淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2008201208480000
中文論文名稱 鑽石薄膜的石墨化對場發射特性的影響之研究
英文論文名稱 The study on the effect of graphitization process on the electron field emission properties of diamond films
校院名稱 淡江大學
系所名稱(中) 物理學系博士班
系所名稱(英) Department of Physics
學年度 100
學期 2
出版年 101
研究生中文姓名 鄧光佑
研究生英文姓名 Kuang-Yau Teng
學號 894180065
學位類別 博士
語文別 中文
口試日期 2012-06-27
論文頁數 187頁
口試委員 指導教授-林諭男
委員-錢凡之
委員-唐建堯
委員-張立
委員-鄭秀鳳
中文關鍵字 電子場發射 
英文關鍵字 EFE 
學科別分類
中文摘要 在這篇論文中,我們使用3個主題來證明鑽石薄膜的石墨化可提高電子場發射(Electron Field Emission,EFE)特性。(i)高能量離子輻照,(ii)超音波-偏壓輔助成長 (Ultrasonication-Bias Enhanced Growth,U-BEG)之過程和(iii)氮氣電漿的微波電漿輔助化學汽相沈積法(Microwave Plasma Enhanced Chemical Vapor Deposition,MPECVD)之過程。
(i)在高能量離子照射效應的過程中,我們觀察到2.245 GeV的金離子照射對MCD (Microcrystalline Diamond)鑽石薄膜上的晶粒結構有巨大的改變,但是在UNCD (Ultra-nanocrystalline Diamond)薄膜上的微結構的影響就不太明顯。改變的程度隨著照射離子數的增加而改變,其臨界離子數約8.4×1013ions/cm2。對於MCD薄膜,由於金離子的照射可使其平均晶粒尺寸變小。一些晶粒仍保持原貌而只有結構性的缺陷產生。一些晶粒被完全擊碎成超小顆的晶粒並伴隨著非結晶碳的產生。這些過程會使薄膜的電子場發特性變差。離子照射薄膜再退火之後,可使缺陷變少、非結晶碳再結晶和使被擊碎的鑽石晶粒再重新成長。薄膜經由退火過程可產生奈米石墨相的形成,並導致電子場發射特性變佳。兩相對照下,UNCD薄膜在高能量(2.245 GeV)金離子照射下會產生局部高溫使晶界上的非結晶碳再結晶成奈米石墨相聚集並使電子場發射特性變佳。退火作用的過程可進一步提高再結晶過程和電子場發射特性。
(ii)在U-BEG過程中,會有類似大晶粒的鑽石存在,而這些大晶粒鑽石基本上都是屬於鑽石晶粒的聚集,而鑽石會聚集在一起主要是因為許多單顆的球狀晶粒的奈米晶鑽石顆粒所聚集起來的。當負偏壓(Negative Bias Voltage)越大鑽石晶粒尺寸越小。然而,由穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)的觀察發現電子場發射特性變佳的主要因素是在U-BEG過程中成長鑽石薄膜會沿著晶界處產生石墨相。
(iii)在氮氣電漿中(CH4/N2)成長鑽石薄膜,其顆粒狀結構有明顯的改變,是由等軸的幾何結構變成針狀結構。像針狀的鑽石晶粒的長寬比增加是以基板溫度為首要條件,在700℃成長薄膜時可達到最大長寬比,然後更高的基板溫度時長寬比例會下降。薄膜的導電性也隨著基板溫度的增加而增加在700℃成長薄膜時可達到最大。UNCD薄膜的電子場發射特性也是如此。然而,由TEM的觀察發現電子場發射特性變佳的主要因素是在700℃成長UNCD薄膜時其針狀的鑽石晶粒周圍有石墨相的形成。
由以上三個例子證明,在鑽石薄膜中使電子場發射特性變佳的真正因素是鑽石晶粒間有石墨相的形成。這樣的認知,可得知如何經由改變其顆粒結構,使電子場發射特性變佳。
英文摘要 In this thesis, we used 3 examples to demonstrate the effect of graphitization process on enhancing the electron field emission (EFE) properties of diamond films, viz. (i) high energy ion irradiation, (ii) ultrasonication-bias enhanced growth (U-BEG) process and (iii) N2-plasma MPECVD process.
