學號 607480075
學位類別 碩士
語文別 中文
口試日期 2019-07-23
論文頁數 130頁
口試委員 指導教授-彭晴玉
共同指導教授-林正嵐
委員-秦靜如
委員-簡義杰
中文關鍵字 非對稱電容去離子  嵌入式  鐵氰化鎳  鐵氰化銅  磷酸鈉鈦 
英文關鍵字 Asymmetric Capacitive Deionization  Intercalation  Nickel Hexacyanoferrate  Copper Hexacyanoferrate  NaTi2(PO4)3@C 
學科別分類 學科別應用科學環境工程
中文摘要 電容去離子(Capacitive Deionization, CDI)技術為一項低耗能、低成本及無二次汙染之脫鹽技術。本研究利用NiHCF、CuHCF及NTP@C之嵌入式材料作為CDI之負電極,用於嵌入Na+,並利用活性碳電極作為正極吸附Cl-。將兩極材料組成非對稱電容去離子(Asymmetric CDI)系統移除鹽水中之NaCl,藉以評估NiHCF、CuHCF及NTP@C電極對Na+之去除效率及穩定性。
由NiHCF、CuHCF及NTP@C電極與活性碳組成之非對稱系統對Na+可分別達5.8、4.0及4.5 mg Na+/g electrode之電吸附量,均高於對稱活性碳(AC/AC)系統之3.6 mg Na+/g electrode,顯示加入嵌入式電極材料可明顯提升整體CDI系統之Na+去除能力。
另外研究嵌入式材料對Na+、K+的離子選擇性,並探討Na+、K+之間的競爭嵌入效應。在NiHCF/AC系統中,由於K+遷移率高故優先被嵌入至晶格中,但K+的遷出能力較差,這歸因於K+之Shannon半徑較Na+大而不易遷出,導致在CDI操作期間的再生性較差。NiHCF/AC系統經過三次循環後,在Na+及K+溶液中之去除率分別衰減5.1%及35.4%。
與對稱AC/AC系統相比,非對稱NiHCF/AC、CuHCF/AC和NTP@/AC系統具有更高的總離子去除效率和再生能力,而NTP @C/AC之電吸附容量雖然小於NiHCF/AC及CuHCF/AC,但其電吸附速率則較上述兩者快。
英文摘要 Capacitive deionization (CDI) technology is an energy-efficient and low-cost desalination technology which generated low secondary pollutions. In this study, asymmetric CDI systems using intercalation materials, including nickel hexacyanoferrate (NiHCF), copper hexacyanoferrate (CuHCF), or carbon-coated sodium titanium phosphate (NTP@C) , as the cathode and activated carbon (AC) as the anode for the removal of Na+ and Cl- in aqueous solutions are assembled and their removal efficiency and stability are evaluated. The NiHCF/AC, CuHCF/AC, and NTP@C/AC systems exhibited average Na+ electrosorption capacities of 5.8, 4.0 and 4.5 mg Na+/g electrode material, respectively, which are all higher than that of the symmetric AC/AC system (3.6 mg Na+/g AC). These results indicated that the utilization of intercalation material electrodes could significantly improve the Na+ removal efficiency of the CDI system.
The selectivity of these materials toward K+ and Na+ are also explored, and the intercalation competing effects between these cations are investigated. The lower deintercalation ability of K+ than Na+ is observed for NiHCF/AC. It is deduced that K+ has a larger Shannon radius than Na+, and therefore resulted in poor regeneration ability during the CDI operations. The Na+ and K+ removal efficiency of the NiHCF/AC system is decreased 5.1% and 35.4%, respectively, during three cycles.
The asymmetric NiHCF/AC, CuHCF/AC and NTP@/AC CDI systems have superior overall ion removal efficiency and regeneration ability than the symmetric AC/AC CDI system. The electrosorption capacity of NTP@/AC is smaller than the NiHCF/AC and the CuHCF/AC systems, but its electrosorption rate is faster than the above two.

