§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2007202012262800
DOI 10.6846/TKU.2020.00582
論文名稱(中文) 結合物化及生物處理程序去除EDTA及金屬螯合物
論文名稱(英文) Integration of physical-chemical and biological processes for the treatment of EDTA and metal-EDTA complexes
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 108
學期 2
出版年 109
研究生(中文) 譚光勛
研究生(英文) Kuang-Hsun Tan
學號 607480141
學位類別 碩士
語言別 英文
第二語言別
口試日期 2020-07-03
論文頁數 55頁
口試委員 指導教授 - 李奇旺(chiwangli@gmail.com)
委員 - 陳孝行(mesjl@saturn.yzu.edu.tw)
委員 - 彭晴玉(cypeng@mail.tku.edu.tw)
關鍵字(中) 臭氧
過硫酸鹽
光催化
EDTA
好氧生物處理
關鍵字(英) Ozonation
Persulfate
Photocatalysis
EDTA
Aerobic biological process
第三語言關鍵字
學科別分類
中文摘要
本研究利用高級氧化方法進行預處理(如UV/PS處理及臭氧處理),並結合好氧生物處理來處理不易生物降解的有機物(如EDTA),針對UV/PS及臭氧這兩項程序進行研究,並比較兩項程序對EDTA及金屬-EDTA的去除效率。利用UV對Persulfate (PS)於30分鐘的光催化反應下及相對於100%的理論PS完全氧化EDTA的劑量 (即PS與EDTA莫爾比為17:1),進行光催化處理EDTA及金屬-EDTA廢水,於EDTA、Fe(II)EDTA和CuEDTA的廢水中TOC去除率分別為68.46%、30.97%及94.96%,並將pH調整到7時,銅跟鐵的去除率分別為95.34%及97.61%。然而利用臭氧程序處理EDTA及金屬-EDTA最高的TOC去除率只有10%,銅跟鐵的去除率幾乎為零,由於反應時間太短,導致無法行成氫氧根降解EDTA及金屬-EDTA。
利用UV/PS程序對EDTA及金屬-EDTA進行預處理並結合好氧生物程序進一步處理,在EDTA的廢水中,PS劑量為30%的理論COD、在Fe(II)EDTA的廢水中,PS劑量為10%的理論COD。經由UV/PS進行預處理再用好氧生物處理進一步處理,EDTA廢水及Fe(II)EDTA的TOC去除率皆可達到60%, 將有機負荷率分別控制在1 kg/m3-day 及0.5 kg/m3-day於EDTA及Fe(II)EDTA的廢水。未進行預處理及利用臭氧處理方法進行預處理的TOC去除率僅僅1%,但採用UV/PS進行預處理時,TOC去除效率可以達60%。
英文摘要
In this study, pre-treatment processes such as ozonation and photocatalysis of persulfate (UV/PS), followed by aerobic biological treatment process were employed to treat recalcitrant organic substances, i.e., EDTA and metal-EDTA wastewater. In the UV/PS process, the removal of TOC reached 68.46, 26.75, and 93.16% for EDTA, Fe(II)EDTA, and CuEDTA, respectively, and after adjusting pH to 7 the removal of Cu and Fe was 95.34% and 97.61%, respectively, at PS:EDTA molar ratio of 17:1 corresponding to 100% of the theoretic PS dosage required to oxidize EDTA completely and irradiation time of 30 min. Meanwhile, the highest removal of TOC using ozonation process was only 10% for both EDTA and metal-EDTA and Cu and Fe removal were negligible. It is due to insufficient reaction time for generating enough OH• to degrade EDTA and metal-EDAT.
With the UV/PS pre-treatment process using 30% and 10% of the theoretical PS dosage required for complete oxidation of the theoretical COD for EDTA wastewater and Fe(II)EDTA wastewater, respectively.  TOC removal was 60% with the organic loading rate of 1 kg/m3-day for EDTA wastewater and removal was 60% with organic loading rate of 0.5 kg/m3-day for the Fe(II)EDTA wastewater. The TOC removal using aerobic process without pre-treatment or using ozone pre-treatment were negligible (∼1%).
