淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2007201117183700
中文論文名稱 Paenibacillus macerans TKU029生產生物界面活性劑之條件與特性分析
英文論文名稱 Production and characterization of biosurfactants from Paenibacillus macerans TKU029
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 99
學期 2
出版年 100
研究生中文姓名 吳佳真
研究生英文姓名 Chia-Chen Wu
學號 698180071
學位類別 碩士
語文別 中文
口試日期 2011-07-12
論文頁數 89頁
口試委員 指導教授-王三郎
委員-陳佑汲
委員-王全祿
中文關鍵字 Paenibacillus macerans  Biosurfactant  Surface tension 
英文關鍵字 Paenibacillus macerans  Biosurfactant  Surface tension 
學科別分類 學科別自然科學化學
中文摘要 本研究篩選自淡水紅樹林生物界面活性劑生產菌TKU029,經由16SrDNA序列比對及API試驗鑑定為Paenibacillus macerans 。
P. macerans TKU029 生產生物界面活性劑之較適培養條件為,將含有2%烏賊軟骨粉、0.1% K2HPO4 及0.05% MgSO4.7H2O之100mL液態培養基(pH 7.21)充填於250 mL之錐形瓶,經滅菌20分鐘後進行接菌,並於30℃搖瓶(150rpm)培養3天。醱酵所得離心上清液,經鹼沈澱、甲醇萃取等步驟,進行生物界面活性劑之純化,其產量為1.76 g/L。
P. macerans TKU029所生產生物界面活性劑能將水的表面張力從72降至36.34 mN/m,其乳化活性為52~56%且具熱穩定性。TKU029生物界面活性劑之pH安定性為4~10、鹽度安定性為1%~5%。微生物抑制測試顯示,TKU029生物界面活性劑對Aspergillus fumigatus、Fusarium oxysporum、E. coli、Bacillus subtilis TKU007、Staphylococcus aureus和Pseudomonas aeruginosa K187皆有抑制效果,且可應用在草莓之保存。
英文摘要 The biosurfactant producing strain, TKU029, was isolated from Taiwanese soil and identified as Paenibacillus macerans by 16S rDNA gene sequencing and API (Analyitcal Profile Index) test.
The optimized culture condition for biosurfactant production was composed of 2% squid pen powder (SPP), 0.1% K2HPO4, 0.05% MgSO4.7H2O (pH 7.21), with autoclave treatment for 20 min, afterward, P. macerans TKU029 was incubated in 100mL of above liquid medium in a flask (250 mL) and kept shaking at 30℃ for three days. The biosurfactant was extracted from the culture supernament by alkaline precipitation, extraction of methanol. The yields of biosurfactant was 1.76 g/L.
P. macerans TKU029 biosurfactant could reduce surface tension of water from 72 to 36.34 mN/m. The emulsification index was 52~56%. And the biosurfactant had good thermal staility and was resistant to higher temperatures. The pH stability was 4~10, and the salinity stability was

1%~5%. The P. macerans TKU029 biosurfactant showed antimicrobial activity against A. fumigatus、F. oxysporum、E. coli、B. subtilis TKU007、S. aureus and P. aeruginosa K187. Besides, P. macerans TKU029 biosurfactant could preserve strawberry.