論文目次 目錄
第一章 緒論 1
1.1 前言 1
1.2 研究緣起 1
1.3 研究目的 2
第二章 文獻回顧 3
2.1 海水淡化技術 3
2.1.1 蒸發法 4
2.1.2 薄膜法 6
2.1.3 電容去離子技術 (Capacitive Deionization, CDI) 9
2.2 電容去離子(CDI)技術 10
2.2.1 原理 10
2.2.2 電極材料之選擇 12
2.3 非對稱之電容去離子技術 15
2.4 嵌入式主體化合物 20
2.4.1 普魯士藍 23
2.4.2 鐵氰化鎳(NiHCF) 26
2.4.3 鐵氰化銅(CuHCF) 30
2.4.4 磷酸鈉鈦(NTP@C) 33
第三章 研究材料及方法 37
3.1 實驗架構 37
3.2 實驗藥品與設備 39
3.2.1 實驗藥品 39
3.2.2 實驗儀器設備 41
3.3 電極材料之製作 42
3.3.1 NiHCF材料合成 42
3.3.2 CuHCF材料合成 44
3.3.3 NTP@C材料合成 46
3.4 電極之製備 48
3.4.1 NiHCF電極 48
3.4.2 CuHCF電極 48
3.4.3 NTP@C電極 50
3.4.4 活性碳電極 52
3.5 實驗分析方法 54
3.5.1 X射線繞射分析(XRD) 54
3.5.2 掃描式電子顯微鏡分析(SEM) 54
3.5.3 穿透式電子顯微鏡分析(TEM) 55
3.5.4 循環伏安法(CV) 56
3.5.5 電化學阻抗譜分析(EIS) 58
3.5.6 感應耦合電漿發射光譜儀(ICP-OES) 59
3.6 電容去離子技術(CDI) 59
第四章 結果與討論 61
4.1 NiHCF應用於電容去離子技術 61
4.1.1 NiHCF之表面特性分析 61
4.1.2 NiHCF之電化學特性 64
4.1.3 NiHCF應用於電容去離子技術 69
4.1.3.1 對稱AC/AC與非對稱NiHCF/AC系統比較 69
4.1.3.2 非對稱NiHCF/AC系統最佳操作電位與電壓分配情形 73
4.1.3.3 非對稱NiHCF/AC系統Na+與Cl-離子濃度計算 78
4.1.3.4 非對稱NiHCF/AC系統對Na+或K+之離子選擇性 80
4.2 CuHCF應用於電容去離子技術 90
4.2.1 CuHCF之表面特性分析 90
4.2.2 CuHCF之電化學特性 93
4.2.3 CuHCF應用於電容去離子技術 96
4.3 NTP@C應用於電容去離子技術 102
4.3.1 NTP@C之表面特性分析 102
4.3.2 NTP@C之電化學特性 106
4.3.3 NTP@C應用於電容去離子技術 109
4.4 NiHCF、CuHCF、NTP@C之綜述 113
4.4.1 電化學性能之比較 113
4.4.2 Na離子去除性能之比較 115
第五章 結論與建議 118
Reference 121


List of Figure
Figure 2.1.1.1 Schematic diagram of (a) MED (b) MSF (c) VC units 5
Figure 2.1.2.1 Diagram of (a) RO principle. (b) RO system (MILLER, 2003). 7
Figure 2.1.2.2 Schematic diagram of electrodialysis (ED) desalination process (MILLER, 2003). 8
Figure 2.2.1.1 Operation of a Capacitive Deionization for water desalination 11
Figure 2.2.2.1 (a) Pore nomenclature according to IUPAC, (b)nomenclature in porous media transport theory (S.Porada et al., 2013). 14
Figure 2.3.1 Deionization curves of asymmetric cells of ZnO/AC composite and AC in comparison with symmetric cell of AC using NaCl aqueous electrolyte with 500 mg/L (Huang et al., 2017). 17
Figure 2.3.2 The capacitance of the CNTs, ammoniated CNTs and sulfonated CNTs electrodes as a function of the cycle number at the scanning rate of 5 mV/s and the inset is the capacitance retention of the three electrodes after 100 cycles (Ma et al., 2019). 18
Figure 2.3.3 The cyclic adsorption/desorption curves of the four cells in ten cycles (Ma et al., 2019). 19
Figure 2.4.1 (a) Schematic illustration of an intercalation material being used as an electrode in a CDI cell. Salt concentration in the flow channel adjacent to the electrode undergoing intercalation decreases with time, indicated by the grey-scale gradient. Black lines in the electrode area represent the conductive carbon which provides an electronic link between the intercalation particles (white circles) and the current collector. (b) Schematic representation of intercalation of cations and inclusion of electrons in the electrode. (c) Illustration of redox-active cation intercalation. (d) Intercalation through electrostatic interaction between intercalant and host material as seen in MXene electrodes (Singh et al., 2019). 21
Figure 2.4.2 A brief chronology describing the development of intercalation materials based on selected papers (Singh et al., 2019). 22
Figure 2.4.1.1 The crystal structures of (a) Fe43+[Fe2+(CN)6]3·xH2O (insoluble Prussian blue) and (b) KFe3+[Fe2+(CN)6] (soluble Prussian blue) (S.-H.Lee et al., 2012). 25