第三語言摘要
論文目次
Acknowledgements                                                                                                                                       i
中文摘要                                                                                                                                                      ii
Abstract                                                                                                                                                      iii
Contents                                                                                                                                                vi
List of Tables                                                                                                                                            viii
List of Figures                                                                                                                                               ix
1 Introduction                                                                                                                                              1
1.1 Background information                                                                                                                         1
1.2 Objectives                                                                                                                                     2
1.3 Research scope                                                                                                                                      3
2 Literature reviews                                                                                                                                      4
2.1 Wastewater containing CuEDTA or FeEDTA                                                                                        4
2.2 Advanced oxidation processes (AOPs) for the treatment of metal-EDTA complexes                      5
2.2.1 Electro-Fenton or Fenton process                                                                                                      6
2.2.2 PS related process                                                                                                                         7
2.2.3 Ozone process                                                                                                                                10
2.3 Biological treatment process                                                                                                              11
3 Materials and Methods                                                                                                                          13
3.1 Chemicals and materials                                                                                                                 13
3.2 Experimental setup and procedures                                                                                                       13
3.2.1 UV/PS process                                                                                                                                 13
3.2.2 Ozonation process                                                                                                                        15
3.2.3 Integration of physical-chemical and biological processes                                                                     17
3.3 Analytic methods                                                                                                                        19
3.3.1 HPLC for EDTA analysis                                                                                                               19
3.3.2 Chemical oxygen demand (COD)                                                                                                          20
3.3.3 TOC                                                                                                                                                   21
3.3.4 Flame atomic adsorption spectrophotometer                                                                                   21
4 Results and Discussion                                                                                                                          22
4.1 UV/PS process                                                                                                                                           22
4.1.1 Treatment of EDTA                                                                                                                         22
4.1.2 Treatment of CuEDTA                                                                                                                      27
4.1.3 Treatment of Fe(II)EDTA                                                                                                                   31
4.2 Comparison of TOC removal for CuEDTA, FeEDTA and EDTA by UV/PS process                   35
4.3 Ozonation process                                                                                                                         37
4.4 Biological process                                                                                                                               38
4.4.1 Biological process for EDTA without pre-treatment                                                                  38
4.4.2 Biological process for EDTA and Fe(II)EDTA with pre-treated by UV/PS process                  39
4.4.3 Biological process for EDTA with pre-treated by ozonation process                                        42
5 Conclusions                                                                                                                                            44
5.1 Conclusions                                                                                                                                                   44
5.2 Recommendations                                                                                                                             45
References                                                                                                                                                    46

List of Tables
2.1	The effect of metal-EDTA stability constants in electro-Fenton process [30]                              7
2.2	Compare the decomplexation of CuEDTA using UV/PS and UV/H2O2                                     10
3.1	PS dosage related with EDTA molar ratio and COD mass ratio                                                        15