(i) In the high energy ion irradiation effect process, we observed that irradiation of 2.245 GeV Au-ions imposed significant modification on the granular structure of MCD diamond films but induced less marked influence on the microstructure of UNCD films. The extent of modification increased with the fluence of the irradiated ions. The critical fluence is around 8.4 x 1013 ions/cm2. For MCD films, the average grain size was reduced due to Au ion irradiation. Some of the grains remained intake and only structural defects were induced. Some of the grains were completely disintegrated to ultra-small grains in accompanied with the presence of amorphous carbons. These processes degraded the EFE properties of the films. Post-annealing the ion irradiated films healed the defects, recrystallized the amorphous carbons and induced the re-growth of the disintegrated diamond grains. The post-annealing process induced the formation of nano-graphite phase and resulted in the enhancement on the EFE properties for the films. In contrast, for the UNCD films, the high fluence energetic (2.245 GeV) Au ion irradiation induced the local heating that crystallized the grain boundary a-C phase into nano-graphite clusters and enhanced the EFE properties for the films.Post-annealing process further enhanced the re-crystalization process and improved the EFE properties.
(ii) In the U-BEG (Ultrasonication-Bias Enhanced Growth) process, the granular structure was changed from faceted large grains microstructure to roundish nano-grain granular structure. The extent of size reduction for the diamond grains increased with the magnitude of negative voltage applied. However, TEM examination revealed that the prime factor enhancing the EFE properties for the diamond films grown by U-BEG process in the induction of graphitic phase along the grain boundaries of the films.
(iii) In the diamond films grown by N2-plasma (CH4/N2), the granular structure was altered markedly from equi-axed geometry to acicular one. The aspect ratio of the needle-like diamond grains increase with substrate temperature first, reaching the largest on for the films grown at 700℃, and then decreased for higher substrate temperature. The conductivity of the films also increased with the substrate temperature and is largest for the films grown at 700℃. So does the EFE properties for the UNCD films. However, TEM investigation revealed the authentic factor, resulting in superior EFE properties for the 700℃-grown UNCD films is the formation of graphitic phase encasing the needle-like diamond grains.
All the three cases show that the formation of graphitic phase among the diamond grains is the genuine factor that enhanced the EFE properties for the diamond films. Such an understanding sheds a light on how to enhance the EFE properties of diamond films via the modification on their granular structure.
論文目次 目錄
致謝----------------------------------------------------------------I
中文摘要-----------------------------------------------------------II
英文摘要-----------------------------------------------------------IV
目錄---------------------------------------------------------------VI
圖目錄-----------------------------------------------------------VIII
表目錄------------------------------------------------------------XII
第一章 序論-------------------------------------------------------1
1.1 研究動機-------------------------------------------------------1
1.2 鑽石薄膜的特性與應用-------------------------------------------1
1.2-1 鑽石及鑽石薄膜的特性-----------------------------------------1
