淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2007201023045400
中文論文名稱 以模糊時間序列模式預測日本來台旅遊人數
英文論文名稱 The tourism demand forecasting using a novel high-precision fuzzy time series model for the Japanese to Taiwan
校院名稱 淡江大學
系所名稱(中) 管理科學研究所碩士班
系所名稱(英) Graduate Institute of Management Science
學年度 98
學期 2
出版年 99
研究生中文姓名 郭亭君
研究生英文姓名 Ting-Chun Kuo
學號 697620564
學位類別 碩士
語文別 中文
口試日期 2010-06-23
論文頁數 69頁
口試委員 指導教授-曹銳勤
委員-傅敬群
委員-陳怡妃
中文關鍵字 模糊時間序列  適應性模糊時間序列  傅立葉級數  旅遊人數預測  預測  模糊邏輯關係組  殘差分析 
英文關鍵字 Fuzzy time series model  Adaptive fuzzy time series model  Fourier series  residual analysis  forecasting  tourism forecasting  fuzzy logic group 
學科別分類 學科別社會科學管理學
中文摘要 觀光業帶來的商機,給民眾帶來更多的財富,觀光活動也可讓民眾在工作之餘,從事休閒育樂活動,平衡忙碌的生活。觀光產業還可以與自然資源、商務活動結合,進一步透過觀光交流,展現一國的人文內涵、經濟實力及基礎建設現代化程度,對改善整體環境、提升國家文化素質均助益匪淺。
日本一直都是台灣在旅遊市場中最重要客源,透過正確的分析和完善的規劃與管理才能使旅遊市場的供需達到均衡。因此,必須準確地預測來台觀光旅客需求,才以掌握旅遊市場狀況與發展,以進一步規劃各種軟硬體設施的投資,例如:大規模飯店興建、遊覽車購置、導遊培訓…等;反之,不適當的評估或是不精確的預測,將導致觀光資源不敷使用或閒置浪費。
由於統計迴歸模式必需收集完整的變數以建構預測模式,當收集的資料受到限制,時間序列資料存在語意值或是資料量少於50筆時,統計時間序列通常會因為無法得到較小的誤差而失效。為了處理這樣的問題,本研究首先提出採用前期資料的適應性模糊時間序列模式進行分析,結果顯示其績效不佳,且模式無法行進外差的預測。為改善此項缺點,本研究再提出一個具殘差修正的模糊時間序列模式,來處理外差預測的問題,預測結果顯示,無論是內差或外差,其MAPE與RMSE皆相當準確。

英文摘要 Over the past few decades, the tourism industry has been grown very fast. Because of the tourism activity may for the country creation traveling income, plan and the management sightseeing resources because of the forecasting result. Thus, it is very important for planning for potential tourism demand and improving the tourism infrastructure, since accurate forecasting of tourist arrivals. Japan has been the most important source that Taiwan travels all the time. But the international exchange is frequent day by day, the competition of the tour undertaking is fiercer and fiercer, only depend on correct decision and planning and management of perfection.
There are many method can forecast, but when the collected are not enough to model regression model or time series model, or there exist fuzzy time series data, the statistical quantitative methods are usually failure to have smaller forecasting error. In order to provide a much more flexible examination for managing smaller data set or fuzzy data.
In this study, we proposed an adaptive fuzzy time series model for forecasting tourism demand for Japanese to Taiwan. But it can’t forecast accurately, and it can’t forecast about untrained data, so we proposed a new method which combined Fourier series with fuzzy time series for forecasting Japanese tourism demand for Taiwan, and obtained very small forecasting error MAPE and RMSE.

論文目次 目錄 I
圖目錄 III
表目錄 IV
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 4
1-3 研究架構 5
第二章 文獻回顧 6
2-1 旅遊需求預測 6
2-2 模糊時間序列 7
第三章 研究方法 13
3-1 S&C的模糊時間序列模型 13
3-2 適應性模糊時間序列模型(Adaptive fuzzy time series model) 17
3-2-1 適應性模糊時間序列模型--預測大學註冊人數 19
3-3 傅立葉級數(Fourier series method)修正殘差 25
3-3-1 傅立葉級數修正殘差—預測大學註冊人數 30
第四章 實證研究-預測日本來台旅遊人數 47
4-1 適應性模糊時間序列模型 47
4-2 傅立葉級數修正殘差 54
第五章 結論與建議 64
5-1 研究成果與結論 64
5-2 後續研究與建議 65
參考文獻 66
一、 中文部份 66
二、 英文部分 67

