淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2008201209591200
中文論文名稱 無線人體區域網路中省電型兩躍傳輸協定之探討
英文論文名稱 An Energy-Efficient Two-hop Extension Protocol for Wireless Body Area Networks
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 林志信
研究生英文姓名 Chih-Shin Lin
電子信箱 896440061@s96.tku.edu.tw
學號 896440061
學位類別 博士
語文別 中文
口試日期 2012-06-11
論文頁數 104頁
口試委員 指導教授-莊博任
委員-陳省隆
委員-李維聰
委員-許獻聰
委員-莊博任
委員-吳庭育
中文關鍵字 節能  兩躍傳輸  無線人體區域網路  效能分析 
英文關鍵字 energy efficient  two-hop transmission  wireless body area network  performance analysis 
學科別分類
中文摘要 隨著無線通訊技術的進步,越來越多的新應用陸續被提出來,例如:穿戴式或置入式的生理感測器。這些生理感測器被安置在人體皮膚上,或內置於身體內,或安裝在身體周圍收集資訊形成無線人體區域網路。這些生理感測器通常很輕薄,並且能源有限,因此能源效率就變成無線人體區域網路中最重要的問題了。
IEEE 802.15.6工作群組在2012年二月制定並發佈了第一套無線人體區域網路的國際標準。在IEEE 802.15.6標準當中,制定了單躍星狀拓墣和雙躍延伸樹狀拓墣,在雙躍延伸的協定中,中繼節點(relaying node)的身分類似於微型的集線器(hub),必須要處理新雙躍節點(relayed node)的加入與安排雙躍節點的傳輸,這會增加中繼節點耗能並縮短中繼節點的工作時間。
本篇論文基於IEEE 802.15.6標準提出新的兩躍傳輸模型,希望能夠節省能源並改善傳輸效率,我們利用無線人體區域網路中的節點特性達成這兩個目標。在無線人體區域網路應用上,因為節點通常安裝在人體上或甚至放入體內,因此節點體積往往受限,造成能源與計算能力匱乏,而集線器則是人體外用來負責控制一切傳輸之節點,較容易進行更換電池或充電,因此我們假設集線器具有比一般節點更多的資源與能源,本論文根據此假設,將所有兩躍控制所需執行的運算與控制,儘可能的交由資源較多的集線器去執行,藉此降低一般節點的能源消耗,並且透過適當的安排,讓各種存取方式能夠順利且有效率的套用到新的兩躍傳輸模型上。
效能分析及實驗評估的結果顯示新的兩躍傳輸模型能夠有效降低一般節點的能源消耗,將能源消耗集中到集線器上,在傳輸效能方面的表現,新協定能夠有效降低兩躍傳輸時的網路成本(overhead),而且在新協定中,中繼節點不需具備額外複雜的功能即可幫忙轉傳資料給集線器,可以降低中繼節點的複雜度並降低能源消耗,延長中繼節點的工作時間。
英文摘要 Wireless body area networks (WBANs) are small range communication, and the number of nodes is typically 10-15, fewer than 256. The main challenge in WBANs is to balance the energy efficiency and quality of service. In some applications, battery powered nodes are impossible to replace batteries or recharge, and therefore to reduce energy consumption is an important requirement.
There are many WBANs applications with data rate from 0.01bps to 10 Mbps. In order to satisfy each application requirement, WBANs need considering transmission efficiency. Energy efficiency and transmission throughput are important in WBANs.
Based on the above observation, this thesis presents a novel two-hop extension model which utilizes the special usage of wireless body area networks to achieve power efficiency and high throughput. In WBANs applications, sometimes nodes wear or implant on human body restricting the volume, energy, and computing ability of nodes. Hubs are used to collect the data from sensors, it have sufficient energy, higher computing ability and can be recharged easily. Therefore the proposed model tries to move all of the complicated computing from relaying nodes to the hub, and reduce the energy consumption of nodes. This thesis modifies each kind of access methods, and let those methods workable on new two-hop extension model.
Performance analysis and experimental evaluation shows that the proposed model can reduce energy consumption of each node and move the energy consumption to hub. The transmit performance is almost the same as IEEE 802.15.6 draft. The relaying nodes of the proposed model can help relaying data to hub without any other equipment, therefore the proposed two-hop extended model can lower the complexity of node and also can reduce the energy consumption.