1.2-2 鑽石薄膜之應用-----------------------------------------------3
1.2-3 微米微晶及超奈米微晶鑽石薄膜---------------------------------4
1.3 微米微晶及超奈米微晶鑽石薄膜之合成方法與理論-------------------6
1.3-1 鑽石薄膜相關合成方法-----------------------------------------6
1.3-2 鑽石薄膜成核相關理論----------------------------------------10
1.4 電子場發射(Electron Field Emission,EFE)理論[75]-----------------15
1.4-1 金屬的場發射理論[75]------------------------------------------15
1.4-2 半導體場發射的基本理論[75]--- --------------------------------17
1.5 鑽石薄膜在場發射特性上之應用----------------------------------19
1.6 鑽石的負電子親和力特性----------------------------------------20
1.7 鑽石結構------------------------------------------------------21
1.7.1 鑽石結構之常見TEM分析--------------------------------------22
1.7.2 鑽石的同素異型體--------------------------------------------22
第二章 研究方法及實驗步驟-----------------------------------------59
2.1 微波電漿CVD鍍鑽石薄膜結構及原理------------------------------59
2.1-1 IPLAS CRYNNUS I MPECVD 系統(如圖2-1)------------------------59
2.1-2 偏壓系統----------------------------------------------------60
2.2 鑽石薄膜實驗方法----------------------------------------------60
2.2-1 基材之製備及孕核:(超音波震盪法(UM)-鑽石/鈦懸浮液)----------60
2.2-2 實驗步驟----------------------------------------------------60
2.3 薄膜之特性分析------------------------------------------------62
2.3-1 掃描式電子顯微鏡(圖2-4)------------------------------------63
2.3-2 拉曼光譜分析(Raman Spectrum)--------------------------------63
2.3-3 穿透式電子顯微鏡(Transmission Electron Microscope)----------64
2.3-4 TEM樣品製作步驟--------------------------------------------65
2.3-4.1 研磨樣品步驟----------------------------------------------65
2.3-4.2 取試片與貼銅環--------------------------------------------66
2.3-4.3 TEM樣品離子蝕薄機(PIPS)步驟------------------------------66
2.3-5 電子場發射特性之量測(圖2-10) -------------------------------67

第三章 高能量離子照射微米微晶鑽石薄膜----------------------------77
3.1 高能量銀離子照射微米微晶鑽石薄膜------------------------------77
3.1-1 SEM與UV-Raman分析-----------------------------------------77
3.1-2 電子場發射分析----------------------------------------------78
3.1-3 穿透式電子顯微鏡分析----------------------------------------78
3.2 超高能量金離子照射微米微晶鑽石薄膜----------------------------78
3.2-1 SEM分析----------------------------------------------------79
3.2-2 UV-Raman分析-----------------------------------------------79
3.2-3 電子場發射分析----------------------------------------------79
3.2-4 穿透式電子顯微鏡分析----------------------------------------80
3.3 小結-----------------------------------------------------------87
第四章 U-BEG時間成長之奈米微晶鑽石薄膜---------------------------122
4.1 簡介---------------------------------------------------------123
4.2 實驗---------------------------------------------------------124
4.3 結果與討論---------------------------------------------------126
4.3-1 SEM結構分析-----------------------------------------------126
4.3-2 拉曼光譜析-------------------------------------------------127
4.3-3 電子場發射分析---------------------------------------------127
4.3-4 光放射式光譜分析-------------------------------------------128
4.3-5 偏壓電流分析-----------------------------------------------128
4.3-6 薄膜厚度分析-----------------------------------------------129
4.3-7 120分鐘薄膜表面分析---------------------------------------129
4.3-8 穿透式電子顯微鏡分析---------------------------------------130
4.4 小結---------------------------------------------------------131
第五章 氮氣電漿對超奈米微晶鑽石作用之場發射與微結構之研究--------154
5.1 SEM分析-----------------------------------------------------154
5.2 UV-Raman分析------------------------------------------------154
5.3 電子場發射分析-----------------------------------------------155
5.4 穿透式電子顯微鏡分析-----------------------------------------155
5.5 小結---------------------------------------------------------158
