§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2007201517095700
DOI 10.6846/TKU.2015.00585
論文名稱(中文) 表面流人工溼地去除污染物之研究
論文名稱(英文) Pollutants removal in free water surface constructed wetlands
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 陳冠佑
研究生(英文) Guan-You Chen
學號 602480336
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-06-24
論文頁數 78頁
口試委員 指導教授 - 康世芳
委員 - 林鎮洋
委員 - 陳起鳳
關鍵字(中) 表面流人工溼地
盒鬚圖法
出流機率法
關鍵字(英) Free water surface constructed wetlands
Box and whisker plot
Effluent probability
第三語言關鍵字
學科別分類
中文摘要
本研究評估新北市鹿角溪及打鳥埤人工溼地污染物削減功能,人工溼地包含5個處理單元,水質與流量為2013至2014年之監測資料,研究目的為(1)評估人工溼地污染物削減率、(2)探討污染物入流負荷與去除速率之關係、(3)評估人工溼地處理單元去除污染物。水質項目包含生化需氧量(BOD)、氨氮(NH3-N)、總氮(TN)、總磷(TP)、總大腸桿菌群(TC),此外,以盒鬚圖法(Box and whisker plot)與出流機率法(effluent probability method, EPM)計算污染物削減率。結果顯示鹿角溪人工溼地之水力停留時間與水力負荷分別為19天及0.02 m/day,打鳥埤人工溼地則分別為14天及0.05 m/day。EPM計算BOD、NH3-N、TN、TP與TC之去除率分別為47.5%、99.9%、85.1%、85.6%與97.5%,以盒鬚圖中位數計算去除率之結果與EPM結果亦相近。人工溼地污染物去除速率與污染物入流負荷量呈良好線性關係,BOD、TN、TP、NH3-N及TC之決定係數(R2)為0.87-0.99,其相關性可作為人工溼地設計參數。此外,鹿角溪與打鳥埤人工溼地於第3處理單元,BOD與營養源(TP、TN) 藉水生植栽去除率分別達約50%與70-80%,氨氮因硝化作用與植物吸收致使去除率高達98%。綜合上述,鹿角溪及打鳥埤人工溼地可有效削減污染物,且BOD、營養鹽及TC之去除率分別達約50%、85%與97%。
英文摘要
This study evaluates the performance of pollutants reduction in Lujiao creek and Daniaopi constructed wetlands (CWs) in New Taipei City. Both CWs contained 5 treatment basins. The data of water quality and flow rate of CWs monitored from 20013 to 2014 was collected. The purposes of this study were (1) to evaluate performance of pollutants reduction by CWs, (2) to examine the relation between influent pollutant loading and removal rate, and (3) to analyze pollutant removals in treatment basins. Water quality items included biochemical oxygen demand (BOD), ammonium nitrogen (NH3-N), total nitrogen (TN), total phosphorus (TP) and total coliform groups (TC). Furthermore, the box and whisker plot median and effluent probability method (EPM) were used to determine the performance of pollutants reduction. 
The result showed that the hydraulic retention time and hydraulic loading rate of Lujiao River CW were 19 days and 0.02 m/day, respectively. Those were 14 days and 0.05 m/day for Daniaopi CW. The removal rates of BOD, NH3-N, TN, TP and TC calculated by EPM were 47.5%, 99.9%, 85.1%, 85.6% and 97.5%, respectively. The removal rates determined by the Box and whisker plot median were almost the same with that by EPM.  Pollutant removal rate has a good linear relationship between inflow pollutant loading with determination coefficient (R2) values of BOD、TN、TP ranged from 0.87 to 0.99. Thus, the relationships could be used to design CWs. Moreover, the removal rates of BOD and nutrients (TN and TP) at third basin of CWs could reach to approximately 50% and 70-80%, respectively. Due to nitrification and plants uptake, the removal rate of NH3-N reached up to 98%. It is concluded that Lujiao creek and Daniaopi CWs effectively reduced pollutants and the removal rates of BOD, nutrients and TC about 50%, 85%and 97%, respectively.
