淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2007201814175700
中文論文名稱 欄杆型式對人行橋氣動力反應的影響
英文論文名稱 The Influence of Railing Types on the Aerodynamic Behavior of Pedestrian Bridges
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 106
學期 2
出版年 107
研究生中文姓名 曾煒翔
研究生英文姓名 Wei-Hsiang Tseng
學號 606380052
學位類別 碩士
語文別 中文
口試日期 2018-06-29
論文頁數 127頁
口試委員 指導教授-林堉溢
指導教授-姚忠達
委員-陳振華
委員-鄭啟明
中文關鍵字 人行橋  風柵  欄杆  孔隙率  風攻角  氣動力反應  紊流  斷面模型試驗 
英文關鍵字 Pedestrian Bridges  Wind Barrier  porosity  Railing  Angle of Wind Attack  Turbulence Flow  Aerodynamic Responses  Section Model Test 
學科別分類 學科別應用科學土木工程及建築
中文摘要 根據以往的研究,常見之橋樑斷面模型試驗,通常為車行橋梁斷面,因斷面寬度較大,研究顯示加設欄杆或護欄等等披覆物對整體結構之氣動力行為影響較小。人行橋一般的斷面寬度較小,其欄杆高度占整橋體深度比例非常的巨大,所帶來的影響不可忽視,因此欄杆的給人行橋橋梁帶來的氣動力效應應加以評估,以免會導致橋梁氣動力行為被錯估。
本研究以橋樑斷面風洞試驗量測為主數值分析為輔,模擬人行橋橋樑斷面加上各式欄杆後的氣動力效應,對人行橋斷面加上不同透孔率的柵狀欄杆(70%、50%、40%)、橫向玻璃欄杆(40%、20%)、直向玻璃欄杆(40%、20%)進行風力係數、顫振導數、顫振臨界風速和抖振等實驗,再使用有限元素程式套入斷面模型所得之氣動力參數進行顫振臨界風速分析,與斷面實驗做比較。最後將所有資料同整進行交叉比對。
在風力係數、顫振導數實驗中顯示,氣動力行為會隨著透孔率的增減和欄杆樣式而有所變化,主要影響為透孔率的變化,由於透孔率的減小會從輕薄細長的斷面逐漸轉變為鈍體斷面,玻璃欄杆斷面的H1*在低無因次化風速的時候會產生渦致振動的效應, A2*會隨著透孔率變小隨之負轉正的地方變小。
顫振臨界風速之分析結果顯示,欄杆的透孔率為影響顫振臨界風速主因,欄杆的透孔率減少顫振臨界風速並隨之降低,數值分析也有相同的趨勢,而欄杆形式也會有所影響顫振臨界風速,柵式欄杆會優於玻璃欄杆,直向玻璃會優於橫向玻璃。加設欄杆後的斷面實驗中紊流的不一定會使臨界風速有顯著上升,甚至在部分欄杆斷面有下降的趨勢,因此在推定顫振臨界風速會應綜合各攻角與各流場的資訊。
由顫振臨界風速與抖振之結果中顯示,負風攻角會造成顫振臨界風速下降與抖振效應放大的趨勢,因此類似斷面之橋梁坐落在受下沉氣流影響之地區或經地形風場分析常為負攻角時,應拉高實場扭轉頻率並使用高透孔率之欄杆,如有需要使用玻璃欄杆,建議使用直向玻璃欄杆。
由本文研究所得之結果顯示,欄杆型式對於橋樑結構系統的氣動力行為、顫振臨界風速、抖振反應有相當大的影響,因此人行橋欄杆效應在整個橋梁抗風設計必須審慎考量。
英文摘要 Most bridge section model tests usually focus on the bridges for vehicles. Previous studies have shown that adding railings or grids has less influence on the aerodynamic behavior of these types of structures because of their large section widths. However, the pedestrian bridge has a smaller section width, and the height of the railing accounts for a large proportion of the total height of the bridge. Therefore, the impact of railings on the aerodynamic behavior of the pedestrian bridge cannot be ignored.