論文目次 目錄
頁次
封面內頁
授權書
簽名頁
中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
圖目錄 IX
表目錄 XII

第一章 緒論 1
第二章 文獻回顧 3
2.1 多黏芽孢桿菌 (Paenibacillus) 之簡介 3
2.2 界面活性劑 3
2.3 界面活性劑之種類 4
2.3.1 陰離子界面活性劑 (Anionic surfactants) 4
2.3.2 陽離子界面活性劑 (Cationic surfactants) 5
2.3.3 非離子界面活性劑 (Nonionic surfactants) 5
2.3.4 兩性離子界面活性劑 (Amphoteric surfactants) 5
2.4 生物界面活性劑 7
2.4.1 生物界面活性劑之種類 7
2.4.2 生物界面活性劑之性質 9
2.4.3 生物界面活性劑之應用 11
第三章 材料與方法 13
3.1 實驗菌株 13
3.2 實驗材料 13
3.3 實驗儀器 14
3.4生物界面活性劑生產菌之篩選 15
3.5表面張力測量 15
3.6生物界面活性劑較適生產條件探討 15
3.6.1碳/氮源濃度 15
3.6.2培養體積 16
3.6.3 培養溫度 16
3.6.4培養基pH值 16
3.6.5 培養時間 17
3.7生物界面活性劑之分離純化 17
3.8生物界面活性劑之特性分析 17
3.8.1熱穩定性 17
3.8.2 鹽安定性 18
3.8.3 pH安定性 18
3.8.4 臨界微胞濃度 18
3.8.5 乳化指數 19
3.9 微生物生長抑制試驗 20
3.9.1 黴菌抑制試驗 20
3.9.2 細菌抑制試驗 20
3.10 生物界面活性劑對草苺之保存 21
第四章 結果與討論 22
4.1 生物界面活性劑生產菌之篩選 22
4.2菌株TKU029之鑑定 22
4.3 生物界面活性劑較適生產條件探討 23
4.3.1 碳/氮源濃度探討 23
4.3.2 培養液體積探討 23
4.3.3 培養溫度探討 24
4.3.4 培養pH值探討 24
4.3.5 較適培養條件探討 25
4.4 生物界面活性劑製成研究 33
4.4.1 生物界面活性劑純化程序 34
4.4.2 生物界面活性劑結構分析 34
4.5 生物界面活性劑特性分析 40
4.5.1 熱穩定性分析 40
4.5.2 鹽安定性分析 44
4.5.3 pH值安定性分析 50
4.5.4 臨界微胞濃度分析 55
4.5.5 乳化能力分析 57
4.6 生物界面活性劑對微生物生長抑制之影響 62
4.6.1 黴菌抑制率之探討 62
4.6.2 細菌抑制率之探討 67
4.7 生物界面活性劑對草苺保存之影響 75
第五章 結論 78
參考文獻 79





圖目錄
頁次

圖 3.1 乳化指數計算之示意圖 19
圖 4.1 TKU029之API 菌種鑑定 22
圖 4.2 烏賊軟骨添加濃度對P. macerans TKU029生物界面
活性劑生產之影響 26
圖 4.3 培養液體積對P. macerans TKU029 生物界面活性劑
生產之影響 27
圖 4.4 培養溫度對P. macerans TKU029 生物界面活性劑生
產影響 28
圖 4.5 培養基的pH值對P. macerans TKU029 生物界面活
性劑生產之影響 29
圖 4.6 發酵液之表面張力及pH值變化 29
圖 4.7 P. macerans TKU029於SPP培養基生產生物界面活
性劑之生長曲線圖 30
圖 4.8 P. macerans TKU029 生物界面活性劑分離程序 35
圖 4.9 P. macerans TKU029 所生產生物界面活性劑之純化
流程圖 36
圖4.10 P. macerans TKU029生物界面活性劑之MALD-TOF
MS圖譜 37
圖 4.11 P. macerans TKU029 生物界面活性劑之質量光譜 38
圖 4.12 P. macerans TKU029 生物界面活性劑之1H NMR 39
圖 4.13 高溫高壓處理對P. macerans TKU029生物界面活
性劑的表面張力及乳化作用之影響 41
圖 4.14 高溫高壓處理對不同界面活性劑表面張力之影響 42
圖 4.15 高溫高壓對不同界面活性劑乳化活性之影響 43
圖 4.16 鹽濃度對於P. macerans TKU029生物界面活性劑
表面張力與乳化作用之影響 46
圖 4.17 鹽濃度對於P. macerans TKU029生物界面活性劑
乳化作用之影響 47
圖 4.18 鹽濃度對於不同界面活性劑表面張力之影響 48
圖 4.19 鹽濃度對於不同界面活性劑乳化作用之影響 49
圖 4.20 pH對於P. macerans TKU029生物界面活性劑表面
張力與乳化作用之影響 52
圖 4.21 pH對於不同界面活性劑表面張力之影響 53
圖 4.22 pH對於不同界面活性劑乳化活性之影響 54
圖 4.23 臨界微胞濃度值。(a) P. macerans TKU029 生物界
面活性劑 (b) SDS 56
圖 4.24 不同界面活性劑之乳化能力 (a)不同濃度之比較
(b)濃度為5mg/L的乳化能力 59
圖 4.25 P. macerans TKU029生物界面活性劑之Aspergillus
fumigatus抑制活性 64
圖 4.26 P. macerans TKU029生物界面活性劑之Fusarium
oxysporum 抑制活性 65
圖 4.27 P. macerans TKU029生物界面活性劑之E. coli抑制
活性。(a) 12小時,(b) 24小時 70
圖 4.28 P. macerans TKU029生物界面活性劑之P. aeruginosa
K187 抑制活性。(a) 12小時,(b) 24小時 71
圖 4.29 P. macerans TKU029生物界面活性劑之S. aureus抑
制活性。(a) 12小時,(b) 24小時 72
圖 4.30 P. macerans TKU029生物界面活性劑之B. subtilis
TKU007抑制活性。(a) 12小時,(b) 24小時 73
圖 4.31 P. macerans TKU029生物界面活性劑對草苺重量損
失率之影響 76
圖 4.32 P. macerans TKU029生物界面活性劑對草苺生長之
影響 77
表目錄
頁次

表 2.1 界面活性劑之種類 6
表 2.2 微生物及其生產的界面活性劑 12
表 4.1 P. macerans TKU029生物界面活性劑之較適生產條
件 30
表 4.2 微生物生產生物界面活性劑條件之比較 31
表 4.3 微生物生產之生物界面活性劑特性比較 60
表 4.4 P. macerans TKU029生物界面活性劑與其他界面活
性劑對真菌半抑制率之比較 66
表 4.5 P. macerans TKU029生物界面活性劑與其他界面活
性劑對細菌半抑制率之比較 74
參考文獻 Angelova B, and Schmauder H P (1999) Lipophilic compounds in biotechnologyinteractions with cells and technological problems. Journal of Biotechnology, 67:13-32.
