淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2007201515281900
中文論文名稱 YBaCuFeO5 單晶成長與磁性特性研究
英文論文名稱 Crystal Growth and Magnetic Property Studies of YBaCuFeO5
校院名稱 淡江大學
系所名稱(中) 物理學系博士班
系所名稱(英) Department of Physics
學年度 103
學期 2
出版年 104
研究生中文姓名 賴彥仲
研究生英文姓名 Yen-Chung Lai
電子信箱 yenchung513@gmail.com
學號 898210041
學位類別 博士
語文別 英文
口試日期 2015-07-13
論文頁數 97頁
口試委員 指導教授-杜昭宏
委員-彭維鋒
委員-薛宏中
委員-林昭吟
委員-周方正
中文關鍵字 YBaCuFeO5  懸浮帶區法  中子繞射  磁性結構 
英文關鍵字 YBaCuFeO5  Traveling solvent floating zone  Neutron diffraction  Magnetic structure 
學科別分類
中文摘要 使用改良式光學移動熔區法(traveling solvent floating zone, TSFZ)成功成長的高品質單晶樣品在磁化率量測上分別於455K與170K呈現兩個反鐵磁相。使用中子單晶及粉末繞射,在高溫的反鐵磁相中,(455K~170K),發現Fe與Cu的磁性結構為一個等量的反鐵磁有序排列結構,但此反鐵磁相在170K以下則變成一個增殖向量為ki=(0.5 0.5 0.5±δ)的非等向性沿著c軸的螺旋磁結構,並且經由單晶磁化率量測確定Cu與Fe的自旋磁矩在170 K下,排列在ab平面上。
在外加磁場的單晶中子繞射實驗中,低溫的磁結構(IC)藉由外加磁場轉換至高溫的反鐵磁相(C)之前會經過一個C-IC的混合相;而在移除磁場的過程中,發現了一個全新的亞穩相(metastable phase)。
最後本論文也對於不同比例的Cu與Fe的粉末樣品進行晶體結構與磁性特性的研究,發現在不同比例的樣品中,磁性特性有非常明顯的差異,這個實驗能夠解釋在以前的報導中不一致的轉換溫度。
英文摘要 This thesis reports the single crystal growth and magnetic properties of YBaCuFeO5 (YBCFO) using magnetic susceptibility and neutron diffraction techniques. Using the modified traveling solvent floating zone (TSFZ) technique, we are able to grow the high quality and sizable single crystal of YBCFO for the further studies. The crystal displayes two antiferromagnetic transitions at TN1 ~455 K and TN2 ~ 170 K as indicated by the spin susceptibility anomalies. Using single crystal neutron diffraction measurement, the antiferromagnetic phase between 170 and 455 K is revealed to be a commensurate phase with a q-wavevector qN1=(1/2 1/2 1/2), and this phase undergoes a phase transition to form an incommensurate phase with a q-wavvector qN2=(1/2 1/2 1/2±δ) at TN2, where the incommensurabity δ is dependent on temperature. Further, using high resolution neutron powder diffraction, the incommensurate magnetic phase is confirmed to be a spiral magnetic phase in which the magnetic moments of Fe and Cu ions are laid on the ab-plane to be consistent to that observed by the magnetic susceptibility measurement result.
A detailed H-T phase diagram has been mapped for the YBCFO. By sweeping the temperature and magnetic fields perpendicular to the c-axis, an irreversible commensurate-incommensurate phase crossover with intermediate metastable phases are observed.
This thesis also reports the study of the nonstoichiometry effect of Cu and Fe in YBa(Cu1-xFex)2O5 system. Both of the transition temperatures TN1 and TN2 are sensitively varied from the Cu:Fe=1:1 ratio as little as 1%, which explains the inconsistency of TN1 and TN2 as reported in literatures.