第六章 總結------------------------------------------------------178
參考文獻----------------------------------------------------------179
發表作品----------------------------------------------------------187
圖目錄
圖1-1 鑽石的結晶構造…………………………………………………………26
圖1-2 石墨的結晶構造…………………………………………………………26
圖1-3 鑽石的熱傳導係數………………………………………………………27
圖1-4 微米至超奈米晶鑽石薄膜表面型態……………………………………29
圖1-5 以HRTEM分析超奈米鑽石晶粒及晶界[29] ………………………………30
圖1-6 超奈米鑽石晶粒間距及繞射圖[29] ………………………………………30
圖1-7 不同波長的超奈米晶鑽石薄膜拉曼光譜[33] ……………………………31
圖1-8 C-H-O三相圖[36] …………………………………………………………31
圖1-9 微波電漿CVD設備圖[40] …………………………………………………32
圖1-10 熱燈絲法設備圖[41]………………………………………………………32
圖1-11 微波電漿放電系統設備圖[42]……………………………………………33
圖1-12 高週波電漿放電系統設備圖[43]…………………………………………33
圖1-13 電子迴旋共振設備圖[44]…………………………………………………34
圖1-14 鑽石之椅狀堆積構造……………………………………………………34
圖1-15 石墨及鑽石的活化能相對圖……………………………………………35
圖1-16 薄膜與基材之早期成核方式[55]…………………………………………35
圖1-17 與基材不反應者之孕核、成長機制[2] …………………………………36
圖1-18 與基材形成碳化物之孕核、成長機制[2] ………………………………36
圖1-19 偏壓輔助孕核法的反應機制[63]…………………………………………37
圖1-20 偏壓輔助成核示意圖[66]…………………………………………………38
圖1-21 超音波振盪法[73]…………………………………………………………39
圖1-22 偏壓輔助孕核法超音波振盪法[73]………………………………………40
圖1-23 金屬-真空能帶示意圖[75] ………………………………………………41
圖1-24 v(y),t2(y)和y的關係圖[75] ……………………………………………43
圖1-25 半導體能帶圖[75]…………………………………………………………44
圖1-26 不考慮電場穿透的半導體場發射示意圖[75]……………………………44
圖1-27 考慮電場穿透下n型半導體的場發射示意圖[75]………………………45
圖1-28 有表面態的n型半導體[75]………………………………………………45
圖1-29 鉬尖端的薄膜場發射陰極[77]……………………………………………46
圖1-30 典型的半導體能帶圖[79]…………………………………………………46
圖1-31 UNCD鑽石結構TEM高解析度影像圖……………………………………47
圖1-32 UNCD線性繞射圖…………………………………………………………48
圖1-33 碳原子sp3結構圖(a) c-Diamond (b) n-diamond (c) i-Carbon……49
圖1-34 鑽石結構之TEM高解析度原子影像圖…………………………………51
圖1-35 鑽石結構之TEM高解析度影像圖之FFT轉換圖………………………52
圖1-36 鑽石結構圖 ……………………………………………………………53

圖1-37 同素異型體之六面體鑽石結構圖………………………………………54
圖1-38 鑽石立方體結構與六面體結構之晶相對照圖…………………………55
圖1-39 3c-diamond (220)C與2H-diamond (100)H原子排列圖………………56
圖1-40 六面體同素異型體之原子排列圖形……………………………………57
圖1-41 六面體同素異型體之模擬TEM高解析度影像與繞射圖形……………58
圖2-1 IPLAS CRYNNUS I MPECVD 系統 ………………………………………68
圖2-2 IPLAS 系統示意圖………………………………………………………69
圖2-3 偏壓系統示意圖 …………………………………………………………70
圖2-4 掃描式電子微顯微鏡(SEM)………………………………………………70
圖2-5 拉曼系統 …………………………………………………………………71
圖2-6 拉曼系統示意圖 …………………………………………………………72
圖2-7 TEM系統 …………………………………………………………………73
圖2-8 穿透式電子顯微鏡的基本構造 …………………………………………74
圖2-9 離子蝕薄機示意圖 ………………………………………………………75
圖2-10 電子場發射特性量測示意圖 ……………………………………………76
圖3-1 高能量銀離子撞擊MCD薄膜 ……………………………………………88
圖3-2 高能量銀離子照射MCD之SEM表面形貌………………………………………89
圖3-3 高能量銀離子照射MCD之拉曼光譜………………………………………90
圖3-4 銀離子照射MCD之電子場發射圖…………………………………………90
圖3-5 MCD之表面形貌……………………………………………………………91
圖3-6 銀離子照射密度5x1011ions/cm2時MCD之表面形貌……………………92
圖3-7 銀離子照射密度5x1011ions/cm2時MCD之MCD之TEM高解析度影像…92
圖3-8 超高能量金離子撞擊MCD薄膜……………………………………………93
圖3-9 2.245 GeV超高能量金離子照射MCD之SEM表面形貌…………………94
圖3-10 2.245 GeV超高能量金離子照射MCD之拉曼圖…………………………95
圖3-11 2.245 GeV超高能量金離子照射MCD退火後之拉曼圖…………………96
圖3-12 2.245 GeV金離子照射MCD之電子場發射圖……………………………97
圖3-13 2.245 GeV金離子照射MCD之TEM 繞射圖、明場相與暗場相………98
圖3-14 MCD之TEM高解析度影像(1)……………………………………………99
圖3-15 MCD之TEM高解析度影像(2)……………………………………………100
圖3-16 IIa之TEM高解析度影像(1)……………………………………………101
圖3-17 IIa之TEM高解析度影像(2)……………………………………………102
圖3-18 IIb之TEM高解析度影像(1)……………………………………………103
圖3-19 IIb之TEM高解析度影像(2)……………………………………………104
圖3-20 IIb之TEM高解析度影像(3)……………………………………………105
圖3-21 IIc之TEM高解析度影像(1)……………………………………………106
圖3-22 IIc之TEM高解析度影像(2)……………………………………………107
圖3-23 IIc之TEM高解析度影像(3)……………………………………………108

圖3-24 IId之TEM高解析度影像(1)……………………………………………109
圖3-25 IId之TEM高解析度影像(2)……………………………………………110
圖3-26 IId之TEM高解析度影像(3)……………………………………………111
圖3-27 2.245 GeV金離子照射MCD退火後之TEM 繞射圖、明場相與暗場…112
圖3-28 IIa退火後之TEM高解析度影像(1)……………………………………113
圖3-29 IIa退火後之TEM高解析度影像(2)……………………………………114