Figure 2.4.2.1 The crystal structure schematic of NiHCF. Hydrated alkaline cations such as K+ and Na+ occupy the interstitial “A” sites at the center of each of the eight subcells of the unit cell (D. Wessells et al., 2011). 26
Figure 2.4.2.2 (a) Cyclic voltammetry of NiHCF with Li+, Na+ , K+ and NH4+ ions. (b) NiHCF shows no capacity loss after 5000 cycles of Na+ insertion at a 8.3C rate. However, during K+ cycling, NiHCF is stable for only about 1000 cycles, after which its capacity decays at an approximate rate of 1.75%/1000 cycles (D. Wessells et al., 2011). 29
Figure 2.4.3.1 Framework of CuHCF (Jia et al., 2014). 30
Figure 2.4.3.2 (a) Cyclic voltammetry (b) The cycle life of CuHCF during cycling of Li+, Na+, K+ and NH4+ (Wessells et al., 2011). 32
Figure 2.4.4.1 Crystal structure of NASICON-type NTP, and a, b and c represent different axes (D.Wang et al., 2016). 33
Figure 2.4.4.2 Charge and discharge profiles of NTP-C/NMO full cell in three electrode configuration for different C-rates (Z.Li et al., 2012). 35
Figure 2.4.4.3 Galvanostatic cycling performance of NTP-C / NMO full cells at different rates (Z.Li et al., 2012). 36
Figure 3.1.1 Schematic experimental structure for CDI system. 38
Figure 3.3.1.1 Nickel hexacyanoferrate (NiHCF) preparation procedure. 43
Figure 3.3.2.1 Copper hexacyanoferrate (CuHCF) preparation procedure. 45
Figure 3.3.3.1 NaTi2(PO4)3@C preparation procedure. 47
Figure 3.4.2.1 NiHCF and CuHCF electrode preparation procedure. 49
Figure 3.4.3.1 NaTi2(PO4)3@C electrode preparation procedure. 51
Figure 3.4.4.1 Activated carbon (AC) electrode preparation procedure. 53
Figure 3.5.4.1 Schematic of the three-electrode measurement system. 57
Figure 3.6.1 Schematic diagram of CDI system 60
Figure 4.1.1.1 XRD patterns of NiHCF. 62
Figure 4.1.1.2 SEM and EDS images of NiHCF at different magnifications. 63
Figure 4.1.2.1 Cyclic voltammograms of NiHCF electrode in 1M (a) NaCl or (b) KCl. 65
Figure 4.1.2.2 Cyclic voltammograms of the NiHCF electrodes in three different electrolytes (1 M of NaCl or NaCl+KCl or KCl aqueous solutions) at a scan rate of 1 mV/s after 10 cycles. 66
Figure 4.1.2.3 The electrochemical impedance spectra (EIS) of NiHCF measured at frequency range of 1 MHz to 1 Hz. 68
Figure 4.1.3.1 Electrosorption/desorption profiles of the (a)AC/AC, (b) NiHCF/AC CDI system in 200 mg/L NaCl solution (1.0 V). 71
Figure 4.1.3.2 Change profiles in (a) conductivity, and (b) concentration of Na+ during electrosorption/desorption processes of NiHCF/AC system at different applied voltages. 74
Figure 4.1.3.3 Removal of conductivity or Na+ concentration and electrosorption capacity of NiHCF/AC system at applied voltages from 0.6 V to 1.4 V. 75
Figure 4.1.3.4 The voltage distribution (%) during electrosorption/desorption of the (a) AC/AC system, (b-f) NiHCF/AC system at different voltages from 0.6 V to 1.4 V. 77
Figure 4.1.3.5 Theoretical removal ratio of sodium ion and chloride ion during NiHCF/AC CDI processes at different applied voltages. 79
Figure 4.1.3.6 Electrosorption/desorption of asymmetric NiHCF/AC system in 3.4 M (a) NaCl, or (b) KCl solution (1.0 V). 81
Figure 4.1.3.7 Electrosorption/desorption of asymmetric NiHCF/AC CDI system in 3.4 mM (a) NaCl, or (b) KCl solution for 10 cycles (1.0 V). 84