論文目次 Table of Contents
Dedication…………………………….……………………………………………….i
Acknowledgment………………………………………………..…………………....ii
Abstract………………………………………………………….……………...……iii
Table of Contents…………………………………………………………………….iv
List of Tables……...…………………………………………………………....…….vi
List of Figures………………………………………………………………...….….vii
Chapter 1 Introduction…………………………………………………………...….1
1-1 General properties of YBaCuFeO5……………………………………………...1
1-2 Multiferroics……………………………………………………………………8
Chapter 2 Experimental Methods………………………………………………….11
2-1 Sample preparation…………………………………………………………….11
2-1-1 Optical floating zone technique……………………………………………11
2-1-2 Thermal analysis……………………………………………………….…..14
2-2 Sample characterization………………………………………….…………....15
2-2-1 X-ray diffraction…………………………….……………………………..15
2-2-2 EPMA…………………………………….………………………………..18
2-2-3 Magnetic measurement…………………………………………………….19
2-2-4 Neutron diffraction………………………………………….……………..20
2-2-4-1 High intensity powder diffraction station “WOMBAT”…………….…21
2-2-4-2 Triple-axis spectrometer “TAIPAN”……………………….…………..22
2-3 Magnetic neutron diffraction.............................................................................23
2-4 Rietveld Method…………………………………………….…………………24
Chapter 3 Single Crystal Growth of YBaCuFeO5……………………….………..27
3-1 Slow cooling method………………………………………………………….27
3-2 Floating zone method………………………………………………………….31
3-3 Apply self-adjusted flux TSFZ method to material Y2Cu2O5………...……….38
3-4 Summary…………………………………………………………………...….40
Chapter 4 Characterization and analysis………………………………………….41
4-1 Crystal structure……………………………………………………………….41
4-2 Magnetic properties……………………………………………………………45
4-2-1 Susceptibility measurement of single crystal YBaCuFeO5………………..45
4-2-2 Isothermal magnetizations………………………...……………………….49
4-3 Neutron powder diffraction results…………………………………………....51
4-4 Results of neutron single crystal diffraction………………………………..…61
4-4-1 Temperature dependent…………………………………………………….61
4-4-2 Electric field applied……………………………………………………….69
4-4-3 Magnetic field applied……………………………………………………..70
4-5 Fe/Cu substitutions of YBa(Cu1-xFex)2O5……………………………………..83
4-6 Summary……………………………………………………………………....88
Chapter 5 Thesis summary………………………………………………………....90
Reference………………………………………………………………………….…92


List of Tables
1-1 Reported transition temperatures of YBaCuFeO5 powder sample, the MT is magnetic susceptibility versus temperature, and the NPD is neutron powder diffraction……………………………………………………………….………....4
4-1 Structure parameters derived from the Rietveld refinements of YBaCuFeO5 room temperature SXRD with the space group of P4mm (model (A))……………….43
4-2 Structure parameters derived from the Rietveld refinements of YBaCuFeO5 room temperature SXRD with the space group of P4/mmm (model (B))………….…43
4-3 Structure parameters derived from the Rietveld refinements of YBaCuFeO5 room temperature SXRD with the space group of P4/mmm (model (C))…………….43
4-4 Summary of Curie-Weiss law fitting of M/H in the temperature range of 600 to 800 K for YBaCuFeO5………………………………………………………….47






List of Figures
1-1 Crystal structure of (a) YBaCuFeO5 (P4mm and P4/mmm) and (b) YBa2Cu3O7 (Pmmm)…………………………………………………………………………...1
1-2 Models for the crystal structure of YBaCuFeO5. Model (a) non-centrosymmetric (P4mm) with partial Fe/Cu ordered, model (b) non-centrosymmetric (P4mm) with Fe/Cu fully ordered, model (c) centrosymmetric (P4/mmm) with Fe/Cu at the same site, and model (d) centrosymmetric (P4/mmm) with Fe/Cu sites with a small z-splitting.…………………………………………………………………..2
1-3 (a) 2D contour plot showing the temperature dependence of neutron powder diffraction patterns for YBaCuFeO5. (b) Temperature dependence of the integrated intensity of (1/2 1/2 1/2) magnetic reflection and its incommensurate satellites. (c) Portion of the NPD patterns showing these reflections for Morin’s sample (210 and 1.5 K, in black color) and Caignaert’s sample (1.5 K, in blue color). (d) Temperature dependence of the Fe3+ magnetic moment [10]…………5
