淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2007201016072400
中文論文名稱 考慮動態平衡的人形機器人跨越障礙之研究
英文論文名稱 Stepping over an Obstacle for a Humanoid Robot with the Consideration of Dynamic Balance
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 伍寒楨
研究生英文姓名 Han-Chen Wu
學號 696470243
學位類別 碩士
語文別 中文
口試日期 2010-07-06
論文頁數 74頁
口試委員 指導教授-翁慶昌
共同指導教授-黃志良
委員-游文雄
委員-郭重顯
委員-王銀添
中文關鍵字 人形機器人  跨越障礙物  陀螺儀  加速度計  卡爾曼濾波  模糊分散式控制 
英文關鍵字 Dynamic balance  Stepping over an obstacle  Humanoid robot  Fuzzy decentralized control 
學科別分類 學科別應用科學電機及電子
中文摘要 本論文設計一個模糊分散平衡控制器不僅可以使得小型人形機器人跨越障礙物,而且在遭受干擾時亦可以維持自我平衡地跨越障礙物。所建議的人形機器人包含頭部共有21個自由度,而其高度與重量分別為55公分與3.7公斤。在設計與實現上,主要有三大部分:動作設計、姿態擷取、以及平衡控制。在動作設計上,使用人機介面設計小型人形機器人跨越障礙物所需的標準動作。在姿態擷取上,在機器人身體內安裝兩個單軸的陀螺儀與一個具有三軸的加速度計來偵測身體姿態的響應,並使用SOPC (System on a Programmable Chip)技術平行擷取感測器的資料,接著以巴特沃斯濾波器與卡爾曼濾波器獲得較準確的機器人之Pitch和Roll之角度響應。在平衡控制上,首先經由人機介面獲得穩定跨越障礙物所得到的Pitch和Roll之角度響應,作為動態平衡控制所需的參考訊號,接著應用所設計的模糊分散平衡控制器使得人形機器人可以維持自我平衡地跨越障礙物。由實驗結果得知,所設計的模糊分散平衡控制器確實可以使得人形機器人於跨障礙動作中維持自我平衡,並且在受到外力干擾後亦可以恢復到平衡的狀態。
英文摘要 This thesis presents a fuzzy decentralized balance controller for a small size humanoid robot to step over the known obstacle and to keep dynamic balance in the face of external load. The proposed humanoid robot possesses 55 centimeter height, 3.7 kilogram weight, and 21 degree of freedom (DOF). This thesis contains the following three parts: motion control, posture capture and balance control. The first part designed a standard motion of stepping over an obstacle by human-machine interface. A set of sensors combining with two single-axis gyros in the pitching and rolling directions and one three-axis accelerometer, is employed to capture the posture of humanoid robot with respect to its center of gravity. Based on SOPC (System on a Programmable Chip), these signals are processed in the parallel type. Before applying a Kalman filter for the fusion of angular velocity and angular position, a Butterworth filter is applied to filter the unnecessary high frequency of the accelerometer. The final part of this thesis is the design of a fuzzy decentralized control to keep the dynamic balance of the humanoid robot during the stepping over an obstacle. Finally, the corresponding experiments of the stepping over an obstacle in the absence or presence of external disturbance confirm the effectiveness of the proposed humanoid robot system.
論文目次 目錄
中文摘要..................................................................................................I
英文摘要...............................................................................................II
目錄.........................................................................................................III
圖目錄.....................................................................................................V
表目錄...............................................................................................IX
第一章 緒論..........................................................................................1
第二章 系統描述和研究任務...........................................................4
2.1 系統描述........................................................................................4
2.1.1 小型人形機器人機構.............................................................4
2.1.2 整合SOPC之雙處理器系統架構..........................................5
2.1.3 人機介面設計前饋動作........................................................9
2.1.4 感測器規格……................…….……...........................10
2.2 研究任務.......................................................................................12
第三章 動態量測系統................................................…14
3.1 加速度計訊號量測......................................................................14
3.2 陀螺儀訊號量測......................................................................18
3.3 巴特沃斯濾波器...........................................................................23
3.4 卡爾曼濾波器......................................................................29
第四章 應用模糊分散控制於動態平衡.......................................37
4.1 小型人形機器人運動系統………………………………...........37
4.2 模糊分散式控制器設計……………………..…….....................47
4.2.1 模糊控制器之輸入與輸出............…………........................47
4.2.2 歸屬函數....................………….....………………...............50
4.2.3 模糊規則庫...................………….………………................52
4.2.4 模糊推論與解模糊化......................………………..............53
第五章 實驗結果與討論.................................................................54
5.1 姿態量測使用卡爾曼濾波器.......................................................54
5.1.1 卡爾曼濾波器實驗預備........................................................55
5.1.2 卡爾曼濾波器實驗結果........................................................56
5.2 小型人形機器人跨越障礙物.......................................................61
5.2.1 小型人形機器人跨越障礙物實驗預備................................61
5.2.2 小型人形機器人跨越障礙物實驗結果................................62
第六章 結論與未來展望.................................................................69
第七章 附錄.........................................................................................71
參考文獻...............................................................................................72