Figure 4.1.3.8 Electrosorption/desorption of asymmetric NiHCF/AC CDI system in 1.7 M NaCl +1.7 M KCl solution (1.0 V). 86
Figure 4.1.3.9 Schematic diagram of ion intercalation. 89
Figure 4.2.1.1 XRD patterns of CuHCF. 91
Figure 4.2.1.2 SEM and EDS image of CuHCF at different magnifications. 92
Figure 4.2.2.1 Cyclic voltammograms of CuHCF in 1 M (a) NaCl, or (b) KCl. 94
Figure 4.2.2.2 The electrochemical impedance spectra (EIS) measured at frequency range of 1 MHz to 1 Hz for CuHCF. 95
Figure 4.2.3.1 Electrosorption/desorption of asymmetric CuHCF/AC system in 3.4 M (a) NaCl, and (b) KCl solution (1.0 V). 97
Figure 4.2.3.2 Electrosorption/desorption of asymmetric CuHCF/AC system in 3.4 M (a) NaCl, (b) KCl solution (1.2 V). 100
Figure 4.3.1.1 XRD patterns of NTP@C. 103
Figure 4.3.1.2 SEM and EDS image of NTP@C. 104
Figure 4.3.1.3 TEM image of NTP@C. 105
Figure 4.3.2.1 Cyclic voltammograms of NTP@C electrode in 1 M NaCl at scan rate of 5 mV/s. 107
Figure 4.3.2.2 The electrochemical impedance spectra (EIS) measured at frequency range of 1 MHz to 1 Hz for NTP@C. 108
Figure 4.3.3.1 Electrosorption/desorption profiles of the NTP@C/AC electrode in 200 mg/L NaCl solution at (a)1.0 V (b)1.2 V. 110
Figure 4.3.3.2 Electrosorption/desorption of asymmetric NTP@C/AC system in 200 mg/L NaCl solution for 10 cycles (1.0 V). 112
Figure 4.4.1.1 The electrochemical impedance spectra (EIS) of NiHCF, CuHCF and NTP@C measured at frequency range of 1 MHz to 1 Hz. 114
Figure 4.4.2.1 Conductivity removal of NiHCF/AC, CuHCF/AC and NTP@C/AC in three-cycle CDI experiment. 116
Figure 4.4.2.2 Comparison of sodium concentration removal of NiHCF/AC, CuHCF/AC and NTP@C/AC systems in 200 mg/L NaCl at 1.0 V. 117

List of Table
Table 3.2.1.1 Manufactures and purity of NiHCF medicines. 39
Table 3.2.1.2 Manufactures and purity of CuHCF medicines. 39
Table 3.2.1.3 Manufactures and purity of NaTi2(PO4)3@C medicines. 40
Table 3.2.1.4 Manufactures and purity of AC medicines. 40
Table 3.2.2.1 Manufacturers and model of equipment. 41
Table 4.1.3.1 Conductivity removal efficiency (%) and electrosorption capacity (mg NaCl/g) of the AC/AC or NiHCF/AC electrodes with an applied voltage (1.0 V) in 200 mg/L NaCl. 72
Table 4.1.3.2 Sodium concentration removal efficiency (%) and electrosorption capacity (mg Na+/g) of Na+ with the AC/AC or NiHCF/AC electrodes with an applied voltage (1.0 V) in 200 mg/L NaCl. 72
Table 4.1.3.3 Increase of removal of Na+ or removal of conductivity or electrosorption capacity of NiHCF/AC system at applied voltages from 0.6 V to 1.4 V. 75
Table 4.1.3.4 Ionic properties at infinite dilution in aqueous solutions at 25°C. (Aikens, 2009) 78
Table 4.1.3.5 Conductivity and sodium or potassium concentration removal efficiency (%) of the NiHCF/AC electrodes with an applied voltage (1 V) in 3.4 mM NaCl and KCl. 82
Table 4.1.3.6 Electrosorption capacity (mg/g and mmol/g) of Na+ and K+ with the NiHCF/AC electrodes in 3.4 mM NaCl and KCl. 82
Table 4.1.3.7 The conductivity removal of the three solutions. 86
Table 4.1.3.8 The Shannon radius and mobility of two cations. 89
Table 4.2.3.1 Conductivity removal efficiency (%) and electrosorption capacity (mg NaCl/g and mg KCl/g) of the CuHCF/AC electrodes with an applied voltage (1.0 V) in 3.4 mM NaCl and KCl. 98