1-4 The proposed cone model based on the expanded space group P4mm [17]……...7
1-5 Proposed magnetic structure of YBaCuFeO5. (a) Collinear magnetic order at 230 K. (b) Two views of the circular spiral order at 1.5 K [10]……………………….7
1-6 Multiferroic materials combine magnetic and ferroelectrical properties…...…….9
1-7 Schematics of two type spiral magnetic structures in type-II multiferroics. (a) Spins rotate cycloidal in a plane of wave vector Q = Qx here polarization P is implied. (b) Cycloidal spiral that spins rotate in a plane perpendicular to the wave vector [35].………………………………..…………………….…………….....10
2-1 Principle of traveling solve floating zone method………………………………..11
2-2 The differential thermal analysis (DTA) hardware [48]………………………….14
2-3 The Bruker D-8 Advance high resolution diffractometer [49]…………………...15
2-4 The powder X-ray diffraction experimental station at BL01C2, NSRRC [50]…..16
2-5 Diffraction from a set of lattice planes separated by a distance d………………..17
2-6 Schematic diagram of an electron probe micro-analyzer (EPMA) [52]…………18
2-7 Diagram of a single Josephson junction, two superconductors separate by an insulating layer………………………………………………………..………….19
2-8 Diagram of a DC SQUID. J1 and J2 are the Josephson junctions, and Is represents the screening current……………………………………………………….…….20
2-9 Layout of the Wombat, the high intensity powder diffractometer at ANSTO [53]…………………………………………………………………………...…..21
2-10 Layout of the Taipan, the triple-axis spectrometer [54]…………………...……22
3-1 The DTA curve of the YBaCuFeO5/CuO mixture with molar ratio of 30:70....…28
3-2 The top view of crucible after slow cooling, the crystals can be collected from the bottom of the crucible……………………….…..…………….…………………29
3-3 The photographs of YBaCuFeO5 single crystals grown with the slow cooling method……..……………………………………………………………………..29
3-4 The single crystal X-ray diffraction pattern show the surface is (001) plane…....30
3-5 The magnetic susceptibility was measured under a magnetic 3 T perpendiculars to the c-axis………………………………………………………………………....31
3-6 Schematic plot of the modified traveling solvent floating zone technique, and the backscattered electron image (BEI) of the indicated area is shown on the right. EPMA results indicate that the atomic ratio of the Cu2O area (deep gray) is Cu:O=65.33:34.67, and the YBaCuFeO5 area (light gray) is Y:Ba:Cu:Fe:O=11.03:11.63:11.04:10.52:55.68…………………………………..34
3-7 DTA curves of the YBaCuFeO5/CuO mixtures with molar ratios of (a) 20:80, (b) 15:85, (c) 13:87, (d) 10:90, and (e) 5:95; (f) the solidified flux after the crystal growth. The heating and cooling rate is 10°C/min in the air atmosphere. The heating curve is shown for (a) only, and only the cooling curves are shown for the rest……………………………………………………………………………..…35
3-8 The proposed pseudo-binary phase diagram of YBaCuFeO5-CuO……………...36
3-9 YBaCuFeO5 single crystal grown with the TSFZ method, with the direction identified by the Laue picture shown on the right………………………………..37
3-10 SXRD pattern at ambient conditions and the result of Rietveld refinement with space groups P4mm……………………………………………………………....37
3-11 Y2Cu2O5 crystal was growth by using the TSFZ method…………………...….39
3-12 X-ray powder diffraction pattern for Y2Cu2O5 at room temperature with the Rietveld refinement results.………………………………………………………39
3-13 Temperature dependence of magnetic susceptibility along and perpendicular to b-axis……………………………………………………………………………..40
4-1 The x-ray powder diffraction pattern at room temperature and the result of Rietveld refinement with space groups P4/mmm………………………………...42
4-2 Neutron powder diffraction pattern measured at room temperature. Black crosses: observed data. Black line: Rietveld fit obtained using model (A). Red line: Rietveld fit obtained using model (B). Blue line: Rietveld fit obtained using model (C)………………………………………………………………………………...44
4-3 Temperature dependence of the homogeneous spin susceptibility of YBCFO, measured with the field of 1 T applied either parallel or perpendicular to the c-axis.………………………………………………………………………….…46