This study mainly investigates the influence of railings on the aerodynamic behavior of the pedestrian bridges by using section model tests and a numerical analysis. The aerodynamic wind coefficients, flutter derivatives, flutter critical wind speeds and buffeting responses of section models with different types of railings are studied. The railings with different porosities of grids(70%, 50%, 40%), horizontal glass (40%, 20%), and vertical glass (40%, 20%) are studied.

The results show that the aerodynamic coefficients and flutter derivatives will change along with the variations of the porosities and types of railings. The main influence on the aerodynamic behavior is the change of the porosities. As the porosity decreases, the cross section gradually changes from a streamlined cross-section to a bluff section. The H1* of the models with the glass railings will produce vortex shedding effects at low normalized wind speeds, and the positive A2*will occur at lower wind speeds as the porosity decreases.

The analysis of the flutter critical wind speed shows that the porosity of the railings is the main factor affecting the flutter critical wind speed. The flutter critical wind speed decreases with the reduction of the porosity of the railing. The numerical analysis also shows the same trend. The flutter critical wind speed varies with different types of the railing. For example, grid railings have better performances than the glass railings, and the vertical glass railings have better performances than the horizontal glass railings etc. In general, turbulent flow increases the flutter critical wind speed in most cases as we expected. However, this trend is reversed in some cases.

The results also show that the flutter critical wind speeds decrease and the buffeting responses increase as the angles of wind attack are negative. If the bridges are possibly attacked by winds at negative angles from the wind field analysis, then the torsional frequency of the bridge should be increased and the railings with high porosities should be used. If glass railings are used, the vertical glass railings are suggested.