第三語言摘要
論文目次
目錄	I
	圖目錄	III
	表目錄	V
	第一章 前言	1
1.1	研究緣起	1
1.2	研究目的	2
	第二章、文獻回顧	3
2.1	人工溼地定義	3
2.2	人工溼地概述	4
2.2.1 人工溼地種類	4
2.2.2 人工溼地水質淨化機制	7
2.3	國內外人工溼地應用案例	12
	第三章、研究場址及研究方法	20
3.1	研究場址	20
3.1.1 大漢溪人工溼地	20
3.1.2 鹿角溪人工溼地	21
3.1.3 打鳥埤人工溼地	24
3.2	水質資料	27
3.3	污染物削減評估方法	28
	第四章、結果與討論	31
4.1	人工溼地基本水質	31
4.2	出流機率法污染削減評估	42
4.3	NH3-N與TN之相關性分析	50
4.4	污染物負荷與去除速率之分析	52
4.4.1 基本水力參數	52
4.4.2 有機污染物、懸浮固體	55
4.4.3 營養鹽	57
4.4.4 大腸桿菌群(TC)	59
4.5	鹿角溪人工溼地單元水質濃度變化	60
4.6	打鳥埤人工溼地單元水質濃度變化	67
	第五章、結論	74
5.1	結論	74
	參考文獻	75

	圖目錄
圖2.1 表面流人工溼地	4
圖2.2 地下流人工溼地(水平流動)	5
圖2.3 地下流人工溼地(垂直流動)	6
圖3.1 大漢溪人工溼地分佈圖	20
圖3.2 鹿角溪人工溼地配置圖	21
圖3.3 鹿角溪人工溼地處理流程	22
圖3.4 打鳥埤人工溼地配置圖	24
圖3.5 打鳥埤人工溼地處理流程	25
圖3.6 出流機率法圖	29
圖3.7 盒鬚圖	30
圖4.1 大漢溪人工溼地PH盒鬚圖	33
圖4.2 大漢溪人工溼地水溫盒鬚圖	34
圖4.3 大漢溪人工溼地DO盒鬚圖	35
圖4.4 大漢溪人工溼地BOD盒鬚圖	36
圖4.5 大漢溪人工溼地SS盒鬚圖	37
圖4.6 大漢溪人工溼地NH3-N盒鬚圖	38
圖4.7 大漢溪人工溼地TN盒鬚圖	39
圖4.8 大漢溪人工溼地TP盒鬚圖	40
圖4.9 大漢溪人工溼地TC盒鬚圖	41
圖4.10 大漢溪人工溼地BOD出流機率圖	43
圖4.11 大漢溪人工溼地SS出流機率圖	44
圖4.12 大漢溪人工溼地NH3-N出流機率圖	45
圖4.13 大漢溪人工溼地TN出流機率圖	46
圖4.14 大漢溪人工溼地TP出流機率圖	47
圖4.15 大漢溪人工溼地TN出流機率圖	48
圖4.16 各評估方法去除率	49
圖4.17 NH3-N與TN之相關性	50
圖4.18 NH3-N/TN之出流機率圖	51
圖4.19 鹿角溪人工溼地2013~2014年之流量	53
圖4.20 打鳥埤人工溼地2013~2014年之流量	53
圖4.21 BOD入流負荷與去除速率關係圖	55
圖4.22 SS入流負荷與去除速率關係圖	56
圖4.23 NH3-N入流負荷與去除速率關係圖	57
圖4.24 TN入流負荷與去除速率關係圖	58
圖4.25 TP入流負荷與去除速率關係圖	58
圖4.26 TC入流負荷與去除速率關係圖	59
圖4.27 鹿角溪人工溼地各單元DO濃度變化	61
圖4.28 鹿角溪人工溼地各單元BOD濃度變化	62
圖4.29 鹿角溪人工溼地各單元SS濃度變化	63
圖4.30 鹿角溪人工溼地各單元NH3-N及TN濃度變化	64
圖4.31 鹿角溪人工溼地各單元TP濃度變化	65
圖4.32 鹿角溪人工溼地各單元TC濃度變化	66
圖4.33 打鳥埤人工溼地各單元DO濃度變化	68
圖4.34 打鳥埤人工溼地各單元BOD濃度變化	69
圖4.35 打鳥埤人工溼地各單元SS濃度變化	70
圖4.36 打鳥埤人工溼地各單元NH3-N及TN濃度變化	71
圖4.37 打鳥埤人工溼地各單元TP濃度變化	72
圖4.38 打鳥埤人工溼地各單元TC濃度變化	73

	表目錄
表2.1 溼地型態分類	3
表2.2 人工溼地污染物去除機制	11
表2.3 國內人工溼地去除污染物之案例	18
表2.4 國外人工溼地去除污染物之案例	19
表3.1 鹿角溪人工溼地基本資料表	21
表3.2 鹿角溪人工溼地設計參數	22
表3.3 打鳥埤人工溼地基本資料表	24
表3.4 打鳥埤人工溼地設計參數	25
表4.1 基本水質分析結果	32
表4.2 污染物去除分析結果	42
表4.3 污染物削減評估方法比較表	49
表4.4 鹿角溪人工溼地流量監測結果	54
表4.5 打鳥埤人工溼地流量監測結果	54
表4.6 鹿角溪人工溼地各單元污染物濃度分析表	60
表4.7 鹿角溪人工溼地各單元污染物去除率分析表	60
表4.8 打鳥埤人工溼地各單元污染物濃度分析表	67