圖目錄
圖1-1 研究架構 5
圖3-1 實際註冊人數與適應性模糊時間序列結果比較 25
圖3-2 預測步驟 26
圖3-3 與其他模式預測註冊人數的結果作比較 35
圖3-4 實際註冊人數與預測註冊人數結果比較 39
圖3-5 實際註冊人數與預測註冊人數結果比較 45
圖4-1實際旅遊人數與預測結果 57
圖4-2 實際旅遊人數與預測結果 62


表目錄
表3-1 註冊人數模糊化結果 15
表3-2 語意值區間歷史資料個數 20
表3-3區間再次分割的結果 20
表3-4 實際註冊人數與模糊化註冊人數 21
表3-5波動型矩陣 22
表3-6 適應性模糊時間序列預測結果 24
表3-7 歷史實際註冊人數與模糊註冊人數 32
表3-8 第二階模糊邏輯關係組與預測值 32
表3-9 註冊人數的預測 33
表3-10 與其他模式預測註冊人數的結果作比較 34
表3-11 歷史實際資料和模糊註冊人數 37
表3-12 第二階模糊邏輯關係組 37
表3-13 預測註冊人數 38
表3-14 不同z下的預測結果 40
表3-15 歷史實際資料和模糊註冊人數 42
表3-16 第二階模糊邏輯關係組 42
表3-17 權重變化 43
表3-18 預測註冊人數 44
表3-19不同z下的預測結果 46
表4-1歷史資料落在區間個數 48
表4-2 再次分割區間 48
表4-3 實際旅遊人數與模糊化旅遊人數 50
表4-4 波動型矩陣 50
表4-5 適應性模糊時間序列預測結果 52
表4-6 模糊邏輯關係組與預測值 55
表4-7 權重變化 56
表4-8 旅遊人數的預測 56
表4-9 傳統方法與本方法預測結果之比較 57
表4-10 模糊邏輯關係組與預測值 59
表4-11 權重變化 60
表4-12 旅遊人數的預測 61
表4-13 不同z下的預測結果 63