論文目次 目 錄

誌 謝 I
中文摘要 II
英文摘要 IV
目 錄 VII
圖 目 錄 XI
表 目 錄 XV
第一章 緒論 1
1.1 前言 1
1.2 章節大綱 4
第二章 相關研究背景 5
2.1 背景介紹 5
2.2 採用分時多工之媒體存取控制協定 7
2.2.1 Marinkovic et al.’s method [13] 7
2.2.2 MedMAC [14] 7
2.3 採用排程競爭之媒體存取控制協定 8
2.3.1 Omeni et al.’s method [15] 8
2.3.2 Kwon et al.’s method [16] 11
2.3.3 BodyMAC [17] 13
2.3.4 IEEE 802.15.6 通訊標準 [12] 17
2.3.5 各方法與IEEE 802.15.6之差異 28
第三章 Two-Hop Direct Downlink (2HDD) 29
3.1 2HDD新協定概念 29
3.2 未連線節點透過中繼點加入網路之程序 31
3.3 兩躍節點存取模式運作 34
3.3.1 隨機存取 34
3.3.2 排程存取 42
3.3.3 臨時存取 43
3.3.4 未排程存取 45
3.4 工作模式與省電模式 46
第四章 效能評估 48
4.1 分析使用之變數說明 48
4.2 兩躍傳輸下能源消耗分析 50
4.2.1 能源消耗分析 50
4.2.2 理想工作狀態分析 55
4.2.3 非理想工作狀態分析 69
4.3 兩躍傳輸下傳輸負載分析 82
4.4 兩躍傳輸下吞吐量分析 85
4.5 模擬結果 87
4.5.1 模擬環境及模擬參數 87
4.5.2 節點加入程序 88
4.5.3 排程下載 90
4.5.4 兩躍傳輸下的負載模擬 92
4.5.5 兩躍傳輸下的吞吐量模擬 94
第五章 結論 96
第六章 未來工作 98
參考文獻 99
著作列表 103


圖 目 錄

圖2. 1 Omeni et al.’s method之拓墣示意圖 8
圖2. 2 三個工作程序的流程圖 10
圖2. 3 BodyMAC之訊框結構 13
圖2. 4 IEEE 802.15.6之拓墣示意圖 17
圖2. 5 Beacon之封包格式 21
圖2. 6 IEEE 802.15.6中由Beacon所定義之訊框結構 22
圖2. 7 集線器廣播連線詢問封包示意圖 22
圖2. 8 新節點建立連線示意圖 23
圖2. 9 資料與管理封包之兩躍傳輸示意圖 26
圖2. 10 兩躍傳輸之排程存取示意圖 27
圖3. 1 IEEE 802.15.6兩躍擴展傳輸示意圖 29
圖3. 2 新協定兩躍擴展傳輸示意圖 30
圖3. 3 未連線節點透過中繼點加入網路之示意圖 32
圖3. 4 兩躍傳輸之載波偵測多重存取/碰撞避免機制示意圖 35
圖3. 5 兩躍傳輸之時槽式Aloha機制示意圖 37
圖3. 6 中繼點傳輸延遲問題之示意圖 39
圖3. 7 解決中繼點傳輸延遲問題之示意圖 40
圖3. 8 兩躍傳輸之排程存取資料下載示意圖 42
圖3. 9 兩躍傳輸之臨時存取資料上傳示意圖 43
圖4. 1 IEEE 802.15.6訊框架構 50
圖4. 2 連線要求封包之封包內容 57
圖4. 3 連線指派封包之封包內容 57
圖4. 4 IEEE 802.15.6 通訊標準之節點加入程序示意圖 58
圖4. 5 2HDD之節點加入流程 60
圖4. 6 節點加入程序之能源消耗比較圖 63
圖4. 7 IEEE 802.15.6 通訊標準之排程下載示意圖 64
圖4. 8 2HDD之排程下載示意圖 66
圖4. 9 排程下載之能源消耗比較圖 68
圖4. 10 單躍資料傳送之機率分析 69
圖4. 11 雙躍資料傳送之機率分析 70
圖4. 12 節點加入程序之能源消耗比較圖( =0.005%) 75
圖4. 13 節點加入程序之能源消耗比較圖( =0.01%) 75
圖4. 14 節點加入程序之能源消耗比較圖( =0.02%) 76
圖4. 15 排程下載之能源消耗比較圖( =0.005%) 80
圖4. 16 排程下載之能源消耗比較圖( =0.01%) 80
圖4. 17 排程下載之能源消耗比較圖( =0.02%) 81
圖4. 18 排程下載之網路負載比較圖( =0%) 83
圖4. 19 排程下載之網路負載比較圖( =0.005%) 83
圖4. 20 排程下載之網路負載比較圖( =0.01%) 84
圖4. 21 排程下載之吞吐量比較圖( =0%) 85
圖4. 22 排程下載之吞吐量比較圖( =0.005%) 86
圖4. 23 排程下載之吞吐量比較圖( =0.01%) 86
圖4. 24 節點加入程序之能源消耗模擬圖( =0.005%) 88
圖4. 25 節點加入程序之能源消耗模擬圖( =0.01%) 89
圖4. 26 節點加入程序之能源消耗模擬圖( =0.02%) 89
圖4. 27 排程下載之能源消耗模擬圖( =0.005%) 90