Ahimou F, Jacques P, and Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology, 27:749-754.
Amezcua-Vega C, Poggi-Varaldo H M, Esparza-Garcia F, Rios-Leal E, and Rodriguez-Vazquez R (2007) Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresource Technology, 98:237-240.
Abdel-Mawgoud A M, Mohammad M A, and Haleem H N (2008) Characterization of surfactin produced by Bacillus subtilis isolates BS5. Applied Biochemistry and Biotechnology, 150:289-303.
Arutchelvi J I, Bhaduri S, Uppara P V, and Doble M (2008) Mannosylerythritol lipids: a review. Journal of Industrial Microbiology and Biotechnology, 35:1559-1570.
Arutchelvi J, Bhaduri S, Uppara P V, and Doble M (2009) Production and characterization of biosurfactant from Bacillus subtilis YB7. Journal of Applied Sciences, 9:3151-3155.
Banat I M (1995a) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technology, 51:1-12.
Banat I M (1995b) Characterization of biosurfactants and their use in pollution removal-state of the art. Acta Biotechnologica, 15:251-267.
Banat I M (1995c) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation. Fuel and Energy Abstracts, 36:290-298.
Bodour A, Dress K, and Miller-Maier R (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Applied and Environmental Microbiology, 69:3280-3287.
Baek K H, Kim H S, Moon S H, Lee I S, Oh H M, and Yoon B D (2004) Effect of soil types on the biodegradation of crude oil by Nocadia sp. H17-1. Journal of Microbiology and Biotechnology, 14:901-905.
Benincasa M, Abalos A, Oliveira I, and Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie Van Leeuwenhoek, 85:1-8.
Biria D, Maghsoudi E, Roostaazad R, Dadafarin H, Sahebghadam Lotfi A, and Amoozegar M A (2009) Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World Journal of Microbiology and Biotechnology, 26:871-878.
Cirigliano M C, and Carman G M (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Applied and Environmental Microbiology, 50:846-850.
Cooper D G, and Goldenberg B G (1987) Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 53:224-229.
Desai J D, and Banat I M (1997) Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61:47-64.
Das P, Mukjerjee S, and Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. Journal of Applied Microbiology, 104:1675-1684.
Daverey A, and Pakshirajan K (2009) Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium. Applied Biochemistry and Biotechnology, 158:663-674.
Gerhardt P, Murray R G E, Costilow R N, and Wester E W (1981) Manual of methods for general bacteriology. The American Society For Microbiology, NY, USA.
Georgiou G, Lim S C, and Sharma M M (1992) Surface-active compounds from microorganisms. Nature Biotechnology, 10:60-65.
Grugurina I, Mariotti F, Fogliano V, Gallo M, Scaloni A, Iacobellis N S, LoCantore P, Mannina L, van Axel Castelli V, Grecco M L, and Graniti A (2002) A new syringopeptide produced by bean strains of Pseudomonas syringae pv. Syringae. Biochimica et Biophysica Acta, 1597:81-90.
Ghojavand H, Vahabzadeh F, Roayaei E, and Shahraki A K (2008) Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). Journal of Collid and Interface Science, 324:172-176.