3.2	Ozone dosage using ozone generator                                                                                        17
3.3	COD concentration of EDTA                                                                                                      21

List of Figures
3.1	Scheme of the UV system                                                                                                                 14
3.2	Scheme of the ozone system                                                                                                       16
3.3	Schematic of aerobic system                                                                                                     18
3.4	EDTA standard curve                                                                                                                20
4.1	TOC removal as function of time under the different of PS dosage (0%, 25%, 50%, 75%, 100%, and 125% of theoretic dosage required for com- plete oxidation of EDTA). Experimental conditions: EDTA = 1 mM.  (a)Initial pH = 7. (b) Initial pH = 5. UV radiation (wavelength 254 nm) = 8 W. Radiation density = 72 mW/cm2                                                                                         23
4.2	TOC removal as function of pH under the different of PS dosage (0%, 25%, 50%, 75%, 100%, and 125% of theoretic dosage required for com- plete oxidation of EDTA). Experimental conditions: EDTA = 1 mM. UV radiation (wavelength 254 nm) = 8 W. Radiation density = 72 mW/cm2                                                                                                                                                      25
4.3	The variation of pH as a function of PS dosage (0%, 25%, 50%,  75%,  100%, and 125% of theoretic dosage required for complete oxidation of EDTA).  (a) Initial pH = 7.  (b) Initial pH  = 5                                                                                                                                                      26
4.4	TOC removal as a function of time under different of PS dosages (0%, 25%, 50%, 75%, 100%, and 125% of theoretic dosage required for com- plete oxidation of CuEDTA). Experimental conditions: EDTA = 1 mM. Cu:EDTA molar ratio = 1:1. Initial pH = 2.7. UV radiation (wavelength 254 nm) = 8 W. Radiation density = 72 mW/cm2                                                                         28
4.5	The variation of pH as a function of PS dosage (0%, 25%, 50%,  75%,  100%, and 125% of theoretic dosage required for complete oxidation of CuEDTA). Reaction time = 60 min               29
4.6	Cu species as a function of pH. Modelled using Mineql+. Cu concentration = 1 mmole/L                         30
4.7	Cu removal as function of time under the different of PS dosage (0%, 25%, 50%, 75%, 100%, and 125% of theoretic dosage required for complete oxidation of CuEDTA). Experimental conditions: EDTA = 1 mM. Cu:EDTA molar ratio = 1:1. Initial pH = 2.7. UV radiation (wavelength 254 nm) = 8 W. Radiation density = 72 mW/cm2                                                                         30
4.8	Cu removal with TOC removal correlation. Experimental conditions: EDTA = 1 mM. Cu:EDTA molar ratio =  1:1.  Initial  pH  =  2.7.  UV radiation (wavelength 254 nm) = 8 W. Radiation density = 72 mW/cm2                                                                                                                                      31
4.9	TOC removal as function of time under the different of PS dosage (0%, 25%, 50%, 75%, 100%, and 125% of theoretic dosage required for complete oxidation of Fe(II)EDTA). Experimental conditions: EDTA = 1 mM. Initial pH = 2.5. UV radiation (wavelength 254 nm) =8 W. Radiation density = 72 mW/cm2                                                                                                         32
4.10	The variation of pH as a function of PS dosage (0%, 25%, 50%, 75%, 100%, and 125% of theoretic dosage required for complete oxidation of Fe(II)EDTA)                                                                 33
4.11	Fe-EDTA species as a function of pH. (a) Fe(II)  system.  (b)  Fe(III) system. Modelled using Mineql+. Fe:EDTA molar ration of 1:1. Fe concentration = 1 mmole/L                                          34
4.12	Fe removal as function of time under the different of PS dosage (0%, 25%, 50%, 75%, 100%, and 125% of theoretic dosage required for complete oxidation of Fe(II)EDTA). Experimental conditions: EDTA = 1 mM. Initial pH = 3. UV radiation (wavelength 254 nm) = 8 W. Radiation density = 72 mW/cm2                                                                                                 35
4.13	TOC removal as a function of PS:EDTA molar ratio for metal-complexed EDTA and EDTA. Experimental conditions: EDTA = 1 mM. Metal:EDTA molar ratio = 1:1. Reaction time = 30 min. pH = neutral pH. UV radiation (wavelength 254 nm) = 8 W. Radiation density = 72 mW/cm2                                                                                                                                              36
4.14	TOC removal as a function of ozone dosage for EDTA, CuEDTA and Fe(II)EDTA by ozonation process. Experimental conditions: EDTA = 1 mM. Metal:EDTA molar ratio = 1:1. Solution volume = 0.3 L. Reaction time = 60 min. pH = neutral pH. Ozone flow rate = 10.53 mg O3/min                                                                                                                                                   38
4.15	TOC removal as a function of Days for EDTA by biological process. Experimental conditions: EDTA = 1 mM. pH = 8. Organic loading rate = 0.5 kg/m3-day                                                39
4.16	TOC removal as a function of days for (a) EDTA and (b) Fe(II)EDTA were pre-treated by UV/PS process. Experimental conditions: EDTA = 1 mM. pH = 8. (a) Organic loading rate = 1 kg/m3-day. (b) Organic loading rate = 0.5 kg/m3-day. (a) PS dosage = 30%  of  COD.  (b)  PS dosage = 10% of COD UV irradiation time = 30 min. UV radiation (wavelength 254 nm) = 8 W. Radiation density = 72 mW/cm2                                                                                                             41
4.17	TOC removal as a function of days for EDTA was pre-treated by ozona- tion process. Experimental conditions: EDTA = 1 mM. Aeration time = 35 min. pH = 8. Ozone flow rate = 10.53 mg O3/min                                                                                                                                    43
參考文獻
[1]	B. C. Han and T. C. Hung, (1990) “Green oysters caused by copper pollution on the Taiwan coast” Environmental Pollution 65 : 347–362. DOI: 10.1016/ 0269-7491(90)90126-W.