Table 4.2.3.2 Sodium and potassium concentration removal efficiency (%) and electrosorption capacity (mg/g) of Na+ and K+ with the CuHCF/AC electrodes in 3.4 mM NaCl and KCl. 98
Table 4.2.3.3 Conductivity removal efficiency (%) and electrosorption capacity (mg NaCl/g and mg KCl/g) of the CuHCF/AC electrodes with an applied voltage (1.2 V) in 3.4 mM NaCl and KCl. 101
Table 4.2.3.4 Sodium and Potassium concentration removal efficiency (%) and electrosorption capacity (mg/g) of Na+ and K+ with the CuHCF/AC electrodes in 3.4 mM NaCl and KCl. 101
Table 4.3.3.1 Conductivity removal efficiency (%) and electrosorption capacity (mg NaCl/g) with NTP@C/AC system in 200 mg/L NaCl by applied 1.0 V and 1.2 V. 111
Table 4.3.3.2 Sodium concentration removal efficiency (%) and electrosorption capacity (mg Na+/g) of Na+ with the NTP@C/AC electrodes in 200 mg/L NaCl by applied 1.0 V and 1.2 V. 111
Table 4.3.3.3 Conductivity and sodium concentration removal efficiency (%) of the first, fourth, and ninth cycles. 112
Table 4.4.1.1 Comparison of equivalent circuit parameters of NiHCF, CuHCF and NTP@C. 114
Table 4.4.2.1 Conductivity removal of NiHCF/AC, CuHCF/AC and NTP@C/AC in three-cycle CDI experiment. 116
Table 4.4.2.2 Sodium concentration removal efficiency (%) and electrosorption capacity (mg Na+/g) of Na+ with the NiHCF/AC, CuHCF/AC and NTP@C/AC system in 200 mg/L NaCl. 117
Table 5.1 Pros and cons of asymmetric NiHCF/AC, CuHCF/AC, and NTP@C/AC CDI systems. 120
參考文獻 Aikens, D. A. (2009). Electrochemical methods, fundamentals and applications. In Journal of Chemical Education (Vol. 60).
Al-Karaghouli, A., &Kazmerski, L. L. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews, 24, 343–356.
Al-Shammiri, M., &Safar, M. (1999). Multi-effect distillation plants: state of the art. Desalination, 126(1–3), 45–59.
Anderson, M. A., Cudero, A. L., &Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845–3856.
Aragón, M. J., Vidal-Abarca, C., Lavela, P., &Tirado, J. L. (2014). High reversible sodium insertion into iron substituted Na1+xTi2−xFex(PO4)3. Journal of Power Sources, 252, 208–213.
Biesheuvel, P. M., Zhao, R., Porada, S., &van derWal, A. (2011). Theory of membrane capacitive deionization including the effect of the electrode pore space. Journal of Colloid and Interface Science, 360(1), 239–248.
Bocarsly, A. B., &Sinha, S. (1982). Effects of surface structure on electrode charge transfer properties: Induction of ion selectivity at the chemically derivatized interface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 140(1), 167–172.
Buser, H. J., Ludi, A., Schwarzenbach, D., &Petter, W. (1977). The Crystal Structure of Prussian Blue: Fe4[Fe(CN)6]3·xH2O. Inorganic Chemistry, 16(11), 2704–2710.
D. Wessells, C., V.Peddada, S., A. Huggins, R., &Cui, Y. (2011). Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries. Nano Letters, 11(12), 5421–5425.
Darwish, M. A. (1988). Thermal analysis of vapor compression desalination system. Desalination, 69(3), 275–295.
F. Schneemeyer, L., E. Spengler, S., &W. Murphy, D. (1985). Ion selectivity in nickel hexacyanoferrate films on electrode surfaces. Inorganic Chemistry, 24(19), 3044–3046.
Faculty, T. A., Hou, C., &Fulfillment, I. P. (2008). Electrical Double Layer Formation in Nanoporous Carbon Materials Electrical Double Layer Formation in. Environmental Engineering, (April).
