§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2007202011361700
DOI 10.6846/TKU.2020.00574
論文名稱(中文) 製備非對稱結構之碳化矽薄膜及在薄膜乳化上之應用
論文名稱(英文) A study on preparation of asymmetric silicon carbide membrane and its application in membrane emulsification
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 108
學期 2
出版年 109
研究生(中文) 陳彥宏
研究生(英文) Yeng-Hung Chen
學號 607400115
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2020-06-23
論文頁數 101頁
口試委員 指導教授 - 鄭東文
委員 - 鄭東文
委員 - 童國倫
委員 - 鄭廖平
關鍵字(中) 碳化矽
無機膜
薄膜乳化
液滴尺寸
關鍵字(英) Silicon carbide
inorganic membrane
membrane
emulsification
droplet size
第三語言關鍵字
學科別分類
中文摘要
本研究使用燒結法製備多孔性碳化矽薄膜應用於薄膜乳化,探討不同比例之黏著劑、助燒結劑對於薄膜性質之影響,用來控制薄膜的孔徑,並探討不同操作條件下對於薄膜乳化之成果。
實驗使用單軸壓錠成型與高溫爐進行燒結成膜,分析不同製膜條件對於薄膜微結構、膜機械強度、孔洞尺寸分布、孔隙度與晶相成份之影響。在薄膜乳化實驗部分,經由分析液滴尺寸、Span Value與分散相通量,探討不同製膜條件與操作條件對薄膜乳化成果之影響。最後進行薄膜清洗確認薄膜重複利用的可能性。
研究結果顯示,當黏著劑添加量變多,造成Span Value下降17.3%,但會使孔隙率下降。當助燒結劑添加量變多,造成薄膜提升30.7%的機械強度且縮小20.6%的乳化液滴尺寸,但會使孔隙率下降。操作條件在透膜壓差80 kPa,使用SDS當作界面活性劑時,能夠有最佳乳化結果。而使用0.2 wt%的Derquim LM 03清潔劑水溶液以300kPa逆洗後,回復率高達近90%,是有效的清潔方法。
英文摘要
In this study, SiC-base inorganic membranes were fabricated via uniaxial pressing, followed by sintering at 1350℃. The effects of adhesive, sintering aid and pore former additions on the membrane properties were thoroughly investigated. Accordingly, membrane pore size was controlled through adjusting additive amounts. The membranes were further evaluated with regards to their structural properties, pore characteristics and cleaning was used to confirm the possibility of reusing in the membrane emulsification.
The results show that with the increase of adhesive additive amounts, Span value increased by 17.3%, while its porosity decreased. Additionally, membrane mechanical strength was enhanced by 30.7% under higher sintering aid concentrations, accompanied by the reduction of membrane porosity and oil droplet size by 20.6%. In this study, the optimum emulsification performance was obtained under the transmembrane pressure of 80 kPa with the use of SDS as a surfactant. High flux recovery rate of 90% was obtained after backwash cleaning with 0.2 wt% of Derquim LM 03 aqueous solution, verifying the effectiveness of this cleaning method.