[2]	K. L. Fry, C. A. Wheeler, M. M. Gillings, A. R. Flegal, and M. P. Taylor, (2020) “Anthropogenic contamination of residential environments from smelter As, Cu and Pb emissions: Implications for human health” Environmental Pollution 262 : 114235. DOI: 10.1016/j.envpol.2020.114235.
[3]	Water pollution control policy and permission application regulation. https:// law. moj. gov. tw/ LawClass/ LawAll. aspx? pcode= O0040004. Environmental Protection Administration, Taiwan (ROC), 2016.
[4]	The Status of Heavy Metal Pollution at Farmland in Taiwan. https://law.coa. gov.tw/glrsnewsout/LawContent.aspx?id=GL000066. Council of Agriculture, Taiwan (ROC), 2016.
[5]	R. S. Juang and S. W. Wang, (2000) “Metal recovery and EDTA recycling from simulated washing effluents of metal-contaminated soils” Water Research 34 : 3795–3803. DOI: 10.1016/S0043-1354(00)00118-4.
[6]	S. Jiang, F. Fu, J. Qu, and Y. Xiong, (2008) “A simple method for removing chelated copper from wastewaters: Ca(OH)2-based replacement-precipitation” Chemosphere 73 : 785–790. DOI: 10.1016/j.chemosphere.2008.06.010.
[7]	J. M. Sun, C. Shang, and J. C. Huang, (2003) “Co-removal of hexavalent chromium through copper precipitation in synthetic wastewater” Environmental Science and Technology 37 : 4281–4287. DOI: 10.1021/es030316h.
[8]	D. Zhao, Y. Yu, and J. P. Chen, (2016) “Treatment of lead contaminated water by a PVDF membrane that is modified by zirconium, phosphate and PVA” Water Research 101 : 564–573. DOI: 10.1016/j.watres.2016.04.078.
[9]	A. J. Hargreaves, P. Vale, J. Whelan, L. Alibardi, C. Constantino, G. Dotro, E.  Cartmell, and  P.  Campo,  (2018)  “Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater”  Water  Research  128 :  120–128.  DOI:  10.1016/j. watres.2017.10.050.
[10]	L. L. Ling, W. J. Liu, S. Zhang, and H. Jiang, (2017) “Magnesium Oxide Embedded Nitrogen Self-Doped Biochar Composites: Fast and High-Efficiency Adsorption of Heavy Metals in an Aqueous Solution” Environmental Science and Technology 51 : 10081–10089. DOI: 10.1021/acs.est.7b02382.
[11]	C.-W. Li, Y.-M. Chen, V. Ya, N. Martin, K.-H. Choo, Y.-H. Chou, and S.-S. Chen, (2017) “Electrochemical treatment for simultaneous removal of heavy metals and organics from surface finishing wastewater using sacrificial iron anode” Journal of the Taiwan Institute of Chemical Engineers 83 : 107–114. DOI: 10.1016/j.jtice.2017.12.004.
[12]	Y.-H. Chen. “Replacement and precipitation reactions driven by Fe(II) and Fe(III) through decoupling Cu-EDTA complexes for enhanced Cu removal”. (Master’s thesis). Department of Water Resources and Environmental Engineering, Tamkang Univercity, Taiwan, 2019.
[13]	Y.-H. Chou. “Integration of PEUF and chemical reduction for copper removal and recovery : effect of pH and polyelectrolytes.”. (PhD’s thesis). Department of Water Resources and Environmental Engineering, Tamkang Univercity, Taiwan, 2017.
[14]	S. Jiang, J. Qu, and Y. Xiong, (2010) “Removal of chelated copper from wastewaters by Fe2+-based replacement-precipitation” Environmental Chemistry Letters 8 : 339–342. DOI: 10.1007/s10311-009-0230-1.