Fichtner. (2011). Desalination Using Renewable Energy. MENA. (March), 529.
Gao, X., Omosebi, A., Landon, J., &Liu, K. (2015). Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption-desorption behavior. Energy and Environmental Science, 8(3), 897–909.
Geng, H., Yang, J., Yu, H., Li, C., &Dong, X. (2017). Carbon intercalated porous NaTi2(PO4)3 spheres as high-rate and ultralong-life anodes for rechargeable sodium-ion batteries. Materials Chemistry Frontiers, 1(7), 1435–1440.
Ghaffour, N. (2009). The challenge of capacity-building strategies and perspectives for desalination for sustainable water use in MENA. Desalination and Water Treatment, 5(1–3), 48–53.
Gore, C. M., White, J. O., Wachsman, E. D., &Thangadurai, V. (2014). Effect of composition and microstructure on electrical properties and CO2 stability of donor-doped, proton conducting BaCe1-(x+y)ZrxNbyO3. Journal of Materials Chemistry A, 2(7), 2363–2373.
Huang, Z. H., Yang, Z., Kang, F., &Inagaki, M. (2017). Carbon electrodes for capacitive deionization. Journal of Materials Chemistry A, 5(2), 470–496.
Hung, T. F., Lan, W. H., Yeh, Y. W., Chang, W. S., Yang, C. C., &Lin, J. C. (2016). Hydrothermal Synthesis of Sodium Titanium Phosphate Nanoparticles as Efficient Anode Materials for Aqueous Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 4(12), 7074–7079.
Islam, M. S., Sultana, A., Saadat, A. H. M., Islam, M. S., Shammi, M., &Uddin, M. K. (2018). Desalination Technologies for Developing Countries: A Review. Journal of Scientific Research, 10(1), 77–97.
Itaya, K., Ataka, T., &Toshimaf, S. (1982). Spectroelectrochemistry and Electrochemical Preparation Method of Prussian Blue Modified Electrodes. American Chemical Society, 4767–4772.
Jia, Z., Wang, J., &Wang, Y. (2014). Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries. RSC Advances, 4(43), 22768–22774.
Jiang, D., Sun, L., Liu, T., &Wang, W. (2017). Thin-Film Electrochemistry of Single Prussian Blue Nanoparticles Revealed by Surface Plasmon Resonance Microscopy. Analytical Chemistry, 89(21), 11641–11647.
Jiang, P., Shao, H., Chen, L., Feng, J., &Liu, Z. (2017). Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries. Journal of Materials Chemistry A, 5(32), 16740–16747.
Jiao, S., Tuo, J., Xie, H., Cai, Z., Wang, S., &Zhu, J. (2017). The electrochemical performance of Cu3[Fe(CN)6]2 as a cathode material for sodium-ion batteries. Materials Research Bulletin, 86, 194–200.
Jouke, J., Eabele, E., &Dykstra, D. (2018). “Desalination with porous electrodes - mechanisms of ion transport and adsorption.”
Karyakin, A. A. (2001). Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis, (10), 813–819.
Keggin, J. F., &Miles, F. D. (1936). Structures and formulæ of the prussian blues and related compounds. Nature, 137(3466), 577–578.
Kim, S., Lee, J., Kim, C., &Yoon, J. (2016). Na2FeP2O7 as a Novel Material for Hybrid Capacitive Deionization. Electrochimica Acta, 203, 265–271.
Kim, T., Gorski, C. A., &Logan, B. E. (2017). Low Energy Desalination Using Battery Electrode Deionization. Environmental Science and Technology Letters, 4(10), 444–449.
Kim, Y. J., &Choi, J. H. (2010). Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. Separation and Purification Technology, 71(1), 70–75.
Langhus, D. L. (2009). Analytical Electrochemistry, 2nd Edition (Wang, Joseph). Journal of Chemical Education, 78(4), 457.
Lee, J.-B., Park, K.-K., Eum, H.-M., &Lee, C.-W. (2006). Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination, 196(1–3), 125–134.
Lee, J., Kim, S., Kim, C., &Yoon, J. (2014). Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy and Environmental Science, 7(11), 3683–3689.
Lee, S.-H., &Huh, Y.-D. (2012). Preferential Evolution of Prussian Blue’s Morphology from Cube to Hexapod. Bulletin of the Korean Chemical Society, 33(3), 1078–1080.