The results obtained from the experiment shows that the different types of railings greatly affect the aerodynamic behavior of the footbridges. Therefore, we should take the railing effect of the pedestrian bridge into consideration in the wind resistance design.
論文目次 目錄
第一章 緒論 1
1-1 前言 1
1-2 研究動機 1
1-3 研究方法 2
1-4 論文架構 3
第二章 文獻回顧 5
2-1 前言 5
2-2 風力係數及顫振導數 5
2-2-1 風力係數 6
2-2-2 顫振導數(Flutter Derivatives) 8
2-3 橋樑氣動力效應 8
2-3-1 顫振效應(Flutter) 9
2-3-2 抖振效應(Buffeting) 10
2-3-3 渦流顫動(Vortex Shedding) 11
2-3-4 扭轉不穩現象(Torsion Instability) 11
2-3-5 風馳效應(Galloping) 12
2-4 風洞實驗之文獻參考 12
2-4-1 均勻紊流場之模擬 12
2-4-2 端板效應(End Plate Effect) 13
2-4-3 阻塞比效應(Blockage Ratio Effect) 14
2-5 橋梁之欄杆相關研究 14
第三章 理論背景 16
3-1 均勻紊流場之特性 16
3-1-1 紊流強度(Turbulence Intensity) 16
3-1-2 紊流長度尺度(Turbulence Length Scale) 16
3-1-3 均勻紊流場之模擬 17
3-2 橋樑受風力現象之理論背景 18
3-2-1 自身擾動力(Self-Excited Force) 19
3-2-1-1MITD簡介與顫振導數之識別 20
3-2-2 抖振力(Buffeting Force) 24
3-3 數值模型建立與推導 25
3-3-1 橋梁顫振臨界風速識別分析方法 26
3-3-2抖振效應之分析方法 30
第四章 實驗設置與數值分析 33
4-1 前言 33
4-2 風洞實驗室與儀器介紹 33
4-2-1 風洞實驗室特性 33
4-2-2 皮托管 33
4-2-3 壓力轉換器 34
4-2-4 雷射位移計 34
4-3 流場配置 35
4-3-1 平滑流場(Smooth Flow) 35
4-3-2 均勻紊流場(Homogeneous Turbulence Flow) 35
4-4 橋樑斷面模型製作 36
4-4-1 斷面模型(Deck Section Model)簡介 36
4-4-2 斷面模型製作原理 37
4-4-3 斷面模型之縮尺 38
4-4-4 斷面模型之製作 38
4-4-5 模型轉動慣量之求得 39
4-5 欄杆模型製作 40
4-6 實驗架設 40
4-6-1 風力係數 40
4-6-2 顫振導數 41
4-6-3 抖振反應 41
4-7 數值模型之建立 42
第五章 實驗結果與討論 43
5-1 前言 43
5-2 風力係數之實驗結果 43
5-3 顫振導數之實驗結果 44
5-4 顫振臨界風速分析 47
5-4-1 平滑流上比較各種欄杆的影響 47
5-4-2 均勻紊流上比較各種欄杆的影響 49
5-4-3 欄杆因流場特性的影響 50
5-4-4 平滑流場下實驗與數值比較 51
5-5 抖振反應分析 53
5-5-1 紊流場下比較各種欄杆的影響 53
5-5-2 風攻角變化比較各種欄杆的影響 54
第六章 結論與建議 56
6-1 結論 56
6-2 建議 58
參考文獻 59
附表 64
附圖 71



表目錄
表3-1 各項顫振導數所代表之物理意義 64
表4-1 柵板流場配置圖 64
表4-2 柵板紊流強度在垂直向之均勻性 65
表4-3 柵板紊流強度在水平向之均勻性 65
表5-1 各式欄杆在平滑流場之顫振臨界風速 66
表5-2 各式欄杆在均勻紊流場之顫振臨界風速 66
表5-3 平滑流與紊流之顫振臨界風速比較 67
表5-4 平滑流下各欄杆實驗與數值之比較 67
表5-5 平滑流下各欄杆實驗與數值之比較 68
表5-6 與裸橋相比抖振增量反應百分比(0°風攻角) 68
表5-7 與裸橋相比抖振增量反應百分比(+3°風攻角) 69
表5-8 與裸橋相比抖振增量反應百分比(-3°風攻角) 69
表5-9 與自身0度角相比抖振增量反應百分比(+3°風攻角) 70
表5-10 與自身0度角相比抖振增量反應百分比(-3°風攻角) 70


圖目錄
圖2-1 各橋梁斷面受風示意圖 71
圖2-2 各型橋梁斷面的風力係數與顫振導數之(一) 72
圖2-3 各型橋梁斷面的風力係數與顫振導數之(二) 73
圖2-4 端板架構配置圖 74
圖2-5 Robby Permata BD20加欄杆造型實驗圖 74
圖2-6 Micheal等人實驗架設與結果圖 75
圖3-1 Huot 、Rey、 Arbey等人實驗之架設圖 76
圖3-2 橋面版節點與單位長度受風力之示意圖 76
圖4-1 風力係數與顫振導數之實驗儀器配置流程圖 77
圖4-2 斷面模型照片(一) 78
圖4-3 斷面模型照片(二)(上圖為負攻角,下圖為正攻角) 79