[15]	Z. Xu, G. Gao, B. Pan, W. Zhang, and L. Lv, (2015) “A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) dis- placement/UV degradation/alkaline precipitation” Water Research 87 : 378– 384. DOI: 10.1016/j.watres.2015.09.025.
[16]	C. Shan, Z. Xu, X. Zhang, Y. Xu, G. Gao, and B. Pan, (2018) “Efficient removal of EDTA-complexed Cu(II) by a combined Fe(III)/UV/alkaline precipitation process: Performance and role of Fe(II)” Chemosphere 193 : 1235–1242. DOI: 10.1016/j.chemosphere.2017.10.119.
[17]	J. J. Pignatello, E. Oliveros, and A. MacKay, (2006) “Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry” Critical Reviews in Environmental Science and Technology 36 : 1–84. DOI: 10.1080/10643380500326564.
[18]	R. J. Watts and A. L. Teel, (2005) “Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation” Journal of Environmental Engineering 131 : 612–622. DOI: 10.1061/ (ASCE)0733-9372(2005)131:4(612).
[19]	A. L. Teel and R. J. Watts, (2002) “Degradation of carbon tetrachloride by modified Fenton’s reagent” Journal of Hazardous Materials 94 : 179–189. DOI: 10.1016/S0304-3894(02)00068-7.
[20]	R. L. Valentine and H. C. Ann Wang, (1998) “Iron oxide surface catalyzed oxidation of quinoline by hydrogen peroxide” Journal of Environmental Engineering 124 : 31–38. DOI: 10.1061/(ASCE)0733-9372(1998)124:1(31).
[21]	S. S. Lin and M. D. Gurol, (1998) “Catalytic decomposition of hydrogen per- oxide on iron oxide: Kinetics, mechanism, and implications” Environmental Science and Technology 32 : 1417–1423. DOI: 10.1021/es970648k.
[22]	M. A. Blesa, H. A. Marinovich, E. C. Baumgartner, and A. J. Maroto, (1987) “Mechanism of Dissolution of Magnetite by Oxalic Acid-Ferrous Ion Solutions” Inorganic Chemistry 26 : 3713–3717. DOI: 10.1021/ic00269a019.
[23]	M. Blesa, E. Borghi, A. Maroto, and A. Regazzoni, (1984) “Adsorption of EDTA and iron-EDTA complexes on magnetite and the mechanism of dissolution of magnetite by EDTA” Journal of Colloid and Interface Science 98 : 295– 305. DOI: 10.1016/s0021-9797(84)80048-x.
[24]	X. Xue, K. Hanna, C. Despas, F. Wu, and N. Deng, (2009) “Effect of chelating agent on the oxidation rate of PCP in the magnetite/H2O2 system at neutral pH” Journal of Molecular Catalysis A: Chemical 311 : 29–35. DOI: 10. 1016/j.molcata.2009.06.016.
 
[25]	Y. Deng and R. Zhao, (2015) “Advanced Oxidation Processes (AOPs) in Wastewater Treatment” Current Pollution Reports 1 : 167–176. DOI: 10 . 1007 / s40726-015-0015-z.
[26]	A. D. Luca. “Fenton and Photo-Fenton like at neutral pH for the removal of emerging contaminants in water and wastewater effluents.”. (PhD’s thesis). Departament de Qu´ımica Anal´ıtica i Enginyeria Qu´ımica, Universitat de Barcelona, Spain, 2016.
[27]	H. Zeng, S. Tian, H. Liu, B. Chai, and X. Zhao, (2016) “Photo-assisted electrolytic decomplexation of Cu-EDTA and Cu recovery enhanced by H2O2 and electro-generated active chlorine” Chemical Engineering Journal 301 : 371– 379. DOI: 10.1016/j.cej.2016.04.006.
[28]	X. Zhao, L. Guo, B. Zhang, H. Liu, and J. Qu, (2013) “Photoelectrocatalytic oxidation of CuII-EDTA at the TiO 2 electrode and simultaneous recovery of CuII by electrodeposition” Environmental Science and Technology 47 : 4480– 4488. DOI: 10.1021/es3046982.
[29]	W. Guan, B. Zhang, S. Tian, and X. Zhao, (2018) “The synergism between electro-Fenton and electrocoagulation process to remove Cu-EDTA” Applied Catalysis B: Environmental 227 : 252–257. DOI: 10.1016/j.apcatb.2017. 12.036.