Li, W., Zhang, F., Xiang, X., &Zhang, X. (2017). High-Efficiency Na-Storage Performance of a Nickel-Based Ferricyanide Cathode in High-Concentration Electrolytes for Aqueous Sodium-Ion Batteries. ChemElectroChem, 4(11), 2870–2876.
Li, Y., Zhang, C., Jiang, Y., Wang, T. J., &Wang, H. (2016). Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization. Desalination, 399, 171–177.
Li, Z., Young, D., Xiang, K., Carter, W. C., &Chiang, Y. M. (2012). Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2system. Advanced Energy Materials, 3(3), 290–294.
Lin, C.-L., &Ho, K.-C. (2002). A study on the deposition efficiency, porosity and redox behavior of Prussian blue thin films using an EQCM. Journal of Electroanalytical Chemistry, 524–525, 286–293.
Lipson, A. L., Han, S.-D., Kim, S., Pan, B., Sa, N., Liao, C., …Ingram, B. J. (2016). Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. Journal of Power Sources, 325, 646–652.
Liu, P., Wang, H., Yan, T., Zhang, J., Shi, L., &Zhang, D. (2016). Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization. Journal of Materials Chemistry A, 4(14), 5303–5313.
Long, X., Chen, R., Yang, S., Wang, J., Huang, T., Lei, Q., &Tan, J. (2019). Preparation, characterization and application in cobalt ion adsorption using nanoparticle films of hybrid copper-nickel hexacyanoferrate. RSC Advances, 9(13), 7485–7494.
Ma, D., Cai, Y., Wang, Y., Xu, S., Wang, J., &Khan, M. U. (2019). Grafting the Charged Functional Groups on Carbon Nanotubes for Improving the Efficiency and Stability of Capacitive Deionization Process. ACS Applied Materials and Interfaces, 11(19), 17617–17628.
Mekonnen, M. M., &Hoekstra, A. Y. (2016). Sustainability: Four billion people facing severe water scarcity. Science Advances, 2(2).
MILLER, J. E. (2003). Review of Water Resources and Desalination Technologies.
Neff, V. D. (1978). Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. Journal of The Electrochemical Society, 125(6), 886.
Noked, M., Avraham, E., Soffer, A., &Aurbach, D. (2009). The Rate-Determining Step of Electroadsorption Processes into Nanoporous Carbon Electrodes Related to Water Desalination. The Journal of Physical Chemistry C, 113(51), 21319–21327.
Oladunni, J., Zain, J. H., Hai, A., Banat, F., Bharath, G., &Alhseinat, E. (2018). A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice. Separation and Purification Technology, 207, 291–320.
Omosebi, A., Gao, X., Landon, J., &Liu, K. (2014). Asymmetric Electrode Configuration for Enhanced Membrane Capacitive Deionization. ACS Applied Materials & Interfaces, 6(15), 12640–12649.
Pang, G., Yuan, C., Nie, P., Ding, B., Zhu, J., &Zhang, X. (2014). Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale, 6(12), 6328–6334.
Park, S.Il, Gocheva, I., Okada, S., &Yamaki, J. (2011). Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries. Journal of The Electrochemical Society, 158(10), A1067.
Pauliukaite, R., Chiorcea Paquim, A. M., Oliveira Brett, A. M., &Brett, C. M. A. (2006). Electrochemical, EIS and AFM characterisation of biosensors: Trioxysilane sol-gel encapsulated glucose oxidase with two different redox mediators. Electrochimica Acta, 52(1), 1–8.
Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J. S., Keesman, K. J., …Presser, V. (2013). Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy and Environmental Science, 6(12), 3700–3712.
Porada, S., Zhao, R., Van DerWal, A., Presser, V., &Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388–1442.
Porada, Slawomir, Shrivastava, A., Bukowska, P., Biesheuvel, P. M., &Smith, K. C. (2017). Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish Water. Electrochimica Acta, 255, 369–378.
Raluy, G., Serra, L., &Uche, J. (2006). Life cycle assessment of MSF, MED and RO desalination technologies. Energy, 31(13), 2361–2372.
Ren, W., Qin, M., Zhu, Z., Yan, M., Li, Q., Zhang, L., …Mai, L. (2017). Activation of Sodium Storage Sites in Prussian Blue Analogues via Surface Etching. Nano Letters, 17(8), 4713–4718.
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., …Kabat, P. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9), 3245–3250.