第三語言摘要
論文目次
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VI
表目錄	VIII
第一章 緒論	1
1-1 前言	1
1-2 薄膜乳化背景	4
1-3 薄膜乳化的近期應用	7
1-4 應用於薄膜乳化的薄膜材料	9
1-5 研究動機與目的	11
第二章 文獻回顧	12
2-1 無機薄膜的製備	13
2-2 多孔碳化矽薄膜製備	15
2-3 黏著劑與助燒結劑的選用	17
2-4 薄膜乳化的操作模式	21
2-5 影響乳化液滴尺寸的操作參數	23
2-6 薄膜清潔效率	27
第三章  實驗材料、裝置與方法	28
3-1	碳化矽薄膜製備	28
3-1-1	實驗藥品	28
3-1-2	實驗設備	29
3-1-3	薄膜燒結程序	31
3-1-4	薄膜製備程序	31
3-1-5	薄膜編號	33
3-1-6	薄膜性質檢測	33
3-2	薄膜乳化實驗	37
3-2-1	實驗藥品	37
3-2-2	實驗裝置	39
3-2-3	實驗方法	40
3-2-4	檢測儀器與分析方法	41
3-3	薄膜清洗實驗	44
3-3-1	實驗藥品、儀器	44
3-3-2	實驗裝置	44
3-3-3	實驗方法	45
第四章  結果與討論	46
4-1	改變黏著劑添加量對於薄膜乳化之結果探討	47
4-1-1	薄膜結構分析	47
4-1-2	薄膜孔隙分析	52
4-1-3	薄膜晶相分析	55
4-1-4	薄膜機械強度分析	57
4-1-5	薄膜乳化結果探討	59
4-2	改變助燒結劑添加量對於薄膜乳化之結果探討	61
4-2-1	薄膜結構分析	61
4-2-2	薄膜孔隙分析	65
4-2-3	薄膜晶相與機械強度分析	67
4-2-4	薄膜乳化結果探討	70
4-3	改變基材助燒結劑添加量對於薄膜乳化之結果探討	72
4-3-1	薄膜結構分析	72
4-3-2	薄膜孔隙與機械強度分析	73
4-3-3	薄膜乳化結果探討	75
4-4	改變透膜壓差對於薄膜乳化之結果探討	77
4-5	改變界面活性劑濃度對於薄膜乳化之結果探討	80
4-6	改變不同界面活性劑種類對於薄膜乳化之結果探討	84
4-7	薄膜清洗與通量回復	86
第六章 結論	89
參考文獻	92


 
圖目錄
Fig. 1-1 預混膜乳化和錯流膜乳化示意圖[4]	3
Fig. 1-3 薄膜乳化的發展階段	5
Fig. 1-4 薄膜乳化過程示意圖	5
Fig. 1-5 影響薄膜乳化之參數	6
Fig. 1-6 薄膜乳化之應用領域	7
Fig. 2-1 直接薄膜乳化(A)與預混合薄膜乳化(B)	22
Fig. 2-2 動態薄膜乳化模式(A)與靜態薄膜乳化模式(B)	22
Fig. 2-3 不同種清潔條件水通量之回復率[58]	27
Fig. 3-1 薄膜燒結溫度曲線	31
Fig. 3-2 三點負荷示作用示意圖	35
Fig. 3-3 薄膜乳化實驗裝置示意圖	39
Fig. 3-4 薄膜清洗實驗裝置示意圖	44
Fig. 4-1 碳化矽薄膜示意圖	46
Fig. 4-2 破裂薄膜示意圖	47
Fig. 4-3 不同黏著劑添加量其表面放大1000倍之SEM圖	49
Fig. 4-4 不同黏著劑添加量其下表面放大1000倍之SEM圖	51
Fig. 4-5 不同黏著劑添加量其橫截面SEM圖	51
Fig. 4-6 不同黏著劑添加量對於薄膜孔隙率度	54
Fig. 4-7 不同黏著劑添加量與薄膜燒結前後密度比較	54
Fig. 4-8 不同黏著劑添加量與X光繞射分析圖譜	56
Fig. 4-9 不同黏著劑添加量之機械強度比較	58
Fig. 4-10 不同黏著劑添加量對於乳化液滴尺寸與Span Value	60
Fig. 4-11 不同黏著劑添加量對於分散相通量	60
Fig. 4-12 不同助燒結劑添加量表面放大1000倍之SEM影像	62
Fig. 4-13 不同助燒結劑添加量之下表面放大1000倍SEM影像	63
Fig. 4-14 不同助燒結劑添加量之橫截面放大300倍SEM影像	64
Fig, 4-15 不同助燒結劑添加量對於薄膜孔隙度	66
Fig. 4-16 不同助燒結劑添加量與薄膜燒結前後密度比較	66
Fig, 4-17 不同助燒結劑添加量與X光繞射分析圖譜	68
Fig. 4-18 不同助燒結劑添加量之機械強度比較	69
Fig. 4-19 不同助燒結劑添加量對於乳化液滴尺寸與Span Value	71
Fig. 4-20 不同助燒結劑添加量對於分散相通量	71
Fig. 4-21 基材不同高嶺土添加量表面1000倍SEM圖	72
Fig. 4-22 不同基材高嶺土添加量之薄膜孔隙度比較	74
Fig. 4-23 不同基材高嶺土添加量之機械強度比較	74
Fig. 4-24 不同基材高嶺土添加量對於乳化液滴尺寸與Span Value	76
Fig. 4-25 不同基材高嶺土添加量對於分散相通量	76
Fig. 4-26 改變透膜壓差對於薄膜乳化之影響	79
Fig. 4-27 改變界面活性劑濃度對於薄膜乳化之影響	82
Fig. 4-28 高濃度界面活性劑在不同透膜壓差之液滴尺寸變化	82
Fig. 4-29 高濃度界面活性劑在不同透膜壓差之Span值變化	83
Fig. 4-30 改變不同界面活性劑種類對於薄膜乳化之影響	85
Fig. 4-31 薄膜乳化實驗前(A)後(B)表面放大1000倍影像	87
Fig. 4-32 重複乳化對於薄膜乳化之結果	88


 
表目錄
Table 2-1常見的基材及其物化性質[39]	20
Table 2-2常使用的黏著劑[39]	20
Table 3-1 碳化矽薄膜配方組成	33
Table 3-2 大豆油相特性分析	37
Table 4-1 不同黏著劑添加量之孔徑大小	51
Table 4-2 薄膜厚度表(M01, M02, M03)	58
Table 4-3 不同助燒結劑添加量之孔徑大小	64