[30]	Z. Zhao, W. Dong, H. Wang, G. Chen, J. Tang, and Y. Wu, (2018) “Simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by electro-Fenton process using iron sacrificing electrodes” Journal of Hazardous Materials 350 : 128–135. DOI: 10.1016/j.jhazmat.2018.02.025.
[31]	M. M. Benjamin. Water chemistry. International Edition. New York: McGraw- Hill, 2002.
[32]	S. Xing, W. Li, B. Liu, Y. Wu, and Y. Gao, (2020) “Removal of ciprofloxacin by persulfate activation with CuO: A pH-dependent mechanism” Chemical Engineering Journal 382 : DOI: 10.1016/j.cej.2019.122837.
[33]	H. Wang, W. Guo, R. Yin, J. Du, Q. Wu, H. Luo, B. Liu, F. Sseguya, and N.  Ren,  (2019)  “Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: Insight into the electron transfer, radical oxidation and  degradation  pathways”  Chemical  Engineering  Journal  362 :  561–569. DOI: 10.1016/j.cej.2019.01.053.
[34]	D. Huang, Q. Zhang, C. Zhang, R. Wang, R. Deng, H. Luo, T. Li, J. Li, S. Chen, and C. Liu, (2019) “Mn doped magnetic biochar as persulfate activator for the degradation of tetracycline” Chemical Engineering Journal: 123532. DOI: 10.1016/j.cej.2019.123532.
[35]	R. E. Huie, C. L. Clifton, and P. Neta, (1991) “Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions” International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 38 : 477–481.
[36]	C. Liang, C. P. Liang, and C. C. Chen, (2009) “pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene” Journal of Contaminant Hydrology: DOI: 10.1016/j.jconhyd.2009.02.008.
[37]	H. Zeng, S. Liu, B. Chai, D. Cao, Y. Wang, and X. Zhao, (2016) “Enhanced Photoelectrocatalytic Decomplexation of Cu-EDTA and Cu Recovery by Persulfate Activated by UV and Cathodic Reduction” Environmental  Science  and Technology 50 : 6459–6466. DOI: 10.1021/acs.est.6b00632.
[38]	F. Gao, Y. Li, and B. Xiang, (2018) “Degradation of bisphenol A through transition metals activating persulfate process” Ecotoxicology and Environmental Safety 158 : 239–247. DOI: 10.1016/j.ecoenv.2018.03.035.
[39]	M. Zhang, X. Chen, H. Zhou, M. Murugananthan, and Y. Zhang, (2015) “Degradation of p-nitrophenol by heat and metal ions co-activated persulfate” Chemical Engineering Journal 264 : 39–47. DOI: 10.1016/j.cej.2014.11.060.
[40]	G. P. Anipsitakis and D. D. Dionysiou, (2004) “Transition metal/UV-based advanced oxidation technologies for water decontamination” Applied Catalysis B: Environmental 54 : 155–163. DOI: 10.1016/j.apcatb.2004.05.025.
[41]	Z. Xu, C. Shan, B. Xie, Y. Liu, and B. Pan, (2017) “Decomplexation of Cu(II)- EDTA by UV/persulfate and UV/H2O2: Efficiency and mechanism” Applied Catalysis B: Environmental 200 : 439–447. DOI: 10.1016/j.apcatb.2016. 07.023.
[42]	W. Chu and C.-W. Ma, (2000) “Quantitative prediction of direct and indirect dye ozonation kinetics” Water Research 34 : 3153–3160.
[43]	D. Sˇoji´c, V. Despotovi´c, D. Orˇci´c, E. Szab´o, E. Arany, S. Armakovi´c, E. Ill´es, K. Gajda-Schrantz, A. Dombi, and T. Alapi, (2012) “Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: Kinetics, degradation intermediates and toxicity” Journal of hydrology 472 : 314–327.
[44]	U. V. Gunten, (2003) “Ozonation of drinking water: Part I. Oxidation kinetics and product formation” Water research 37 : 1443–1467.