Schöllhorn, R. (1980). Intercalation chemistry. In Physica B+C (Vol. 99).
Semiat, R. (2010). MULTI-EFFECT DISTILLATION (MED). WATER AND WASTE WATER TREATMENT TECHNOLOGIES.
Seo, S.-J., Jeon, H., Lee, J. K., Kim, G.-Y., Park, D., Nojima, H., …Moon, S.-H. (2010). Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Research, 44(7), 2267–2275.
Shannon, R. D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides bond strength-bond length relationships , and plots of ( 1 ) radii vs volume , ( 2 ) radii vs coordination partial occupancy of cation sites , coval. Acta Crystallographica, A32, 751.
Shatat, M., &Riffat, S. B. (2014). Water desalination technologies utilizing conventional and renewable energy sources. International Journal of Low-Carbon Technologies, 9(1), 1–19.
Singh, K., Porada, S., deGier, H. D., Biesheuvel, P. M., &deSmet, L. C. P. M. (2019). Timeline on the application of intercalation materials in Capacitive Deionization. Desalination, 455(October 2018), 115–134.
Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J., &Presser, V. (2015). Water desalination via capacitive deionization: What is it and what can we expect from it? Energy and Environmental Science, 8(8), 2296–2319.
Tamio Ikeshoji. (1986). Separation of Alkali Metal Ions by Intercalation into a Prussian Blue Electrode A Bismuth-Based Electrocatalyst for the Chromous-Chromic Couple in Acid Electrolytes. J. Electrochem, 133(10), 2108–2109.
Tsai, Y.-C., &Doong, R. (2016). Hierarchically ordered mesoporous carbons and silver nanoparticles as asymmetric electrodes for highly efficient capacitive deionization. Desalination, 398, 171–179.
Wang, B., Liu, S., Sun, W., Tang, Y., Pan, H., Yan, M., &Jiang, Y. (2019). Intercalation Pseudocapacitance Boosting Ultrafast Sodium Storage in Prussian Blue Analogs. ChemSusChem.
Wang, D., Liu, Q., Chen, C., Li, M., Meng, X., Bie, X., …Chen, G. (2016). NASICON-Structured NaTi2(PO4)3@C Nanocomposite as the Low Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials and Interfaces, 8(3), 2238–2246.
Wang, X., Zhang, Y., Jiang, S., Ji, X., Liu, Y., &Banks, C. E. (2011). Cubic Copper Hexacyanoferrates Nanoparticles: Facile Template-Free Deposition and Electrocatalytic Sensing Towards Hydrazine. International Journal of Electrochemistry, 2011, 1–5.
Wessells, C. D., Peddada, S.V., Huggins, R. A., &Cui, Y. (2011). Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Letters, 11(12), 5421–5425.
Wessells, C. D., Peddada, S.V., McDowell, M. T., Huggins, R. A., &Cui, Y. (2011). The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes. Journal of The Electrochemical Society, 159(2), A98–A103.
Wu, W., Mohamed, A., &Whitacre, J. F. (2013). Microwave Synthesized NaTi2(PO4)3 as an Aqueous Sodium-Ion Negative Electrode. Journal of The Electrochemical Society, 160(3), A497–A504.
Xu, C., Xu, Y., Tang, C., Wei, Q., Meng, J., Huang, L., …Mai, L. (2016). Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy, 28, 224–231.
Yang, X., Wang, K., Wang, X., Chang, G., &Sun, S. (2018). Carbon-coated NaTi2(PO4)3 composite: A promising anode material for sodium-ion batteries with superior Na-storage performance. Solid State Ionics, 314(November 2017), 61–65.
Zhang, C., He, D., Ma, J., Tang, W., &Waite, T. D. (2018). Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Research, 128, 314–330.
Zhao, R., Porada, S., Biesheuvel, P. M., &van derWal, A. (2013). Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis. Desalination, 330, 35–41.
Zhao, R., Satpradit, O., Rijnaarts, H. H. M., Biesheuvel, P. M., &van derWal, A. (2013). Optimization of salt adsorption rate in membrane capacitive deionization. Water Research, 47(5), 1941–1952.
Zuo, Y., Chen, L., Zuo, Z., Huang, Y., &Liu, X. (2017). Rational construction of NaTi2(PO4)3@C nanocrystals embedded in graphene sheets as anode materials for Na-ion batteries. Ceramics International, 43(15), 12915–12919.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2024-08-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2024-08-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信