Table 4-4薄膜厚度表(M4, M05, M06)	69
Table 4-5 薄膜厚度及孔徑表(M06, M07, M08)	73
Table 4-6 不同界面活性劑其表面張力	85
參考文獻
[1]	A.-K. Fard, A. Bukenhoudt, M. Jacobs,  Novel hybrid ceramic/carbon membrane for oil removal, Journal of Membrane Science, 559 (2018), 42-53.
[2]	S.-M. Joscelyne, G. Tragardh, , Membrane emulsification—a literature review, Journal of Membrane Science, 169 (2000), 107-117
[3]	A. Nazir, K. Schroen R. boom , Premix emulsification: A review, Journal of Membrane Science, 362 (2010), 1-11.
[4]	T. Nakashima, M. Shimizu , M. Kukizaki , Membrane Emulsification By Microporous Glass, Key Engineering Materials, 61-62(1992) , 513-516
[5]	E. Piacentini, E. Drioli, L. Giorno, Membrane emulsification technology : Twenty-five years of inventions and research through patent survey, Journal of Membrane Science, 468(2014) , 410-422
[6]	E. Piacentini, E. Drioli, L. Giorno, Membrane emulsification advances and Perspectives, Comprehensive Membrane Science and Engineering, 3 (2017), 331-356.
[7]	G.-T. Vladisavljevic, R.-A. Williams, Manufacture of large uniform droplets using rotating membrane emulsification, Journal of Colloid and Interface Science, 299 (2006), 396-402.
[8]	Y. Chen, Z. Lu, Q. Liu, Y. Maeda, Janus membrane emulsification for facile preparation of hollow microspheres, Journal of Membrane Science, 592 (2019), 117-384.
[9]	R. Liu, S.-S. Huang, Y.-H. Wan, G.-H. Ma, Z.-G. Su, Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro, Colloids and Surfaces, 51 (2006), 30-38.
[10]	S. Higashi, N. Tabata, K.-H. Kondo, Y. Maeda, M. Shimizu, T. Nakashima, T. Setoguchi, Size of Lipid Microdroplets Effects Results of Hepatic Arterial Chemotherapy with an Anticancer Agent in Water-in-Oil-in-Water Emulsion to Hepatocellular Carcinoma, Journal of Pharmacology and Experimental Therapeutics, 289 (1999), 816-819.
[11]	S. Ohta, M. Matsuura, Y. Kaeashima, X. Cai, M. Taniguchi,H. Okochi, Y. Asano, S. Sato, T. Ito Facile fabrication of PEG-coated PLGA microspheres via SPG membrane emulsification for the treatment of scleroderma by ECM degrading enzymes, 179 (2019), 453-461.
[12]	X. Fu, S. Ohta, M. Kamihira, Y. Sakai, T. Ito, Size-Controlled Preparation of Microsized Perfluorocarbon Emulsions as Oxygen Carriers via the Shirasu Porous Glass Membrane Emulsification Technique, Langmuir, 35 (2019), 4094-4100.
[13]	Xi. Zhao, J. Wu, F.-L. Gong, J.-M. Cui, J.-C. Jason, G.-H. Ma, Z.-G. Su Preparation of uniform and large agarose microspheres by an improved membrane emulsification technique, Powder Technology, 253 (2014), 444-452.