[45]	F.  Mun˜oz  and  C.  Von  Sonntag,  (2000)  “The  reactions  of  ozone  with  tertiary amines including the complexing agents nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) in aqueous solution” Journal of the Chemical Society. Perkin Transactions 2: 2029–2033. DOI: 10.1039/b004417m.
[46]	M.  S.  Korhonen,  S.  E.  Mets¨arinne,  and  T.  A.  Tuhkanen,  (2000)  “Removal of ethylenediaminetetraacetic acid (EDTA) from pulp mill effluents by ozonation” Ozone: Science and Engineering 22 : 279–286. DOI: 10.1080/01919510008547211.
[47]	E. Gilbert and S. Hoffmann-Glewe, (1990) “Ozonation of ethylenediaminetetraacetic acid (edta) in aqueous solution, influence of pH value and metal ions” Water Research 24 : 39–44. DOI: 10.1016/0043-1354(90)90062-B.
[48]	X. Huang, Y. Xu, C. Shan, X. Li, W. Zhang, and B. Pan, (2016) “Coupled Cu(II)- EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: Performance, products and pathways” Chemical Engineering Journal 299 : 23–29. DOI: 10.1016/j.cej.2016.04.044.
[49]	L. Huang, S. Cheng, and G. Chen, (2011) “Bioelectrochemical systems for efficient recalcitrant wastes treatment” Journal of Chemical Technology and Biotechnology 86 : 481–491. DOI: 10.1002/jctb.2551.
[50]	S. Jagadevan, N. J. Graham, and I. P. Thompson, (2013) “Treatment of waste metalworking fluid by a hybrid ozone-biological process” Journal of Hazardous Materials 244-245 : 394–402. DOI: 10.1016/j.jhazmat.2012.10.071.
[51]	C. Di Iaconi, G. Del Moro, M. De Sanctis, and S. Rossetti, (2010) “A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment” Water Research 44 : 3635–3644. DOI: 10.1016/j.watres.2010.04.017.
[52]	S. H. Lin and C. M. Lin, (1993) “Treatment of textile waste effluents by ozonation and chemical coagulation” Water Research 27 : 1743–1748. DOI: 10 . 1016 / 0043-1354(93)90112-U.
[53]	H. Bader and J. Hoign´e, (1981) “Determination of ozone in water by the indigo method” Water Research 15 : 449–456. DOI: 10.1016/0043-1354(81)90054- 3.
[54]	R. Triandi Tjahjanto, D. Galuh R., and S. Wardhani, (2012) “Ozone Determina- tion: A Comparison of Quantitative Analysis Methods” The Journal of Pure and Applied Chemistry Research 1 : 18–25. DOI: 10 . 21776 / ub. jpacr. 2012.001.01.103.
[55]	P. J. M. Bergers and A. C. de Groot, (1994) “The analysis of EDTA in water by HPLC” Water Research 28 : 639–642. DOI: 10.1016/0043-1354(94)90143-0.
[56]	J. E. Anderson, S. A. Mueller, and B. R. Kim, (2007) “Incomplete Oxidation of Ethylenediaminetetraacetic Acid in Chemical Oxygen Demand Analysis” Water Environment Research 79 : 1043–1049. DOI: 10.2175/106143007x184104.
[57]	Y. Wang, Y. Liu, B. Wu, M. Rui, J. Liu, and G. Lu, (2020) “Comparison of toxicity induced by EDTA-Cu after UV/H2O2 and UV/persulfate treatment: Species- specific and technology-dependent toxicity” Chemosphere 240 : 124942. DOI: 10.1016/j.chemosphere.2019.124942.
[58]	H. Zeng, S. Liu, B. Chai, D. Cao, Y. Wang, and X. Zhao, (2016) “Enhanced Photoelectrocatalytic Decomplexation of Cu-EDTA and Cu Recovery by Persulfate Activated by UV and Cathodic Reduction” Environmental  Science  and Technology 50 : 6459–6466. DOI: 10.1021/acs.est.6b00632.
[59]	J. Jung, H. J. Jo, S. M. Lee, Y. S. Ok, and J. G. Kim, (2004) “Enhancement of biodegradability of EDTA by gamma-ray treatment” Journal of Radioanalytical and Nuclear Chemistry 262 : 371–374. DOI: 10 . 1023 / B : JRNC . 0000046765.08734.88.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信