圖4-4 柵狀人行橋欄杆 80
圖4-5 橫向玻璃人行橋欄杆 80
圖4-6 直向玻璃人行橋欄杆 81
圖4-7 欄杆尺寸(柵狀欄杆70%) 81
圖4-8 欄杆尺寸(柵狀欄杆50%) 82
圖4-9 欄杆尺寸(柵狀欄杆40%) 82
圖4-10 欄杆尺寸(直向玻璃欄杆20%) 83
圖4-11 欄杆尺寸(直向玻璃欄杆40%) 83
圖4-12 欄杆尺寸(橫向玻璃欄杆20%) 84
圖4-13 欄杆尺寸(橫向玻璃欄杆40%) 84
圖4-14 欄杆造型 85
圖4-15 欄杆完成架設圖(一) 85
圖4-16 欄杆完成架設圖(二) 86
圖4-17 力感應器作用於模型上之幾何示意圖 87
圖4-18 風力係數實驗架構圖 88
圖4-19 斷面模型加設端板照片 89
圖4-20 矩形斷面BD8之風力係數 90
圖4-21 矩形斷面BD5之風力係數 91
圖4-22 耦合顫振導數實驗架構圖 92
圖4-23 數值模型架構圖 93
圖5-1 垂直向風力係數 94
圖5-2 垂直向風力係數 94
圖5-3 扭轉向風力係數 95
圖5-4 顫振導數H1* 96
圖5-5 顫振導數H2* 96
圖5-6 顫振導數H3* 97
圖5-7 顫振導數H4* 97
圖5-8 顫振導數A1* 98
圖5-9 顫振導數A2* 98
圖5-10 顫振導數A3* 99
圖5-11 顫振導數A4* 99
圖5-12 各欄杆平滑流場下垂直向位移平均值(0°) 100
圖5-13 各欄杆平滑流場下扭轉向扭轉角平均值(0°) 100
圖5-14 各欄杆在平滑流場下垂直向位移平均值(+3°) 101
圖5-15 各欄杆在平滑流場下扭轉向扭轉角平均值(+3°) 101
圖5-16 各欄杆在平滑流場下垂直向位移平均值(-3°) 102
圖5-17 各欄杆在平滑流場下扭轉向扭轉角平均值(-3°) 102
圖5-18 各欄杆在平滑流場下垂直向位移RMS值(0°) 103
圖5-19 各欄杆在平滑流場下扭轉向扭轉角RMS值(0°) 103
圖5-20 各欄杆在平滑流場下垂直向位移RMS值(+3°) 104
圖5-21 各欄杆在平滑流場下扭轉向扭轉角RMS值(+3°) 104
圖5-22 各欄杆在平滑流場下垂直向位移RMS值(-3°) 105
圖5-23 各欄杆在平滑流場下扭轉向扭轉角 RMS 值 (-3°) 105
圖5-24 各欄杆在均勻紊流場下垂直向位移平均值(0°) 106
圖5-25 各欄杆在均勻紊流場下扭轉向扭轉角平均值(0°) 106
圖5-26 各欄杆在均勻紊流場下垂直向位移平均值(+3°) 107
圖5-27 各欄杆在均勻紊流場下扭轉向扭轉角平均值(+3°) 107
圖5-28 各欄杆在均勻紊流場下垂直向位移平均值(-3°) 108
圖5-29 各欄杆在均勻紊流場下扭轉向扭轉角平均值 (-3°) 108
圖5-31 各欄杆在均勻紊流場下扭轉向扭轉角RMS值(0°) 109
圖5-32 各欄杆在均勻紊流場下垂直向位移RMS值(+3°) 110
圖5-33 各欄杆在均勻紊流場下扭轉向扭轉角RMS值(+3°) 110
圖5-34 各欄杆在均勻紊流場下垂直向位移RMS值 (-3°) 111
圖5-35 各欄杆在均勻紊流場下扭轉向扭轉角RMS值 (-3°) 111
圖5-36 流場比較-裸橋RMS值 112
圖5-37 流場比較-柵70%RMS值 113
圖5-38 流場比較-柵50%RMS值 114
圖5-39 流場比較-柵40%RMS值 115
圖5-40 流場比較-直40%RMS值 116
圖5-41 流場比較-直20%RMS值 117
圖5-42 流場比較-橫40%RMS值 118
圖5-43 流場比較-橫20%RMS值 119
圖5-44 風攻角比較-裸橋垂直向位移RMS值 120
圖5-45 風攻角比較-裸橋扭轉向扭轉角RMS值 120
圖5-46 風攻角比較-柵70%垂直向位移RMS值 121
圖5-47 風攻角比較-柵70%扭轉向扭轉角RMS值 121
圖5-48 風攻角比較-柵50%垂直向位移RMS值 122
圖5-49 風攻角比較-柵50%扭轉向扭轉角RMS值 122
圖5-50 風攻角比較-柵40%垂直向位移RMS值 123
圖5-51 風攻角比較-柵40%扭轉向扭轉角RMS值 123
圖5-52 風攻角比較-直40%垂直向位移RMS值 124
圖5-53 風攻角比較-直40%扭轉向扭轉角RMS值 124
圖5-54 風攻角比較-直20%垂直向位移RMS值 125
圖5-55 風攻角比較-直20%扭轉向扭轉角RMS值 125
圖5-56 風攻角比較-橫40%垂直向位移RMS值 126
圖5-57 風攻角比較-橫40%扭轉向扭轉角RMS值 126
圖5-58 風攻角比較-橫20%垂直向位移RMS值 127
圖5-59 風攻角比較-橫20%扭轉向扭轉角RMS值 127

參考文獻 1. Scanlan, R. H. and Tomko, J. J., “Airfoil and Bridge Deck Flutter
Derivatives,” Journal of Eng. Mech. Div., ASCE, Vol. 97, pp.1717-1737 (1971).