圖4. 28 排程下載之能源消耗模擬圖( =0.01%) 91
圖4. 29 排程下載之能源消耗模擬圖( =0.02%) 91
圖4. 30 排程下載之網路負載模擬圖( =0%) 92
圖4. 31 排程下載之網路負載模擬圖( =0.005%) 93
圖4. 32 排程下載之網路負載模擬圖( =0.01%) 93
圖4. 33 排程下載之吞吐量模擬圖( =0%) 94
圖4. 34 排程下載之吞吐量模擬圖( =0.005%) 95
圖4. 35 排程下載之吞吐量模擬圖( =0.01%) 95


表 目 錄

表2. 1 生理感測器傳輸的資料型態及與協調者的距離統整表 12
表2. 2 競爭機制之相關參數 19
表2. 3 各媒體存取機制與IEEE802.15.6之比較 28
表4. 1 分析用變數一覽表 48
表4. 2 第6頻帶與第7頻帶的實體層參數 51
表4. 3 Nordic nRF24L01+ 傳輸模組耗能表 [23] 55
表4. 4 實驗模擬參數一覽表 87
參考文獻 [1] 802.15.6 Call for Applications - Response Summary, https://mentor.ieee. org/802.15/dcn/08/15-08-0407-06-0006-tg6-applications-summary.doc.
[2] Y. Wei, J. Heidemann, and D. Estrin, “Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks,” IEEE/ACM Trans. on Networking, Vol. 12, No. 3, June 2004, pp. 493-506.
[3] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An Adaptive Energy-Efficient and Low Latency MAC for Data Gathering in Wireless Sensor Networks,” Proc. 18th Parallel and Distributed Processing Symp., Apr. 2004, pp. 224-231.
[4] T. van Dam and K. Langendoen, “An Adaptive Energy-Efficient MAC Protocol for Wireless Sensor Networks,” Proc. 1st Int’l Conf. on Embedded Networked Sensor Systems, Nov. 2003, pp. 171-180.
[5] I. Rhee, A. Warrier, M. Aia, J. Min, and M.L. Sichitiu, “Z-MAC: A Hybrid MAC for Wireless Sensor Networks,” IEEE/ACM Trans. on Networking, Vol. 16, Iss. 3, June 2008, pp. 511–524.
[6] H. Gong, M. Liu, L. Yu, and X. Wang, "An Event Driven TDMA Protocol for Wireless Sensor Networks," Int'l Conf. on Communications and Mobile Computing, Vol. 2, 6-8 Jan. 2009, pp.132-136.
[7] R. L. Cigno, M. Nardelli, and M. Welzl, "SESAM: A semi-synchronous, energy savvy, application-aware MAC," 6th Int'l Conf. on Wireless On-Demand Network Systems and Services, 2-4 Feb. 2009, pp.93-100.
[8] A. El-Hoiydi, J.-D. Decotignie and J. Hernandez, “Low Power MAC Protocol for Infrastructure Wireless Sensor Networks,” Proc. 5th European Wireless Conf., Feb. 2004, pp. 563-569.
[9] S. Coleri, A. Puri, and P. Varaiya, “Power Efficient System for Sensor Networks,”Proc. IEEE 8th Int’l Symp. on Computers and Communication, Vol. 2, June 2003, pp.837-842.