Gudińa E J, Rocha V, Teixeira J A, and Rodrigues L R (2010a) Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters in Applied Microbiology, 50:419-414.
Gudińa E J, Teixeira J A, and Rodrigues L R (2010b) Isolation and functionl characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids and Surfaces B: Biointerfaces, 76:298-304.
Haddad N IA, Wang J, and Mu B (2008) Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. Journal of Industrial Microbiology and Biotechnology, 35:1597-1604.
Hultberg M, Alsberg T, Khalil S, and Alsanius B (2010) Suppression of disease in tomato infected by Pythium ultimum with a biosurfactant produced by Pseudomonas koreensis. BioControl, 55:435-444.
Ilori M O, Amobi C J, and Odocha A C (2005) Factors affecting biosurfactant production by oil degrading Aeromonas sp. isolated from a tropical environment. Chemosphere, 61:985-992.
Janek T, Łukaszewicz M, Rezanka T, and Krasowska A (2010) Isolation and characterization of two new lipopetide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresource Technology, 101:6118-6123.
Kim H S, Yoon B D, Lee C H, Suh H H, Oh H M, Katsuragi T, and Tani Y (1997) Production and properties of a lipopeptide biosurfactant from Bacillus subtilis C9. Journal of Fermentation and Bioengineering, 84:41-46.
Lee S C, Lee S J, Kim S H, Park I H, Lee Y S, Chung S Y, and Choi Y L (2008) Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil. Bioresource Technology, 99:2288-2292.
Liu X Y, Yang X Z, and Mu B Z (2009) Production and characterization of a C15-surfactin-O-methyl ester by a lipopeptide producing strain Bacillus subtilis HSO121. Process Biochemistry, 44:1144-1151.
Li Z, Li B, Gu Z, Dua G, Wua J, and Chen J (2010) Extracellular expression and biochemical characterization of a-cyclodextrin glycosyltransferase from Paenibacillus macerans. Carbohydrate Research, 354:886-892.
Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, and Imanaka T (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. The Journal of Bacteriology, 175:6459-6466.
Mulligan C N, and Gibbs B F (1993) Factors influencing the economics of biosurfactants. In: Kosaric, N. (Ed.), Biosurfactants, Production, Properties, Application. Marcel Dekker, New York, pp. 329-371.
Makkar R, and Cameotra S (1999) Biosurfactant production by microorganisms on unconventional carbon sources. Journal of Surfactants and Detergents, 2:237-241.
Menezes-Bento F, de Oliveira-Camargo F, Okeke B, and Frankenberger W (2005) Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiological Research, 160:249-255.
Mulligan C N (2005) Environmental applications for biosurfactants. Environmental Pollution, 133:183-198.
Najafi A R, Rahimpour M R, Jahanmiri A H, Roostaazad R, Arabian D, Soleimani M, and Jamshidnejad Z (2011) Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iranian oil well. Colloids and Surfaces B: Biointerfaces, 82:33-39.
Nitschke M, Costa S G V A O, and Contiero J (2005) Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules. Biotechnology Progress, 21:1593-1600.
Olivera N L, Marina L N, Lozada M, del Prado G, Dionisi H B, and Sineriz F (2009) Isolation and characterization of biosurfactantproducing Alcanivorax strains: hydrocarbon accession strategies and alkane hydroxylase gene analysis. Microbiological Research, 160:19-26.
Peypoux F, Bonmatin J P, Labbe H, Grangemard I, Das, B C, Ptak M, Wallach J, and Michel G (1994) Surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. European Journal of Biochemistry, 224:89-96.
Patel R M, and Desai A J (1997) Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3. Journal of Basic Microbiology, 37:281-286.
Patrick R M, and Ellen J B (1999) Bacillus and recently derived genera. Manual of Clinical Microbiology, 357-366.
Pornsunthorntawee O, Wongpanit P, Chavadej S, Abe M, and Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresource Technology, 99:1589-1595.
Perfumo A, Rancich I, and Banat I M (2010a) Possibilities and challenges for biosurfactants use in petroleum industry. In: Sen, R. (Ed.), Biosurfactants advances in Experimental Medicine and Biology, vol. 672. Springer-Verlag, Berlin Heidelberg, pp. 135-157.
Perfumo A, Smyth T J P, Marchant R, and Banat I M (2010b) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Timmis, K.N. (Ed.), Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin Heidelberg, pp. 1501-1512.