4-4 The magnetic susceptibility of TN2 as a function of temperature under various applied field along ab-plane.……………..………..……………………………..48
4-5 The dχ/dT as a function of temperature for applied field from H = 0.01 to 7 Tesla for H // ab-plane.……………………………………..…….…………………….48
4-6 The magnetic fields dependence of magnetization along the c-axis and ab-plane at the temperature 150 and 300 K…………………………………………………..50
4-7 The magnetic field dependence of magnetization along the ab-plane at the temperature 110 K, 135 K, and 150 K……………………………………………50
4-8 Plot dM/dH curve of Figure 4-7, and the H-T phase diagram is summarized in the inset.…………………………………...………………………………………....51
4-9 Neutron powder diffraction patterns of YBaCuFeO5 collected between 3 and 470 K……………………………………..…………………………………..……….52
4-10 Selected 2theta range of differential patterns of YBaCuFeO5. M and N are represent the intensity difference from magnetic and nuclear reflections, respectively……………………………………………………………………….53
4-11 Evolution of the magnetic reflection (1/2 1/2 1/2) as a function of temperature. Data were taken from neutron powder diffraction at different temperatures….…54
4-12 Observed (crosses) and fitted (solid lines) neutron powder diffraction patterns of YBaCuFeO5 at 200 K. The difference between the calculated and observed intensities is plotted at bottom. The solid vertical lines mark the calculated positions of Bragg reflections (upper) and magnetic reflections (lower)………...55
4-13 Commensurate magnetic structure of YBaCuFeO5. The magnetic moments of Fe3+ (yellow) and Cu2+ (blue) are refined from NPD pattern at 200 K………………………………………………………………………….………56
4-14 Observed (crosses) and fitted (solid lines) neutron powder diffraction patterns of YBaCuFeO5 collected at 3.5 K, the difference between the calculated and observed intensities are plotted at bottom. The solid vertical lines mark the calculated positions of Bragg reflections (upper) and magnetic reflections (lower)………………………………………………………………………...….57
4-15 Incommensurate magnetic structure of YBaCuFeO5, magnetic moments of Fe3+ (yellow) and Cu2+ (blue) was refined for NPD pattern at temperature 3.5 K.……………………………………………………………………………....…58
4-16 Fits of the neutron powder diffraction pattern recorded at 3.5 K with different phases between the magnetic moments at site 1 and site 2………………………60
4-17 Variation of χ2 as a function of the phase between the magnetic moments at site 1 and site 2.……………………..…………………………………………..………60
4-18 Simulated YBaCuFeO5 incommensurate magnetic reflections patterns at 3.5 K, with λ = 1.62 A for the phase shift between site 1 and site 2 from 0° to 360°…...61
4-19 (a) The reciprocal lattice mapped with single crystal neutron diffraction at room temperature with scattering plane (H H L), magnetic reflections at (h/2 k/2 l/2) are also indexed. (b) An intensity modulation of the magnetic reflections appears along the L-axis.………………….………………………………………………63
4-20 (a) The reciprocal lattice mapped with single crystal neutron diffraction at 80 K with scattering plane (H H L), magnetic reflections at (h/2 k/2 l/2±δ) are also indexed. (b) An intensity modulation of the magnetic reflections appears along the L-axis.……………………...……………………………………………………..64
4-21 The temperature dependence of the q-wavevector of magnetic reflection (0.5 0.5 L)…………………………………...…………………………………………….65
4-22 Temperature dependence of the integrated intensity and the peak position of the magnetic reflection (0.5 0.5 L) for the cooling down (blue color) and heating up (red color) processes………………………...……………………………………66
4-23 The linear scan through the magnetic reflections along the L-direction at different temperatures, (a) at temperature 250 K, showing the commensurate phase (0.5 0.5 0.5), (b) the mixed phase at 160K, and (c) is the incommensurate phase at 10 K.……………………………………...………………..……………67
4-24 Variations of (a) full width at half maximum FWHM, (b) integrated intensity, and (c) position of the magnetic reflections (0.5 0.5 L).………………….…………..68