圖3-30 IIb退火後之TEM高解析度影像(1)……………………………………115
圖3-31 IIb退火後之TEM高解析度影像(2)……………………………………116
圖3-32 IIc退火後之TEM高解析度影像(1)……………………………………117
圖3-33 IIc退火後之TEM高解析度影像(2)……………………………………118
圖3-34 IId退火後之TEM高解析度影像(1)……………………………………119
圖3-35 IId退火後之TEM高解析度影像(2)……………………………………120
圖3-36 IId退火後之TEM高解析度影像(3)……………………………………121
圖 4-1 20分鐘之SEM結構圖……………………………………………………133
圖4-2 60分鐘之SEM結構圖……………………………………………………133
圖 4-3 120分鐘之SEM結構圖 ………………………………………………134
圖 4-4 20分鐘之Raman光譜……………………………………………………134
圖 4-5 60分鐘之Raman光譜……………………………………………………135
圖 4-6 120分鐘之Raman光譜 ………………………………………………135
圖 4-7 20分鐘之EFE曲線………………………………………………………136
圖 4-8 60分鐘之EFE曲線………………………………………………………136
圖 4-9 120分鐘之EFE曲線 …………………………………………………137
圖 4-10 0V之EFE曲線 ………………………………………………………137
圖 4-11 -100V之EFE曲線………………………………………………………138
圖 4-12 -200V之EFE曲線………………………………………………………138
圖 4-13 -300V之EFE曲線………………………………………………………139
圖 4-14 -400V之EFE曲線………………………………………………………139
圖 4-15 0V與-400V EFE曲線……………………………………………………140
圖 4-16 20分鐘之光放射式光譜 ………………………………………………140
圖 4-17 60分鐘之光放射式光譜………………………………………………141
圖 4-18 120分鐘之光放射式光譜………………………………………………141
圖 4-19 20分鐘之偏壓電流……………………………………………………142
圖 4-20 60分鐘之偏壓電流……………………………………………………142
圖 4-21 120分鐘之偏壓電流……………………………………………………143
圖 4-22 -400V偏壓電流 ……………………………………………………143
圖 4-23 20分鐘之改變偏壓電漿照片…………………………………………144
圖 4-24 60分鐘之改變偏壓電漿照片…………………………………………144
圖 4-25 120分鐘之改變偏壓電漿照片 ………………………………………145

圖 4-26 20分鐘之改變偏壓薄膜厚度…………………………………………145
圖 4-27 60分鐘之改變偏壓薄膜厚度…………………………………………146
圖 4-28 120分鐘之改變偏壓薄膜厚度 ……………………………………146
圖 4-29 不同偏壓下時間-厚度圖………………………………………………147
圖 4-30 120分鐘之改變偏壓薄膜厚度形成刮傷圖 ………………………148
圖 4-31 120分鐘之-400V偏壓薄膜厚度形成彎曲圖…………………………148
圖4-32 成長20分鐘之各偏壓的明場像………………………………………149
圖4-33 成長20分鐘之各偏壓的暗場像………………………………………149
圖4-34 成長20分鐘0V之TEM高解析度影像(1)結構分析……………………150
圖4-35 成長20分鐘0V之TEM高解析度影像(2)結構分析……………………150
圖4-36 成長20分鐘-100V之TEM高解析度影像結構分析……………………151
圖4-37 成長20分鐘-200V之TEM高解析度影像結構分析……………………151
圖4-38 成長20分鐘-300V之TEM高解析度影像結構分析……………………152
圖4-39 成長20分鐘-400V之TEM高解析度影像結構分析……………………152
圖4-40 -400V Cross-section之TEM高解析度影像結構分析………………153
圖5-1 氬氣電漿UNCD之SEM表面形貌…………………………………………159
圖5-2 氬氣電漿UNCD之TEM 明場像……………………………………………159
圖5-3 氬氣電漿UNCD之電子場發射圖…………………………………………160
圖5-4 UNCD之SEM表面形貌……………………………………………………161
圖5-5 UNCD之拉曼光譜…………………………………………………………162
圖5-6 UNCD之電子場發射圖……………………………………………………163
圖5-7 UNCD之TEM 明場像………………………………………………………164
圖5-8 UNCD之TEM SAD繞射圖……………………………………………………165
圖5-9 UNCD之TEM SAD線性繞射圖………………………………………………166
圖5-10 UNCD之TEM 暗場像 …………………………………………………167
圖5-11 載台550℃ UNCD之TEM高解析度影像(1)……………………………168
圖5-12 載台550℃ UNCD之TEM高解析度影像(2)……………………………169
圖5-13 載台550℃ UNCD之TEM高解析度影像(3)……………………………170
圖5-14 載台600℃ UNCD之TEM高解析度影像(1)……………………………171
圖5-15 載台600℃ UNCD之TEM高解析度影像(2)……………………………172
圖5-16 載台700℃ UNCD之TEM高解析度影像(1)……………………………173
圖5-17 載台700℃ UNCD之TEM高解析度影像(2)……………………………174
圖5-18 載台700℃ UNCD之TEM高解析度影像(3)……………………………175
圖5-19 載台800℃ UNCD之TEM高解析度影像(1)……………………………176
圖5-20 載台800℃ UNCD之TEM高解析度影像(2)……………………………177

表目錄
表1-1 鑽石的各種性質[1]………………………………………………………24
表1-2 鑽石的各種應用[13]………………………………………………………25
表1-3 鑽石之耐熱衝擊指數比較………………………………………………27
表1-4 天然鑽石、鑽石膜及類鑽石膜之性質比較……………………………28
表1-5 微米晶鑽石與超奈米微晶鑽石的特性比較[28]…………………………30
表1-6 v(y),t(y)和t2(y)數值對照表[74]………………………………………42
表1-7 碳原子sp3結構1/d值與其出現晶相對照表 ………………………50
表2-1 碳結構的各種拉曼峰值…………………………………………………71
表3-1 高能量銀離子照射MCD薄膜之實驗參數表……………………………88
表3-2 銀離子照射MCD之電子場發射起始電壓與電流………………………91
表3-3 超高能量金離子照射MCD薄膜之實驗參數表…………………………93
表3-4 2.245 GeV金離子照射MCD之電子場發射起始電壓 ………………97
表4-1 0V與-400V成長速率……………………………………………………147
表5-1 氬氣電漿薄膜之實驗參數表……………………………………………159
表5-2 氮氣電漿薄膜之實驗參數表……………………………………………160
表5-3 氮氣電漿薄膜之導電率和電阻值表……………………………………177
參考文獻 參考文獻
[1]. J. E. Field, “The Properties of Diamonds”, (Academic, London, 1979).