[14]	R.-D Hancocks, F. Spyropouls, I.-T. Norton, Comparisons between membranes for use in cross flow membrane emulsification, Journal    of Food Engineering, 116 (2013), 382-389.
[15]	Y. Huang, Q. Huang, H. Liu, C. Xiao, K. , A facile and environmental friendly strategy for preparation of poly(tetrafluoroethylene-co-hexafluoropropylene) hollow fiber membrane and its membrane emulsification performance, Chemical Engineering Journal, 384 (2020), 123-345.
[17]	K. Suzuki, I. Fujiki, Y. Hagura, Preparation of Corn Oil/Water and Water/Corn Oil Emulsions Using PTFE Membranes, Food Science and Technology International, Tokyo, 4 (1998), 164-167.
[18]	S. Gehrmann, H. Bunjes, Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification, European Journal of Pharmaceutics and Biopharmaceutics, 126 (2018), 140-148.
[19]	V. Schröder, H. Schubert, Production of emulsions using microporous, ceramic membranes, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152 (1999), 103-109.
[20]	J. Jiang, J. Liu, C. Liu, G. Zhang, X. Gong, J. Liu, Roles of oleic acid during micropore dispersing preparation of nano-calcium carbonate particles, Applied Surface Science, 257 (2011), 7047-7053.
[21]	J. Zhu, D. Barrow, Analysis of droplet size during crossflow membrane emulsification using stationary and vibrating micromachined silicon nitride membranes, Journal of Membrane Science, 261 (2005), 136-144.
[22]	V. Schadler, E.-J. Windhab, Continuous membrane emulsification by using a membrane system with controlled pore distance, Desalination, 189 (2006), 130-135.
[23]	R. Melich, J.-P. Valour, S. Urbaniak, F. Padilla, C. Charcossset, Preparation and characterization of perfluorocarbon microbubbles using Shirasu Porous Glass(SPG) membranes, Colloids and Surfaces , 560 (2019), 233-243.
[24]	G.-T. Vladisavljević, Fabrication of Nanoemulsions by Membrane Emulsification, in Nanoemulsions, S.M. Jafari and D.J. McClements, Editors, Academic Press, (2018).
[25]	M. Kukizaki, T. Nakashima, Acid Leaching Process in the Preparation of Porous Glass Membranes from Phase-separated Glass in the Na2O-CaO-MgO-Al2O3-B2O3-SiO2 System, membrane, 29 (2004), 301-308.
[26]	M. Kukizaki, M. Goto, Preparation and characterization of a new asymmetric type of Shirasu porous glass (SPG) membrane used for membrane emulsification, Journal of Membrane Science, 299 (2007), 190-199.
[27]	M. Kukizaki, M. Goto, A Comparative Study of SPG Membrane Emulsification in the Presence and Absence of Continuous-Phase Flow, Journal of chemical engineering of Japan, 42 (2009), 520-530.
[28]	A. Buekenhoudt, A. Kovalevsky, J. Luyten, F. Snijkers, Basic Aspects in Inorganic Membrane Preparation, Comprehensive Membrane Science and Engineering, 2010.
[29]	D. da Silva Biron, V. dos Santos, M. Zeni, Ceramic Membranes Preparation, Ceramic Membranes Applied in Separation Processes, ed, D. da Silva Biron, V. dos Santos, and M. Zeni, Cham, Springer International Publishing, 31-48, 2018.
[30]	Q. Jiang, J. Zhou, Y. Miao, S. Yang, M. Zhou, Z. Zhong, W. Xing Lower-temperature preparation of SiC ceramic membrane using zeolite as sintering aid for oil-in-water separation, Journal of Membrane Science, 510 (2020), 118-238.
[31]	H. Wu, Y. Li, Y. Yan, J. Yin, X. Liu, Z. Huang, S.-H. Lee, D. Jiang Processing, microstructures and mechanical properties of aqueous gelcasted and solid-state-sintered porous SiC ceramic, Journal of the European Ceramic Society, 34 (2014), 3469-3478.
[32]	H. Qiao, S. Feng, Z.-X. Low, J. Chen, F. Zhang, Z. Zhong, W. Xing Al-DTPA microfiber assisted formwork construction technology for high-performance SiC membrane preparation, Journal of Membrane Science, 594 (20120), 117-464.