表4.9 打鳥埤人工溼地各單元污染物去除率分析表	67
參考文獻
1.	Abe, K., Komada, M., Ookuma, A., Itahashi, S., & Banzai, K. (2014). Purification performance of a shallow free-water-surface constructed wetland receiving secondary effluent for about 5 years. Ecological Engineering, 69, 126-133.
2.	Abou-Elela, S. I., Golinielli, G., Abou-Taleb, E. M., & Hellal, M. S. (2013). Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecological Engineering, 61, Part A, 460-468. 
3.	Borin, M., Politeo, M., & De Stefani, G. (2013). Performance of a hybrid constructed wetland treating piggery wastewater. Ecological Engineering, 51, 229-236. 
4.	Bojcevska, H., & Tonderski, K. (2007). Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds. Ecological Engineering, 29(1), 66-76.
5.	Babatunde, A.O., Zhao, Y.Q., O'Neill, M. & O'Sullivan, B. (2008). Constructed wetlands for environmental pollution control: A review of developments, research and practice in Ireland Water. Environment International, 34,116-126.
6.	Chen, C.F., Lin, J.Y., Huang, C.H., Chen, W.L. & Chueh, N.L.(2009)Performance evaluation of a full-scale natural treatment system for nonpoint source and point source pollution remove. Environ Monit Assces, 157, 391-406.
7.	Chen, T. Y., Kao, C.M., Yeh, T.Y., Chien, H.Y. & Chao, A.C. (2006). Application of a constructed wetland for industrial wastewater treatment: a pilot-scale study. Chemosphere, 64(3), 497-502.
8.	Chang, J., Wu, S., Dai, Y., Liang, W., & Wu, Z. (2013). Nitrogen removal from nitrate-laden wastewater by integrated vertical-flow constructed wetland systems. Ecological Engineering, 58, 192-201. 
9.	Dong, H., Qiang, Z., Li, T., Jin, H., & Chen, W. (2012). Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water. Journal of Environmental Sciences, 24(4), 596-601. 
10.	EI-Sheikh, M.A., Saleh, H.I., EI-Quosy, D.E. & Mahmoud, A.A. (2010). Improving water quality in pollutated drains with free water surface constructed wetlands. Ecologica Engineering, 36,1478-1484.