4-25 Applied electric fields between 5000 V and -5000 V of the incommensurate magnetic reflection (0.5 0.5 L) at temperature 80 K………………..……………69
4-26 The magnetic field was applied from 0 T to 9 T parallel to the ab-plane at 180 K.………………………………………………………..………………………..70
4-27 The field dependence of the incommensurate phase at 135 K for magnetic field perpendicular to the c-axis. These profiles have been shifted with different background constants for clarity….….…………………………………………..71
4-28 The field dependence of the incommensurate phase at 110 K for magnetic field perpendicular to c-axis. C is represents the commensurate phase, and D represents the diffuse scattering. The profiles have been shafted for distinction……...…….72
4-29 ((a) Neutron diffraction intensity measured in linear scans along the (0.5 0.5 L) as a function of the magnetic field applied perpendicular to c-axis at T = 110 K, and (b) field dependence of the integrated intensity.……………………...……..73
4-30 The field dependence of the incommensurate phase at 150 K for magnetic field applied perpendicular to the c-axis. The profiles have been shifted a constant value for distinction.……………………….………………….………………………..74
4-31 The field dependence of the incommensurate phase at 100 K for magnetic field applied perpendicular to the c-axis. C represents the commensurate phase, and D represents the diffuse scattering. The profiles have been shifted a constant value for distinction.………………………………….………..……………………….75
4-32 The magnetic field was reduced from 10 T to 4.75 T at the temperature 110 K, D represents the diffuse scattering and S represents the short range magnetic ordering of IC phase. The profiles have been shifted with a constant value for distinction.………………………..……………...……………………………….76
4-33 T The magnetic field was reduced from 4.5 T to 0 T at the temperature 110 K, the intensity has been shifted with a constant value for distinction.………………....77
4-34 The field dependence of the q-wavevector and intensity of the magnetic reflections at 110K. The magnetic field was ramped from 10 T to 0 T.……...…..78
4-35 The temperature dependence of the incommensurate magnetic phase as increasing the temperature from 110 to 160 K at a field of 4 T. The profiles have been shifted with a constant value for distinction.…………….…………………79
4-36 The temperature dependence of the magnetic reflection as the temperature decreased from 160 to 110 K at a field of 4T. The profiles have been shifted with a constant value for distinction.…………………………...…...…………………..80
4-37 The temperature dependence of the q-wavevector of the magnetic reflections at the magnetic field 4 T during warming from 110 K to 160 K……………………80
4-38 The contour plots collected at 110 K are presented as IC, Mixed, C, and Fringe phase, respectively.………………….......................……………………………..81
4-39 A proposed phase diagram of YBaCuFeO5 for the magnetic field and temperature were increased from the incommensurate magnetic phase……………………....82
4-40 A proposed phase diagram of YBaCuFeO5 crystal for the magnetic field and temperature were decreased from the commensurate magnetic phase, where the green color triangle is represent the commensurate phase including some short range magnetic ordering peaks……………………………………..…………….82
4-41 The x-ray powder diffraction patterns of YBa(Cu1-xFex)2O5 system. Single phase is only in the range of x = 0.45 to 0.51.…………………….…………………….84
4-42 Lattice parameters as a function of x in YBa(Cu1-xFex)2O5 system………….….85
4-43 The variation of the ratio of c/a as a function of x in YBa(Cu1-xFex)2O5 system.…………………………………………...…………..…………………...85
4-44 Temperature dependence of magnetic susceptibility as measured on several compositions with x = 0.51 to 0.46.………...……………………………………87
4-45 The variation of the transition temperatures of TN1 and TN2 as a function of the substitution ratio of Fe/Cu for YBa(Cu1-xFex)2O5.………………………….…....88
參考文獻 [1] L. Er-Rakho, C. Michel, P. Lacorre, and B. Raveau, Journal of Solid State Chemistry 73, 531 (1988).