[2]. H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes (1995).
[3]. P. Kulkarni, L. M. Porter, F. A. M. Koeck, Y.-J. Tang, and R. J. Nemanich, “Electrical and photoelectrical characterization of undoped and S-doped nanocrystalline diamond films”, J. Appl. Phys. 103 084905 (2008).
[4]. M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, “Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon”, J. Appl. Phys. 103 083538 (2008).
[5]. X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “ Low temperature growth of ultrananocrystalline diamond”, J. Appl. Phys. 96 2232 (2004).
[6]. Li-Ju Chen, Nyan-Hwa Tai, Chi-Young Lee, and I-Nan. Lin, “ Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond”, J. Appl. Phys. 101 064308 (2007).
[7]. K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, “ Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films”, J. Appl. Phys. 88 2967 (2000).
[8]. Maki A. Angadi, Taku Watanabe, Arun Bodapati, Xingcheng Xiao, and Simon R. Phillpot, “Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films”, J. Appl. Phys. 99 114301 (2006).
[9]. D.M. Gruen, “Nanocrystalline diamond films”, Annu. Rev. Mater. Sci. 29 211 (1999).
[10]. J. A. Carlisle, O. Auciello; Electrochem. Soc. Interface (2003) (Spring).
[11]. F. Mubarok, J. M. Carrapichano, F. A. Almeida, A. J. S. Fernandes, R. F.Silva, “ Enhanced sealing performance with CVD nanocrystalline diamond films in self-mated mechanical seals”, Diamond Relat. Mater., 17 1132 (2008).
[12]. A. Lavoisier, “Elements of Chemistry”, Dover Publications (1772).
[13]. Y. Tzeng, M. Yoshikawa, M. Murakawa and Feldman, “The Applications of Diamond Films and Related Materials”, eds, Elsevier, New York, (1991).
[14]. P. W. Bridgman, “Synthetic diamonds”, Scient. Am., 193 42 (1955).
[15]. W. G. Eversole, U.S. Patent No. 3, 030 188 (1962).
[16]. J. C. Angus, H. A. Will and W. S. Stanko, “Growth of Diamond Seed Crystals by Vapor Deposition”, J. Appl. Phys., 39 2915 (1968).
[17]. B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, J. Cryst. Growth, 52 219 (1981).
[18]. C. Y. Wang, F. L. Zhang, T. C. Kuang, C. L. Chen, “ Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO and KNO33”, Thin Solid Films, 496 698 (2006).
[19]. Nevin N. Naguib, Jeffrey W. Elam, James Birrell, Jian Wang, David S. Grierson, Bernd Kabius, “Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers”, Chemical Physics Letters, 430 345 (2006).
[20]. L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, “Nanocrystalline diamond from carbon nanotubes”, Applied Physics Letters, 84 (15), 2901 (2004).
[21]. P. W. May and Yu. A. Mankelevich, “Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth”, J. Appl. Phys. 100 024301 (2006).
[22]. L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman, R. Akhvlediani, “Fretting wear of thin diamond films deposited on steel substrates”, Diamond and Related Materials, 13 1731 (2004).
[23]. C.K. Lee, “Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films on aluminum alloy”, Diamond and Related Materials, 17 306 (2008).
[24]. J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “ Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond”, Applied Physics Letters, 81 (12), 2235 (2002).