Rosen M J (1978) Surfactants and Interfacial Phenomena. Wiley-Interscience, New York, pp. 174.
Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S, and Ron E Z (1988) Production of biodispersan by Acinetobacter calcoaceticus A2. Applied and Environmental Microbiology, 54:317-322.
Richter M, Willey J M, Sussmuth R, Jung G, and Fiedler H P (1998) Streptofacin, novel biosurfactant with aerial mycelium inducing activity from Streptomyces tendae Tu 901/8c. FEMS Microbiology Letters, 163:165-171.
Rosenberg E, and Ron E Z (1999) High- and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology, 52:154-162.
Ron E Z, and Rosenberg E (2001) Natural roles of biosurfactant. Environmental Microbiology, 3:229-236.
Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T, Morikawa M, and Kanaya S (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles, 6:499-506.
Rodrigues L R, Van der Mei H C, Teixeira J A and Oliveira R (2004) Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prosthesis. Applied and Environmental Microbiology, 70:4408-4410.
Rosen M J (2004) Surfactants and interfacial phenomena. John Wiley and Sons, USA.
Rodrigues L R, Teixeira J A, Van der Mei H C, and Oliveira R (2006a) Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids and Surfaces B: Biointerfaces, 53:105-112.
Rodrigues L R, Teixeira J A, Van der Mei H C, and Oliveira R (2006b) Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids and Surfaces B: Biointerfaces, 49:78-85.
Shcherbakova V A, Laurinavichius K S, and Akimenko V K (1999) Toxic effect of surfactants and probable products of their biodegradation on methanogenesis in an anaerobic microbial community. Chemosphere, 39:1861-1870.
Sobrinho H B S, Rufino R D, Luna J M, Salgueiro A A, Campos-Takaki G M, Leite L F C, and Sarubbo L A (2008) Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochemistry, 43:912-917.
Steller S, and Vater J (2000) Purification of fengycin synthetase multienzyme system from Bacillus subtilis b213.
Journal of Chromatography B, 737:267-275.
Shavandi M, Mohebali G, Haddadi A, Shakarami H, and Nuhi A (2011) Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. Strain TA6. Colloids and Surfaces B: Biointerfaces, 82:477-482.
Tan H, Champion J F, Artiola J F, Brusseau M L, and Miller R M (1994) Complexation of cadmium by a rhamnolipid biosurfactant. Environmental Science & Technology, 28:2402–2406.
Thavasi R, Subramanyam Nambaru V R M, Jayalakshmi S, Balasubramanian T, Ibrahim M, and Banat (2009) Biosufactant Production by Azotobacter chroococcum Isolated from the Marine Environment. Marine Biotechnology, 11:551-556.
Thavasi R, Jayalakshmi S, and Banat I M (2011) Effect of biosurfactant and fertilizer on biodegration of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresource Technology, 102:772-778.
Van Hamme J D, Singh A, and Ward O P (2006) Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnology Advances, 24:604-620.
Velazquez-Aradillas J C, Toribio-Jimenez J, del Carmen Angeles Gonzalez-Chavez M, Bautista F, Cebrian M E, Esparza-Garcia F J, and Rodriguez-Vazquez R (2011) Characterisation of a biosurfactant produced by a Bacillus cereus strain tolerant to cadmium and isolated from green coffee grain. World Journal of Microbiology and Biotechnology, 27:907-913.
Wang S L, and Yeh P Y (2006) Production of a surfactant and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochemistry, 41:1545-1552.
Wang C L, Huang T H, Liang T W, Fang C Y, and Wang S L (2011) Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023. New biotechnology in press.
Yakimov M M, Timmis K N, Wray V, and Fredrickson H L (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS 50. Applied and Environmental Microbiology, 61:1706-1713.
Yakimov M M, Golyshin P N, Lang S, Moore E R B, Lunsdorf H, and Timmis K N (1998) Alcanivorax borkurnensis gen. now, sp. nov., a new, hydrocarbon -degrading and surfactant-producing marine bacterium. International Journal of Systematic Bacteriology, 48:339-348.
Yin H, Qiang J, Jia Y, Ye J, Peng H, Qin H, Zhang N, and He B (2009) Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry, 44:302-308.
Zaijc J E, Gignard H, and Gerson D F (1977) Properties and biodegradation of a bioemulsifier from Corynebacterim hydrocarbonoclasticus. Biotechnology and Bioengineering, 91:1303-1320.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-07-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2016-07-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信