11.	Gunes, K., Tuncsiper, B., Ayaz, S., & Drizo, A. (2012). The ability of free water surface constructed wetland system to treat high strength domestic wastewater: A case study for the mediterranean. Ecological Engineering, 44, 278-284. 
12.	Li, F., Lu, L., Zheng, X., & Zhang, X. (2014). Three-stage horizontal subsurface flow constructed wetlands for organics and nitrogen removal: Effect of aeration. Ecological Engineering, 68, 90-96. 
13.	Llorens, E., Matamoros, V., Domingo, V., Bayona, J. M., & García, J. (2009). Water quality improvement in a full-scale tertiary constructed wetland: Effects on conventional and specific organic contaminants. Science of the Total Environment, 407(8), 2517-2524. 
14.	Lu, S., Hu, H., Sun, Y., & Yang, J. (2009). Effect of carbon source on the denitrification in constructed wetlands. Journal of Environmental Sciences, 21(8), 1036-1043. 
15.	Maine, M. A., Suñe, N., Hadad, H., Sánchez, G., & Bonetto, C. (2007). Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Chemosphere, 68(6), 1105-1113. 
16.	Martín, M., Gargallo, S., Hernández-Crespo, C., & Oliver, N. (2013). Phosphorus and nitrogen removal from tertiary treated urban wastewaters by a vertical flow constructed wetland. Ecological Engineering, 61, Part A, 34-42. 
17.	Martín, M., Oliver, N., Hernández-Crespo, C., Gargallo, S., & Regidor, M. C. (2013). The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de valencia (spain). Ecological Engineering, 50, 52-61. 
18.	Pelissari, C., Sezerino, P. H., Decezaro, S. T., Wolff, D. B., Bento, A. P., Junior, O. d. C., & Philippi, L. S. (2014). Nitrogen transformation in horizontal and vertical flow constructed wetlands applied for dairy cattle wastewater treatment in southern brazil. Ecological Engineering, 73, 307-310.
19.	Peng, L., Hua, Y., Cai, J., Zhao, J., Zhou, W., & Zhu, D. (2014). Effects of plants and temperature on nitrogen removal and microbiology in a pilot-scale integrated vertical-flow wetland treating primary domestic wastewater. Ecological Engineering, 64, 285-290. 
20.	Sharma, P. K., Takashi, I., Kato, K., Ietsugu, H., Tomita, K., & Nagasawa, T. (2013). Effects of load fluctuations on treatment potential of a hybrid sub-surface flow constructed wetland treating milking parlor waste water. Ecological Engineering, 57, 216-225. 
21.	Song, Z., Zheng, Z., Li, J., Sun, X., Han, X., Wang, W., & Xu, M. (2006). Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in china. Ecological Engineering, 26(3), 272-282. 
22.	Tu, Y. T., Chiang, P. C., Yang, J., Chen, S. H., & Kao, C. M. (2014). Application of a constructed wetland system for polluted stream remediation. Journal of Hydrology, 510, 70-78. 
23.	Vázquez, M. A., de la Varga, D., Plana, R., & Soto, M. (2013). Vertical flow constructed wetland treating high strength wastewater from swine slurry composting. Ecological Engineering, 50, 37-43. 
24.	Vymazal, J., & Brezinova, T. (2014). Long term treatment performance of constructed wetlands for wastewater treatment in mountain areas: Four case studies from the czech republic. Ecological Engineering, 71, 578-583. 
25.	Weerakoon, G. M. P. R., Jinadasa, K. B. S. N., Herath, G. B. B., Mowjood, M. I. M., & van Bruggen, J. J. A. (2013). Impact of the hydraulic loading rate on pollutants removal in tropical horizontal subsurface flow constructed wetlands. Ecological Engineering, 61, Part A, 154-160. 