[33]	S. Liu, Y.-P. Zeng, D. Jiang, Fabrication and characterization of cordierite-bonded porous SiC ceramics, Ceramics International, 35 (2009), 597-602.
[34]	J. Wu, W.-H. Jing, W.-H. Xing, N.-P. Xu, Preparation of monodispersed oil-in-water emulsions by ceramic external membrane emulsification technique, Journal of Chemical Industry and Engineering, 56 (2005) .
[34]	B.V.M. Kumar, J.-H. Eom, Y.-W. Kim, I.-H. Song, H.-D. Kim, Effect of aluminum hydroxide content on porosity and strength of porous mullite-bonded silicon carbide ceramics, Journal of the Ceramic Society of Japan, 119 (2011), 367-370.
[35]	F. Han, Z. Zhong, F. Zhang, W. Xing, Y. Fan, Preparation and Characterization of SiC Whisker-Reinforced SiC Porous Ceramics for Hot Gas Filtration, Industrial & Engineering Chemistry Research, 54 (2015), 226-232
[36]	C.-y. Bai, Y. Li, Z.-m. Liu, P.-w. Liu, X.-y. Deng, J.-b. Li, J. Yang, Fabrication and properties of mullite-bonded porous SiC membrane supports using bauxite as aluminum source, Ceramics International, 41 (2015), 4391-4400.
[37]	W. Shi, B. Liu, X. Deng, J. Li, Y. Yang, In-situ synthesis and properties of cordierite-bonded porous SiC membrane supports using diatomite as silicon source, Journal of the European Ceramic Society, 36 (2016), 3465-3472.
[38]	Y. Yang, F. Han, W. Xu, Y. Wang, Z. Zhong, W. Xing, Low-temperature sintering of porous silicon carbide ceramic support with SDBS as sintering aid, Ceramics International, 43 (2017), 3377-3383.
[39]	曾令可, 王慧, 羅民華, 多孔功能陶瓷製備與應用, 中國化學工業出版社, 北京, 2005.
[40]	K. Iida, A. Otsuka, K. Danjo, H. Sunada, Measurement of Adhesive Force between Particles and Polymer Films, Chemical and Pharmaceutical Bulletin, 40 (1992), 189-192.
[41]	P. Mittal, S. Jana, K. Mohanty, Synthesis of low-cost hydrophilic ceramic–polymeric composite membrane for treatment of oily wastewater, Desalination, 282 (2011) 54-62.
[42]	C.-O. Mgbemena, N.-O. Ibekwe, R. Sukumar, A.R.R. Menon, Characterization of kaolin intercalates of oleochemicals derived from rubber seed (Hevea brasiliensis) and tea seed (Camelia sinensis) oils, Journal of King Saud University - Science, 25 (2013) 149-155.
[43]	S.-C. Huang, C.-T. Huang, S.-Y. Lu, K.-S. Chou, Ceramic/polyaniline composite porous membranes, Journal of Porous Materials, 6 (1999) 153-159.
[44]	F.-J. Liu, K.-S. Chou, Characterization of microstructure and properties of porous ceramics made by extrusion, Journal of the Chinese Institute of Chemical Engineers, 31 (2000) 49-56.
[45]	S.-K. Hubadillah, M.H.D. Othman, T. Matsuura, A.-F. Ismail, M.-A. Rahman, Z. Harun, J. Jaafar, M. Nomura, Fabrications and applications of low cost ceramic membrane from kaolin: A comprehensive review, Ceramics International, 44 (2018), 4538-4560.
[46]	A.-K. Chakravorty, D.-K. Ghosh, Kaolinite–Mullite Reaction Series: The Development and Significance of a Binary Aluminosilicate Phase, Journal of the American Ceramic Society, 74 (1991), 1401-1406.
[47]	A. Nazir, K. Schroën, R. Boom, Premix emulsification: A review, Journal of Membrane Science, 362 (2010), 1-11.
[48]	O. Alliod, J.-P. Valour, S. Urbaniak, H. Fessi, D. Dupin, C. Charcosset, Preparation of oil-in-water nanoemulsions at large-scale using premix membrane emulsification and Shirasu Porous Glass (SPG) membranes, Colliods and Surfaces A , 557 (2018), 76-84.
[49]	G.-T. Vladisavljević, Structured microparticles with tailored properties produced by membrane emulsification, Advances in Colloid and Interface Science, 225 (2015), 53-87.