2. Vickery, B. J., “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulence stream,” Journal of Fluid Mesh.25, pp. 481-494 (1966).
3. Saito, T., Shiraishi, N. and Ishizaki, H., “On Aerodynamic stability of double-decked / trussed girder for cable-stayed “Higashi-Kobe Bridge” ,”Journal of Wind Engineering and Industrial Aerodynamics, Vol 33, pp. 323-332 (1990).
4. Santo, H. P., Branco, F. B., “Wind forces on bridges – numerical vs. experimental methods,” Journal of Wind Eng. and Industrial Aerodynamics, Vol 32, pp. 145-159 (1989).
5. Scanlan, R. H. and Gade, R. H., “Motion of Suspended Bridge Spans under Gusty Wind, ”Journal of the Structural Division, ASCE, pp.1867-1883 (1977).
6. Nagao, F., Utsunomiya, H., Oryu, T. and Manabe, S., “Aerodynamic Efficiency of Triangular Fairing on Box Girder Bridge,” Journal of Wind Eng. and Industrial Aerodynamics, Vol 49, pp. 565-574 (1993).
7. Larsen, A., “Advances in Areoelastic Analyses of Suspension and Cable-Stayed Bridges,” Journal of Wind Eng. and Industrial Aerodynamics, Vol 74-76, pp. 73-90 (1998).
8. Larose, G. L. and Livesey, F. M., “Performance of Streamlined Bridge Decks in Relation to The aerodynamic of a Flat Plate,” Journal of Wind Eng. and Industrial Aerodynamics, Vol 69-71, pp. 851-860 (1997).
9. Gu, M., Xiang, H. and Lin, Z., “Flutter- and Buffeting-Based for Long-Span Bridges,” Journal of Wind Eng. and Industrial Aerodynamics, Vol 80, pp. 373-382 (1999).
10. 林世權,“風攻角和紊流場對長跨徑橋梁抖振的影響”,私立淡江大學土木工程研究所碩士論文(2000)
11. Bratt, J. B. and Scruton, C., “Measurement of Pitching Moment Derivatives for an Aerofoil Oscillating about the HalfChord Axis,” British Aerodynautical Research Council, R. & M., No. 1921 (1938).
12. Bratt, J. B. and Wight, K. D., “The Effect of Mean Incidence, Amplitude of Oscillation, Profile, and Aspect Ratio on Pitching Moment Derivatives, ” British Aerodynatutical Research Council, R. & M., No. 2064 (1946).
13. Halfman, R. L., “Experimental Aerodynamic Derivatives of a Sinusoidally Oscillating Airfoil in Two-Dimensional Flow,” NACA Technical Report, 1108 (1952).
14. Scanlan, R. H. and Sabzevari, A., “Suspension Bridge Flutter Revisited,” ASCE Structural Engineering Conference (1967).
15. Simiu, E., Scanlan, R. H., “Wind Effects on Structures ,” John Wiley & Sons. (1986).
16. Kazama, K., Yamada, H. and Miyata, T., “Wind Resistant Design for Long Span Suspension Bridges,” Journal of Wind Engineering and Industrial Aerodynamics, No. 54/55, pp.65-74 (1995).
17. 謝政宏,“氣動力參數對長跨徑橋梁顫振臨界風速的影響 ",私 立淡江大學土木工程研究所碩士論文(1999).
18. Hikami, Y., Shiraishi, N., “Rain-Wind Induced Vibrations of Cable
Stayed Bridges,”Journal of Wind Engineering and Industrial Aerodynamics, Vol. 29, pp.409-418(1988).