[2] W. I. F. David et al., Nature 327, 310 (1987).
[3] Y. Maeno, T. Tomita, M. Kyogoku, S. Awaji, Y. Aoki, K. Hoshino, A. Minami, and T. Fujita, Nature 328, 512 (1987).
[4] X. Yao, A. Oka, T. Izumi, and Y. Shiohara, Physica C: Superconductivity 339, 99 (2000).
[5] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Physical Review B 67, 180401 (2003).
[6] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, Nature 429, 392 (2004).
[7] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
[8] Y. Kawamura, T. Kai, E. Satomi, Y. Yasui, Y. Kobayashi, M. Sato, and K. Kakurai, Journal of the Physical Society of Japan 79, 073705 (2010).
[9] B. Kundys, A. Maignan, and C. Simon, Applied Physics Letters 94, 072506 (2009).
[10] M. Morin et al., Physical Review B 91, 064408 (2015).
[11] T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and A. P. Ramirez, Nat Mater 7, 291 (2008).
[12] P. Babkevich, A. Poole, R. D. Johnson, B. Roessli, D. Prabhakaran, and A. T. Boothroyd, Physical Review B 85, 134428 (2012).
[13] A. W. Mombru, C. Christides, A. Lappas, K. Prassides, M. Pissas, C. Mitros, and D. Niarchos, Inorganic Chemistry 33, 1255 (1994).
[14] M. J. Ruiz-Aragon, U. Amador, E. Moran, and N. H. Andersen, Physica C: Superconductivity 235–240, Part 3, 1609 (1994).
[15] V. Caignaert, I. Mirebeau, F. Bouree, N. Nguyen, A. Ducouret, J. M. Greneche, and B. Raveau, Journal of Solid State Chemistry 114, 24 (1995).
[16] M. J. Ruiz-Aragon, E. Moran, U. Amador, J. L. Martinez, N. H. Andersen, and H. Ehrenberg, Physical Review B 58, 6291 (1998).
[17] A. W. Mombru, K. Prassides, C. Christides, R. Erwin, M. Pissas, C. Mitros, and D. Niarchos, Journal of Physics: Condensed Matter 10, 1247 (1998).
[18] C. Meyer, F. Hartmann-Bourton, Y. Gros, and P. Strobel, Solid State Communications 76, 163 (1990).
[19] M. Pissas, C. Mitros, G. Kallias, V. Psycharis, A. Simopoulos, A. Kostikas, and D. Niarchos, Physica C: Superconductivity 192, 35 (1992).
[20] Y. K. Atanassova, V. N. Popov, G. G. Bogachev, M. N. Iliev, C. Mitros, V. Psycharis, and M. Pissas, Physical Review B 47, 15201 (1993).
[21] H. Schmid, Ferroelectrics 162, xix (1994).