[25]. M. Nesladek, D. Tromson, Bergonzo, P. Hubik, P. Mares, J.J. Kristofik, J. Kindl, Gruen, D., “Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films”, Diamond & Related Materials, 15 (4) 607 (2006).
[26]. Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires”, Diamond and Related Materials, 17 753 (2008).
[27]. P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “ Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films”, J. Appl. Phys. 103 043720 (2008).
[28]. T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, X, I (2003).
[29]. S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2”, Journal of Applied Physics, 90, 118 (2001).
[30]. Ferrari, Andrea Carlo / Robertson, John, “ Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 2477 (2004).
[31]. M. Veres, S. Toth, and M. Koos, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering”,Appl. Phys. Lett. 91 031913 (2007).
[32]. M. Veres, S. Toth, E. Perevedentseva, A.Karmenyan, M. Koos, “Raman Spectroscopy Of UNCD Grain Boundaries”,Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 2009, p. 115.
[33]. A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Phys. Rev. B 63 121405(R) (2001).
[34]. James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond”, J. Appl. Phys. 93 5606 (2003).
[35]. Peter K. Bachmann, Dieter Leers, Hans Lydtin, “Towards a general concept of diamond chemical vapour deposition”, Diamond and Related Materials, 1 1 (1991).
[36]. G. Balestrino, M. Marinelli, E. Milani, A. Paoletti, I. Pinter, and A. Tebano, “Growth of diamond films: General correlation between film morphology and plasma emission spectra”, Appl. Phys. Lett. 62, 879 (1993).
[37]. Y. Mitsuda, K. Tanaka, and T. Yoshida, Journal of Applied Physics, “In situ emission and mass spectroscopic measurement of chemical species responsible for diamond growth in a microwave plasma jet”, J. Appl. Phys. 67 3604 (1990).
[38]. C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D'Evelyn, “Growth kinetics of (100), (110), and (111) homoepitaxial diamond films”, Appl. Phys. Lett. 61 1393 (1992).
[39]. Stephen J. Harris, “Gas-phase kinetics during diamond growth: CH4 as-growth species”, J. Appl. Phys. 65 3044 (1989).
[40]. Chao Liu, Xingcheng Xiao, Hsien-Hau Wang, Orlando Auciello, and John A. Carlisle , “Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films”, J. Appl. Phys. 101 123924 (2007).
[41]. M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. Van Buuren, H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD”, Diamond & Related Materials, 18 927 (2009).
[42]. S. J. Ray, G. M. Hieftje, “ Microwave plasma torch — atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra ”, Analytica Chimica Acta, 445 (1) 35 (2001).
[43]. A. T. Sowers, B. L. Ward, S. L. Englih and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, J. Appl. Phys., 86 3973 (1999).
[44]. K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, L. C. Chen,“Highly transparent nano-crystalline diamond films via substrate pretreament and methane fraction optimization”, Thin Solid Films, 332 34 (1998).
[45]. D. A. Homer, L. A. Curtiss, and D. M. Gruen, “ A theoretical study of the energetics of insertion of dicarbon (C) and vinylidene into methane C-H bonds2”, Chemical Physics Letters, 233 243 (1995).
[46]. K. Subramaniana, W. P. Kanga, J. L. Davidsona, R. S. Takalkara, B. K. Choia, M. Howella and D.V. Kerns, “ Enhanced electron field emission from micropatterned pyramidal diamond tips incorporating CH/H/N plasma-deposited nanodiamond422”, Diamond and Related Materials, 15 1126 (2006).
[47]. T. K. Ku, C.D. Yang, F.G. Tarntair, C.C. Wang, H.C. Cheng, S.H. Chen, N.J. She, I. J. Hsieh, “Enhanced electron emission from phosphorus- and boron-doped diamond-clad Si field emitter arrays”, Thin Solid Films, 290 176 (1996).
[48]. Yongde Xia, Gavin S. Walker, David M. Grant, Mokaya, Robert , “Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping”, Journal of the American Chemical Society, 131 16493 (2009).
[49]. H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD”, Diamond and Related Materials, 10 1588 (2001).
[50]. J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition”, Applied Physics Letters, 70 1527 (1997).
[51]. N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, Journal of Crystal Growth, 242 362 (2002).
[52]. T. Sharda, M. Vmeno, T. Soga, and T. Jimbo, “CJrowth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth”, Applied Physics Letters, 77 (26) 4304 (2000).
[53]. W. Zhu, G P. Kochanski, and S. Jin, “Low-field emission from undopednanostructured diamond”, Science, 282 1471 (1998).