19. Yoshimura, T., Savage, M. G., Tanaka, H., and Wakasa, T., “A
device for suppressing wake galloping of stayed-cables for cable-stayed bridges,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, pp.497-506, (1993).
20. Lee,B.E., “The effect of turbulence on the surface pressure field of a square prism.”, Journal of Fluid Mesh.69, pp. 263-282 (1975).
21. Huot,J.P.,Rey,c.& Arbey,H., “Exprimental analysis of the pressure field induced on square cylinder by a turbulence flow.”, Journal of Fluid Mesh.162, pp. 283-298 (1986).
22. Nakamura,Y.& Ohya,Y,“The effect of turbulence on the mean flow past square rod.”, Journal of Fluid Mesh.149, pp. 255-273 (1984).
23. Kubo,Y. &,Miyazaki,M.& Kato,K. “Effect of end plate and blockage of structure menberson drag force. ”, Journal of Wind engineering and Industrial Aerodynamic.32, pp. 329-342 (1989).
24. Biggs, J.M., “Wind Load on Truss Bridges”,ASCE, Vol.119, pp 879 (1954).
25. Nakamura,Y.& Ohya,Y,“The effect of turbulence on the mean flow past two-dimentional rectangular cylinder. ”, Journal of Fluid Mesh.149, pp. 255-273 (1984).
26. Permata, R “Flutter Stablilzation of Long Span Suspension Bridges with Slender Deck”,(2014).
27. Chen,N & Li,Y & Wnag,B & Su,Y & Xiang,H “Effect of wind barrier on the safety of vehicles driven on bridges”, Journal of Structural Engineering., Vol. 143 , pp. 113-127 (2015).
28. Wang,Q& Liao,H& Li,M& Ma,C “Influence of aerodynamic configuration of a streamline box girder on bridge flutter and vorten – induced vibration” , Journal of Modern Transportion. Volume 19, Number 4 , Page 261-267, (2011).
29 Buljac,A & Kozmar,H & Pospísil,S & Machacek,M, “Flutter and galloping of cable-supported bridges with porous wind barriers”, Journal of Wind Engineering & Industrial Aerodynamics 171,pp. 304–318 (2017).
30. Kareem, Ahsan & Kline, Samuel, “Performance of Multiple Mass Dampers Under Random Loading” , Journal of Structural Engineering. ASCE, Vol. 121. No. 2, February, (1995).
31. Scanlan & R.H.,.“Airfoil and Bridge Deck Flutter Derivatives”, Journal of Eng. Mesh. Div., Vol.97, pp. 1717-1737 (1971).
32. 羅元駿,“人行懸索橋受大風攻角下之氣動力反應分析”,私立淡江大學土木工程研究所碩士論文(2000)
33. 项海帆 ,“公路桥梁抗风设计指南” 公路桥梁抗风设计指南编写组(1996)
34. L. Patruno, “TAccuracy of numerically evaluated flutter derivatives of bridge deck sections using RANS: Effects on the flutter onset velocity”, Journal of Wind Engineering & Industrial Aerodynamics 89,pp. 49–65 (2015).
35. Mannini,C & Marra,AM & Pigolotti,L & Bartoli,G “The effects of free-stream turbulence and angle of attack on theaerodynamics of a cylinder with rectangular 5:1 cross section”, Journal of Wind Engineering & Industrial Aerodynamics 161,pp. 42–58 (2017).
36. Sarkar, P. P., Jones, N. P., and Scanln, R. H., “System Identification for Estimation of Flutter Derivatives” ,Journal of Wind Engineering and Industrial Aerodynamics, Vol. 42(1-3), pp.1243-1254 (1992).
37. 黃明慧,“曲線斜張橋之顫振與抖振研究” ,淡江大學土木系博士論文(2012).
38. 李鳳娟,“振態耦合對大跨度橋梁自勵振動現象之影響",私立淡江大學土木工程研究所碩士論文(1995).
39. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R., “Spectral Characteristics of Surface-Layer Turbulence,” Journal of the Royal Meteorological Society, Vol. 98(417), pp.563-589 (1972).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2018-07-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2018-07-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信