26.	Wang, Y., Song, X., Ding, Y., Niu, R., Zhao, X., & Yan, D. (2013). The impact of influent mode on nitrogen removal in horizontal subsurface flow constructed wetlands: A simple analysis of hydraulic efficiency and nutrient distribution. Ecological Engineering, 60, 271-275. 
27.	Wu, H., Zhang, J., Li, P., Zhang, J., Xie, H., & Zhang, B. (2011). Nutrient removal in constructed microcosm wetlands for treating polluted river water in northern china. Ecological Engineering, 37(4), 560-568. 
28.	Wu, C.Y., Kao, C.M., Lin, C.E., Chen, C.W. & Lai, Y.C.(2010)Using a constructed wetland for non-point source pollution control and river water quality purification:A case study in Taiwan. Water science and technology, 60(10), 2549-2555
29.	Wu, C.Y., Liu, J.K., Cheng, S.H., Surampalli, D.E., Chen, C.W. & Kao, C.M.(2010)Constructed wetland for water quality improvement:A case study from Taiwan. Water science and technology, 60(10), 2408-2410.
30.	Zheng, Y., Wang, X., Xiong, J., Liu, Y., & Zhao, Y. (2014). Hybrid constructed wetlands for highly polluted river water treatment and comparison of surface- and subsurface-flow cells. Journal of Environmental Sciences, 26(4), 749-756. 
31.	Zhu, H., Yan, B., Xu, Y., Guan, J., & Liu, S. (2014). Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecological Engineering, 63, 58-63. 
32.	陳柏州 (2004),“以人工濕地淨化水質之研究”,國立高雄第一科技大學環境與安全衛生工程系碩士論文
33.	陳佳宜 (2006),“以人工濕地處理生活污水之研究”,國立中山大學環境工程研究所碩士論文
34.	陳忠勳(2008),“人工溼地之水質淨化效益研究”,國立中山大學環境工程學系碩士論文
35.	謝交力余(2011),“以水平流式生物濾床串連地下流式人工濕地處理養豬廢水可行性之研究”,國立中山大學海洋環境及工程學系碩士論文
36.	戴鸞慶(2009),“人工濕地淨化水質效率與補注農田灌溉之研究-以麟洛濕地公園為例”,國立屏東科技大學水土保持系碩士論文
37.	徐寧光(2007),“人工溼地在不同負荷及操作條件下處理效能之研究”,國立臺灣大學環境工程學研究所碩士論文
38.	李翠玉(2008),“人工溼地對水中污染物削減之研究-以嘉義縣荷苞嶼溼地為例”,國立雲林科技大學環境與安全衛生工程研究所
39.	林冠妤(2009),“人工濕地水再生利用之研究”,高苑科技大學土木工程研究所碩士論文
40.	陳易佐(2007),“大型校園人工溼地實場操作模式探討”,嘉南藥理科技大學環境工程與科學系碩士論文
41.	陳怡伶(2006),“以複合式水平流人工濕地處理中高埋齡垃圾滲出水之研究”, 國立中山大學海洋環境及工程學系碩士論文
42.	施孟亨(2006),“成大人工濕地維護管理之研究”,國立成功大學建築研究所碩士論文
43.	陳世偉、 吳俊毅、高志明、 張有義、 (2006),“高屏溪舊鐵橋人工溼地水質淨化功能探討:一個親水的自然系統”,中華民國環境保護學會學刊,第二十九卷第二期
44.	張志光 (2013),“大漢溪人工溼地污染物削減功能評估”,淡江大學水資源及環境工程系碩士論文
45.	美商傑明工程顧問(股)台灣分公司(2013),“102年度新北市高灘地人工溼地經營管理與功能效益分析計畫”,新北市政府高灘地工程管理處
46.	美商傑明工程顧問(股)台灣分公司(2014),“103年度新北市高灘地人工溼地經營管理與功能效益分析計畫”,新北市政府高灘地工程管理處
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信