[50]	X.-Y. Tan, S. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, Journal of Membrane Science, 188 (2001), 87-95.
[51]	M. Kukizaki, M. Goto, Preparation and characterization of a new asymmetric type of Shirasu porous glass (SPG) membrane used for membrane emulsification, Journal of Membrane Science, 299 (2007), 190-199.
[52]	Y. Mine, M. Shimizu, T. Nakashima, Preparation and stabilization of simple and multiple emulsions using a microporous glass membrane, Colloids and Surfaces B: Biointerfaces, 6 (1996), 261-268.
[53]	J. Wu, W.-H. Jing, W.-H. Xing, N.-P. Xu, Preparation of monodispersed oil-in-water emulsions by ceramic external membrane emulsification technique, Journal of Chemical Industry and Engineering, 56 (2005).
[54]	H. Yuyama, T. Watanabe, G.-H. Ma, M. Nagai, S. Omi, Preparation and analysis of uniform emulsion droplets using SPG membrane emulsification technique, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 168 (2000), 159-174.
[55]	M. Yasuno, M. Nakajima, S. Iwamoto, T. Maruyama, S. Sugiura, I. Kobayashi, A. Shono, K. Satoh, Visualization and characterization of SPG membrane emulsification, Journal of Membrane Science, 210 (2002), 29-37.
[56]	S. Sugiura, M. Nakajima, N. Kumazawa, S. Iwamoto, M. Seki, Characterization of Spontaneous Transformation-Based Droplet Formation during Microchannel Emulsification, The Journal of Physical Chemistry B, 106 (2002), 9405-9409.
[57]	S. Sugiura, M. Nakajima, T. Oda, M. Satake, M. Seki, Effects of Interfacial Tension and Viscosities of Oil and Water Phases on Monodispersed Droplet Formation Using a Shirasu-porous-glass(SPG)Membrane, membrane, 31 (2006), 215-220.
[58]	V. Schröder, O. Behrend, H. Schubert, Effect of Dynamic Interfacial Tension on the Emulsification Process Using Microporous, Ceramic Membranes, Journal of Colloid and Interface Science, 202 (1998), 334-340.
[59]	N.-C. Christov, D.-N. Ganchev, N.-D. Vassileva, N.-D. Denkov, K.-D. Danov, P.-A. Kralchevsky, Capillary mechanisms in membrane emulsification: oil-in-water emulsions stabilized by Tween 20 and milk proteins, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209 (2002), 83-104.
[60]	D.-M. Lloyd, I.-T. Norton, F. Spyropoulos, Process optimisation of rotating membrane emulsification through the study of surfactant dispersions, Journal of Food Engineering, 166 (2015), 316-324.
[61]	A. Trentin, C. Güell, T. Gelaw, S. de Lamo, M. Ferrando, Cleaning protocols for organic microfiltration membranes used in premix membrane emulsification, Separation and Purification Technology, 88 (2012), 70-78.
[62]	M. Matos, G. Gutiérrez, A. Lobo, J. Coca, C. Pazos, J.M. Benito, Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes, Journal of Membrane Science, 520 (2016), 749-759.
[63]	A. Taher, S. Thahab. Experimental study of improvement shear strength and moisture effect PVP adhesive joints by addition PVA. in IOP Conference Series: Materials Science and Engineering. 2018. IOP Publishing.
[64]	A.M. Szczotok, M. Carmona, A.-L. Kjøniksen, J.F. Rodriguez, Equilibrium adsorption of polyvinylpyrrolidone and its role on thermoregulating microcapsules synthesis process, Colloid and Polymer Science, 295 (2017), 783-792.
[65]	X. Wang, Z. Zak Fang, M. Koopman, The relationship between the green density and as-sintered density of nano-tungsten compacts, International Journal of Refractory Metals and Hard Materials, 53 (2015), 134-138.
[66]	Y. Taki, M. Kitiwan, H. Katsui, T. Goto, Electrical and thermal properties of off-stoichiometric SiC prepared by spark plasma sintering, Journal of Asian Ceramic Societies, 6 (2018), 95-101.
[67]	V. Ischenko, Y.-S. Jang, M. Kormann, P. Greil, N. Popovska, C. Zollfrank, J. Woltersdorf, The effect of SiC substrate microstructure and impurities on the phase formation in carbide-derived carbon, Carbon, 49 (2011), 1189-1198.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信