[54]. A. Gohl, A. N. Alimova, T. Habennann, A. L. Mescheryakova, and G Huller,“Integral and local field emission analyses of nanodiamond coating for power applications”, J. Vac. Sci. Technol. B, 17 670 (1999).
[55]. J. E. Green, S. A. Barnett, J. E. Sundgren, and A. Rockett, “Plasma-surface Interactions And Processing Of Materials”, 28-31(1990).
[56]. X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate”, Appl. Phys. Lett., 62 3438 (1993).
[57]. S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films”, Applied Physics Letters, 57 (25) 2646 (1990).
[58]. Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz, “Orientation relationship between chemical vapor deposited diamond and graphite substrates”, Journal of Applied Physics, 73(2) 711 (1993).
[59]. D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth”, Applied Physics Letters, 54 (5) 416 (1989).
[60]. N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate”, Journal of Materials Research, 9 (10) 2695 (1994).
[61]. W. L. Wang, K. J. Liao, L. Fang, J. Esteve, M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond and Related Materials, 10 383 (2001).
[62]. S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Applied Physics Letters, 58 (10) 1036 (1991).
[63]. B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Phys. Rev. B, 45 11067 (1991).
[64]. J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on ilicon”, Journal of Applied Physics, 79 (8) 4388 (1996).
[65]. P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films” , Physical Review B, 56 (4) 2183 (1997).
[66]. R. Stockel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, Journal of Applied Physics, 79 768 (1996).
[67]. R. Stockel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions”, J. Appl. Phys. 83 531 (1998).
[68]. J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Applied Physics Letters, 66 (24) 3287 (1995).
[69]. S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Applied Physics Letters, 66 (23) 3117 (1995).
[70]. L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100) ”, Journal of Applied Physics 76 (11) 7483 (1994).
[71]. S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”. Journal of Applied Physics 84 (4) 1870 (1998).
[72] . X. Y. Zhong, Y. C. Chen, N. H. Tai, I. N. Lin, J. M. Hiller, and O. Auciello “Effect of pretreatment bias on the nucleation and growth mechanisms of ultrananocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping ” , Journal of Applied Physics 105, 034311 (2009).
[73]. Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond and Related Materials, 15 1779 (2006).
[74]. J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition”, Journal of Materials Science, 27 (23) 6324 (1992).
[75]. W. Zhu, “Vacuum microelectronics”, John Wiley & Sons (2001).
[76]. I. Han, N. Lee, S. W. Lee, S. H. Kim, “Field emission of nitrogen-doped diamond films”, J. Vac. Sci. Technol. B, 16(4), 2052 (1998).
[77]. W. Zhu, G. P. Kochanski, S. Jin, “Low-Field Electron Emission from Undoped Nanostructured Diamond”, SCIENCE, 282, 1471 (1998).
[78]. Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi Sugino, “Behavior of electron emission from phosphorus-doped epitaxial diamond films”, Diamond and Related Materials, 8, 759 (1999).
[79]. Robert Gomer, Field emission and field ionization, American Institute of Physics, 21~29 (1993).
[80]. V. Baranauskas, B. B. Li, A. Peterlevitz, M. C. Tosin, and S. F. Durrant, “Nitrogen-doped diamond films”, J. Appl. Phys., 85, 7455 (1999).
[81]. S. B. Wang, H. X. Zhang, P. Zhu, and K. Feng, “Structural and electrical properties of chemical vapor deposited diamond films doped by B+ implantation”, J. Vac. Sci. Technol. B, 18(4), 1997 (2000).
[82]. W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers and J. J. Hren, “ Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis”, Appl. Phys. Lett., 68, pp720 (1996).
[83]. I-Nan Lin, Kuoguang Preng, Lien-Hsin Lee, Chuan-Feng Shih, and Kuo-Shung Liu, “Comparison of the effect of boron and nitrogen incorporation on the nucleation behavior and electron-field-emission properties of chemical-vapor-deposited diamond films”, Appl. Phys. Lett, 77, 1277 (2000).
[84]. X. Jiang, P Willich, M. Paul, and C-P. Klages, “In situ boron doping of chemical-vapor-deposited diamond films”, Journal of Materials Research, 14, 3211 (1999).
[85]. Z. H. Huang, P. H. Culter, N. M. Miskovsky, and T. E. Sullivan, “Theoretical-Study of Field-Emission from Diamond”, Appl. Phys. Lett., 65, 2562 (1994).
[86]. V. V. Zhirnov, E. I. Givargizov, and P. S. Plekhanov, “Field-Emission from Silicon Spikes with Diamond Coatings”, J. Vac, Sci. Technol, B 13, 418 (1995).
[87]. D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Proc. Eastern Joint Computer Conf., pp55-59 (AIEE, New York (1958).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信