參考文獻 一、 中文部份
1. 98年來台旅客人次創新高,觀光局乘勝追擊再推10大旅遊主題 (2010年1月13日)。台灣商會聯合資訊網。取自:http://www.tcoc.org.tw/IS/Dotnet/ShowArticle.aspx?ID=55084&AspxAutoDetectCookieSupport=1
2. 丁誌魰、陳韋辰(2008),以GARCH-ARMA探討日本來台旅遊預測。2008 第五屆台灣鄉鎮觀光產業發展與前瞻學術研討會(頁203-213)。台北縣:景文科技大學旅運管理系。
3. 交通部觀光局(1993),中華民國82年觀光年報。
4. 交通部觀光局(1994),中華民國83年觀光年報。
5. 交通部觀光局(1995),中華民國84年觀光年報。
6. 交通部觀光局(1996),中華民國85年觀光年報。
7. 交通部觀光局(1997),中華民國86年觀光年報。
8. 交通部觀光局(1998),中華民國87年觀光年報。
9. 交通部觀光局(1999),中華民國88年觀光年報。
10. 交通部觀光局(2000),中華民國89年觀光年報。
11. 交通部觀光局(2001),中華民國90年觀光年報。
12. 交通部觀光局(2002),中華民國91年觀光年報。
13. 交通部觀光局(2002),觀光客倍增計畫。
14. 交通部觀光局(2002),觀光政策白皮書。
15. 交通部觀光局(2003),中華民國92年觀光年報。
16. 交通部觀光局(2004),中華民國93年觀光年報。
17. 交通部觀光局(2005),中華民國94年觀光年報。
18. 交通部觀光局(2006),中華民國95年觀光年報。
19. 交通部觀光局(2007),2008-2009旅遊台灣年計畫。
20. 交通部觀光局(2007),中華民國96年觀光年報。
21. 交通部觀光局(2008),中華民國97年觀光年報。
22. 交通部觀光局(2009),中華民國98年觀光年報。
23. 歐陽嘉麒(2001),模糊時間序列分析,國立清華大學工業工程與管理學系碩士論文。
二、 英文部分
24. Chen, S. M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81, 311-319.
25. Chen, S. M. (2000). Temperature prediction using fuzzy time series. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 30, 263-275.
26. Chen, S. M. (2002). Forecasting enrollments based on high-order fuzzy time series. Cybernetics and Systems 33, 1-16.
27. Chen, S. M., & Chung, N. Y. (2006). Forecasting Enrollments Using high-order fuzzy time series and genetic algorithms. International Journal of Intelligent Systems, 21, 485–501.
28. Cheng, C. –H., Chen, T.-L., Teoh, H. J., & Chiang,C.-H. (2008). Fuzzy time-series based on adaptive expectation model for TAIEX forecasting, Expert System with Applications, 34, 1126-1132.
29. Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23, 499–510.
30. Huarng, K. (2001). Heuristic models of fuzzy time series for forecasting. Fuzzy Sets and Systems, 123, 369–386.
31. Huarng, K. (2001). Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets and Systems, 123, 387-394.
32. Huarng, K., & Yu, T. H.-K. (2006). The application of neural networks to forecast fuzzy time series. Physica A, 363, 481–491.
33. Kuo, I.-H., Horng, S.-J., Kao, T.-W., Lin, T.-L., Lee, C.-L., & Pan, Y. (2009). An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization. Expert Systems with Applications, 36, 6108-6117.
34. Kuo, I.-H., Horng, S.-J., Chen, Y.-H., Run, R.-S., Kao, T.-W., Chen, R.-J., et al. (2010). Forecasting TAIFEX based on fuzzy time series and particle swarm optimization. Expert Systems with Applications, 37, 1494–1502.
35. Lee, L. –W., Wang, L. –H., & Chen, S. –M. (2007). Temperature prediction and TAIFEX forecasting based on fuzzy logical relationships and genetic algorithms, Expert Systems with Applications, 33, 539-550.
36. Lim, C., & McAleer, M. (2002). Time series forecasts of international travel demand for Australia. Tourism Management 23, 389–396.
37. Lim, C., McAleer, M., & Min, J. C. H. (2009). ARMAX modelling of international tourism demand. Mathematics and Computers in Simulation, 79, 2879-2888.
38. Qu, H., & Lam, S. (1997). A travel demand model for Mainland Chinese tourists to Hong Kong. Tourism Management 18, 593-597.
39. Singh, S. R. (2007). A simple method of forecasting based on fuzzy time series. Applied Mathematics and Computation, 186, 330-339.
40. Singh, S. R. (2007). A robust method of forecasting based on fuzzy time series, Applied Mathematics and Computation, 188, 472-484.
41. Song, H., & Witt, S. F. (2006). Forecasting international tourist flows to Macau. Tourism Management, 27, 214-224.
42. Song, Q., & Chissom, B. S. (1993). Forecasting enrollments with fuzzy time series—part I. Fuzzy Sets and Systems, 54, 1-9.
43. Song, Q., & Chissom, B. S. (1993). Fuzzy time series and its models. Fuzzy Sets and Systems 54, 269-277.
44. Song, Q., & Chissom, B. S. (1994). Forecasting enrollments with fuzzy time series—part II. Fuzzy Sets and Systems, 54, 1-8.
45. Tsaur, R. –C., O Yang, J. –C., & Wang, H. –F. (2005). Fuzzy Relation Analysis in Fuzzy Time Series Model, Computers and Mathematics with Application, 49, 539-548.
46. Wang, C.-H. (2004). Predicting tourism demand using fuzzy time series and hybrid grey theory. Tourism Management, 25, 367–374.
47. Wang, C.-H., & Hsu, L.-C. (2008). Constructing and applying an improved fuzzy time series model: Taking the tourism industry for example. Expert Systems with Applications, 34, 2732-2738.
48. Wang, N.-Y., & Chen, S.-M. (2009). Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factors high-order fuzzy time series. Expert Systems with Applications, 36, 2143–2154.
49. Wong, H.-L., Tu, Y.-H., & Wang, C.-C. (2010). Application of fuzzy time series models for forecasting the amount of Taiwan export. Expert Systems with Applications, 37, 1465-1470.
50. Yu, H.-K. (2005). Weighted fuzzy time series models for TAIEX forecasting. Physica A, 349, 609–624.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-07-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信