[22] C. N. R. Rao, A. Sundaresan, and R. Saha, The Journal of Physical Chemistry Letters 3, 2237 (2012).
[23] B. Jeroen van den and I. K. Daniel, Journal of Physics: Condensed Matter 20, 434217 (2008).
[24] D. Khomskii, Physics 2, 1 (2009).
[25] B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nat Mater 3, 164 (2004).
[26] J. Wang et al., Science 299, 1719 (2003).
[27] Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Physical Review B 56, 2623 (1997).
[28] M. M. Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, Applied Physics Letters 76, 2764 (2000).
[29] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
[30] R. Ramesh and N. A. Spaldin, Nat Mater 6, 21 (2007).
[31] S.-W. Cheong and M. Mostovoy, Nat Mater 6, 13 (2007).
[32] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
[33] I. A. Sergienko and E. Dagotto, Physical Review B 73, 094434 (2006).
[34] M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
[35] T.-h. Arima, Journal of the Physical Society of Japan 76, 073702 (2007).
[36] J. F. Scott, Nat Mater 6, 256 (2007).
[37] M. Bibes and A. Barthelemy, Nat Mater 7, 425 (2008).
[38] C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, Journal of Applied Physics 103, 031101 (2008).
[39] Y.-H. Chu et al., Nat Mater 7, 478 (2008).
[40] T. Mizutani, K. Matsumi, H. Makino, T. Yamamoto, and T. Kato, NEC Research and Development, 86 (1974).
[41] A. Eyer, R. Nitsche, and H. Zimmermann, Journal of Crystal Growth 47, 219 (1979).
[42] S. M. Koohpayeh, D. Fort, and J. S. Abell, Prog. Cryst. Growth Charact. Mater. 54, 121 (2008).
[43] S. M. Koohpayeh, D. Fort, A. Bradshaw, and J. S. Abell, Journal of Crystal Growth 311, 2513 (2009).
[44] K. Ando, M. Higuchi, J. Takahashi, and K. Kodaira, Materials Research Bulletin 29, 385 (1994).
[45] A. B. Christian, S. H. Masunaga, A. T. Schye, A. Rebello, J. J. Neumeier, and Y.-K. Yu, Physical Review B 90, 224423 (2014).
[46] M. Higuchi, R. F. Geray, R. Dieckmann, D. G. Park, J. M. Burlitch, D. B. Barber, and C. R. Pollock, Journal of Crystal Growth 148, 140 (1995).
[47] A. Maljuk, J. Strempfer, C. Ulrich, A. Lebon, and C. T. Lin, Journal of Crystal Growth 257, 427 (2003).
[48] NETZSCH, http://www.lihyuan.com.tw/attachment/product_tw_attach_135.pdf.
[49] BRUKER, http://www.bruker.com/tw/.
[50] NSRRC, http://www.nsrrc.org.tw/lifensrrc/bl01c2.htm.
[51] G. E. Bacon, Neutron diffraction (University of Sheffield, Oxford, 1975), third edn.
[52] EPMA, http://serc.carleton.edu/download/images/8435/probe_schematic.jpg.
[53] ANSTO Wombat, http://www.ansto.gov.au/__data/assets/pdf_file/0005/37049/Wombat_Fact_Sheet.pdf.
[54] ANSTO Taipan, http://www.ansto.gov.au/__data/assets/pdf_file/0015/24225/Taipan_Fact_Sheet.pdf.
[55] G. L. Squires, Introduction of the Theory of Thermal Neutron Scattering (Cambridge University, Cambridge, 1978).
[56] H. Rietveld, Acta Crystallogr. 22, 151 (1967).
[57] H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
[58] J. Rodriguez-Carvajal, An Introduction To The Program FullProf 2000 Laboratoire Leon Brillouin, 2001).
[59] A. C. Larson and R. B. V. Dreele, General Structure Analysis System (GSAS) Los Alamos National Laboratory Report LAUR 86-748, 2004).