[10] R. Kannan, R. Kalidindi, and S. S. Iyengar, “Energy and Rate based MAC protocol for Wireless Sensor Networks,” ACM Special Interest Group on Management of Data Record, Vol. 32, No. 4, Dec. 2003, pp. 60-65.
[11] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy- Efficient, Collision-Free Medium Access Control for Wireless Sensor Networks,” Proc. 1st Int’l Conf. on Embedded Networked Sensor Systems, Nov. 2003, pp. 181-192.
[12] 802.15.6-2012 IEEE standard for local and metropolitan area networks part 15.6: Wireless Body Area Networks.
[13] S.J. Marinkovic, E.M. Popovici, C. Spagnol, S. Faul, and W.P. Marnane, “Energy-Efficient Low Duty Cycle MAC Protocol for Wireless Body Area Networks,” IEEE Trans. on Information Technology in Biomedicine, Vol. 13, Iss.6, Nov. 2009, pp.915-925.
[14] N.F. Timmons, and W.G. Scanlon, “An adaptive energy efficient MAC protocol for the medical body area network,” 1st Int'l Conf. on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, 2009, pp.587-593.
[15] O. Omeni, A. Wong, A.J. Burdett, and C. Toumazou, “Energy Efficient Medium Access Protocol for Wireless Medical Body Area Sensor Networks,” IEEE Trans. on Biomedical Circuits and Systems, vol. 2, iss.4, Dec. 2008, pp. 251-259.
[16] H.T. Kwon, and S.K. Lee, “Energy-efficient multi-hop transmission in Body Area Networks,” 2009 IEEE 20th Int’l Symp. on Personal Indoor and Mobile Radio Communications, 13-16 Sept. 2009, pp. 2142-2146.
[17] G. Fang, and E. Dutkiewicz, “BodyMAC: Energy efficient TDMA-based MAC protocol for Wireless Body Area Networks,” 9th Int'l Symp. on Communications and Information Technology 2009, 28-30 Sept. 2009, pp. 1455-1459.
[18] M.S. Wegmueller, A. Kuhn, J. Froehlich, M. Oberle, N. Felber, N. Kuster, and W. Fichtner, “An Attempt to Model the Human Body as a Communication Channel,” IEEE Trans. on Biomedical Engineering, Vol. 54, Iss. 10, October 2007, pp.1851-1857.
[19] N. Katayama, K. Takizawa, T. Aoyagi, J. Takada, H. Li, and R. Kohno, “Channel Model on Various Frequency Bands for Wearable Body Area Network,” 1st Int’l Symp. on Applied Sciences on Biomedical and Communication Technologies, October 2008, pp.1-5.
[20] S. Gupta, S. Lalwani, Y. Prakash, E. Elsharawy, and L. Schwiebert, “Towards a Propagation Model for Wireless Biomedical Applications,” IEEE Int’l Conf. on Communications, vol.3, May 2003, pp.1993-1997.
[21] C. Tachtatzis, F. D. Franco, D.C. Tracey, N.F. Timmons, and J. Morrison, “An energy analysis of IEEE 802.15.6 scheduled access modes,” IEEE GLOBECOM 2010 Workshops on Mobile Computing and Emerging Communication Networks, 2010, pp.1270-1275.
[22] F. D. Franco, C. Tachtatzis, B. Graham, M. Bykowski, D. C. Tracey, N. F. Timmons, and J. Morrison, “Current Characterisation for Ultra Low Power Wireless Body Area Networks,” in 8th IEEE Workshop on Intelligent Solutions in Embedded Systems, July 2010, pp.91-96.
[23] nRF24L01+ Single Chip 2.4GHz Transceiver Preliminary Product Specification V 1.0, http://www.sparkfun.com/datasheets/Components/ SMD/nRF24L01Pluss_Preliminary_Product_Specification_v1_0.pdf.
[24] M. H. MacDougall, Simulating computer systems: techniques and tools, MIT Press, Cambridge, MA, 1987
[25] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, “IEEE 802.11 Wireless Local Area Networks,” IEEE communications Magazine, Vol. 35, Iss. 9, Sep. 1997, pp.116-126.
[26] 802.16j-2009-IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems Amendment 1: Multihop Relay Specification
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信