[60] B. Toby, J. Appl. Crystallogr. 34, 210 (2001).
[61] P. C. Canfield and Z. Fisk, Philosophical Magazine Part B 65, 1117 (1992).
[62] S. Kimura and K. Kitamura, J. Am. Ceram. Soc. 75, 1440 (1992).
[63] J. M. Ntep, S. Said Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, Journal of Crystal Growth 207, 30 (1999).
[64] S. Fujiwara, H. Morishita, T. Kotani, K. Matsumoto, and T. Shirakawa, Journal of Crystal Growth 186, 60 (1998).
[65] H. J. Scheel and F. Licci, Journal of Crystal Growth 85, 607 (1987).
[66] R. Liang, P. Dosanjh, D. A. Bonn, D. J. Baar, J. F. Carolan, and W. N. Hardy, Physica C: Superconductivity 195, 51 (1992).
[67] R. Liang, D. A. Bonn, and W. N. Hardy, Physica C: Superconductivity 304, 105 (1998).
[68] H. J. Scheel and F. Licci, Thermochim. Acta 174, 115 (1991).
[69] C. T. Lin, W. Zhou, W. Y. Liang, E. Schonherr, and H. Bender, Physica C: Superconductivity 195, 291 (1992).
[70] B. M. Wanklyn, C. Changkang, B. E. Watts, P. Haycock, F. Pratt, P. A. J. de Groot, and G. P. Rapson, Solid State Communications 66, 441 (1988).
[71] D. M. De Leeuw, C. A. H. A. Mutsaers, C. Langereis, H. C. A. Smoorenburg, and P. J. Rommers, Physica C: Superconductivity 152, 39 (1988).
[72] A. Maljuk, S. Watauchi, I. Tanaka, and H. Kojima, Journal of Crystal Growth 212, 138 (2000).
[73] D. Shulyatev, S. Karabashev, A. Arsenov, Y. Mukovskii, and S. Zverkov, Journal of Crystal Growth 237–239, Part 1, 810 (2002).
[74] L. Chul-Ho, K. Nobuhisa, H. Syoichi, K. Kenji, W. Shuichi, Y. Kazuyoshi, and E. Yasuo, Supercon. Sci. Technol. 11, 891 (1998).
[75] D. Elwell and H. J. Scheel, Crystal growth from high-temperature solutions (Academic Press, London, 1975).
[76] S. W. Cheong, J. D. Thompson, Z. Fisk, K. A. Kubat-Martin, and E. Garcia, Physical Review B 38, 7013 (1988).
[77] M. Motokawa, K. Kita, H. Shibazaki, H. Ohta, W. J. Jang, M. Hasegawa, and H. Takei, Physica B: Condensed Matter 211, 165 (1995).
[78] Y. Nishimura, Y. Matsuoka, S. Miyashita, H. Komatsu, M. Motokawa, T. Nakada, and G. Sazaki, Journal of Crystal Growth 207, 206 (1999).
[79] N. Imanaka, G. Adachi, H. Dabkowska, A. Dabkowski, and J. E. Greedan, Journal of Crystal Growth 141, 150 (1994).
[80] W.-J. Jang, M. Hasegawa, T. R. Zhao, H. Takei, M. Tamura, and M. Kinoshita, Journal of Crystal Growth 141, 153 (1994).
[81] U. Adem, G. Nenert, Arramel, N. Mufti, G. R. Blake, and T. T. M. Palstra, Eur. Phys. J. B 71, 393 (2009).
[82] A. I. Klyndyuk, E. A. Chizhova, and V. M. Kononovich, Russ. J. Inorg. Chem. 53, 1561 (2008).
[83] J. Linden, M. Kochi, K. Lehmus, T. Pietari, M. Karppinen, and H. Yamauchi, Journal of Solid State Chemistry 166, 118 (2002).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信 dss@mail.tku.edu.tw