圖目錄
圖2.1、小型人形機器人機構....................................................................4
圖2.2、小型人形機器人自由度以及座標示意圖..................................5
圖2.3、嵌入式單板電腦RB-100............................................................6
圖2.4、FPGA核心板-EP2C35............................................................7
圖2.5、雙處理器系統架構方塊圖...........................................................9
圖2.6、人機介面示意圖....................................................................9
圖2.7、LIS3LV02DQ加速度計............................................................10
圖2.8、MLX90609陀螺儀.................................................................11
圖3.1、人形機器人之動態量測系統與模糊分散平衡控制方塊圖...14
圖3.2、加速度計座標..................................................................15
圖3.3、加速度計訊號換算Pitch軸角度............................................15
圖3.4、加速度計擺動於運動方向改變所出現的誤差........................16
圖3.5、加速度計水平移動..................................................................17
圖3.6、加速度計訊號擷取模組........................................................18
圖3.7、MLX90609陀螺儀方向定義(a)座標定義(b)旋轉定義...............19
圖3.8、MLX90609陀螺儀讀值與角速度對照..................................20
圖3.9、角速度對時間函數圖.................................................................21
圖3.10、陀螺儀靜止狀態下角速度示意圖.............................................22
圖3.11、陀螺儀靜止狀態下角度飄移示意圖........................................22
圖3.12、陀螺儀SPI模組圖......................................................................23
圖3.13、未濾波前加速度計角度訊號..................................................26
圖3.14、未濾波前加速度計頻率強度分布圖....................................26
圖3.15、濾波後加速度計角度訊號.............................................27
圖3.16、濾波後加速度計頻率強度分布圖................................28
圖3.17、濾波前後結果.............................................................28
圖3.18、卡爾曼濾波器執行步驟示意圖.........................................31
圖4.1、跨越障礙物示意圖....................................................................38
圖4.2、跨越障礙物各單步動作..........................................................38
圖4.3、偏離平衡修正方式..............................................................42
圖4.4、馬達ID與坐標軸定義...............................................................42
圖4.5、雙腳平行支撐之Pitch軸的修正馬達位置..............................43
圖4.6、雙腳平行支撐之Pitch軸的修正方式..................................43
圖4.7、雙腳一前一後支撐之Roll軸的修正馬達位置...................44
圖4.8、雙腳一前一後支撐之Roll軸的修正方式......................44
圖4.9、左單腳支撐之Pitch軸的修正馬達位置......................45
圖4.10、左單腳支撐之Pitch軸的修正方式.........................................45
圖4.11、左單腳支撐之Roll軸的修正馬達位置...............................46
圖4.12、左單腳支撐之Roll軸的修正方式.....................................46
圖4.13、以穩定跨障礙連續動作之角度響應為參考訊號....................48
圖4.14、以穩定跨障礙連續動作之角速度響應為參考訊號...............48
圖4.15、模糊分散控制方塊圖......................................................49
圖4.16、模糊控制輸入變數 與 之歸屬函數...........................51
圖4.17、模糊控制輸出變數 之歸屬函數.................................51
圖5.1、感測器模組裝置於馬達驅動機構之示意圖...............................55
圖5.2、四種運動之量測..........................................................56
圖5.3、卡爾曼估測角度與偏壓準位示意圖..........................................57
圖5.4、四種運動經由巴特沃斯濾波及各感測器量測、卡爾曼濾波與 馬達回授之比較...........................................................59
圖5.5、圖5.4例子不經過巴特沃斯濾波之比較........................60
圖5.6、干擾裝置..........................................................................62
圖5.7、動作編號999之干擾測試圖.....................................................63
圖5.8、999單步動作撞擊後之角度響應...................................63
圖5.9、999單步動作撞擊後之角速度響應.................................63
圖5.10、動作編號3之干擾測試圖..........................................................64
圖5.11、動作編號3單步動作撞擊後之角度響應.................................64
圖5.12、動作編號3單步動作撞擊後之角速度響應..............................65
圖5.13、動作編號11之干擾測試圖...............................................65
圖5.14、編號11單步動作撞擊後之角度響應.........................................66
圖5.15、編號11單步動作撞擊後之角速度響應.....................................66
圖5.16、連續動作之干擾測試圖.........................................................67
圖5.17、連續動作於兩軸無干擾及未啟動平衡控制之角度響應.........67
圖5.18、連續動作於兩軸有干擾及有啟動平衡控制之角度響應.........67
圖5.19、連續動作於兩軸無干擾及無啟動平衡控制之角速度響應.....68
圖5.20、連續動作於兩軸有干擾及有啟動平衡控制之角速度響應.....68


表目錄
表2.1、RB-100規格....................................................................................6
表2.2、FPGA核心板-EP2C35規格............................................................7
表2.3、MLX90609電氣規格....................................................................12
表3.1、加速度計SPI模組腳位功能表.....................................................18
表3.2、陀螺儀SPI模組腳位功能表.........................................................23
表4.1、模糊分散平衡控制系統之模糊規則庫.......................................52

參考文獻 參考文獻

[1] K. Loffler, M. Gienger, F. Pfeiffer and H. Ulbrich, “Sensors and control concept of a biped robot,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp.972-980, Oct. 2004.
[2] Q. Huang and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Trans. Robotics, vol. 21, no. 5, pp. 977-984, Oct. 2005.
[3] Y. Guan, E. S. Neo, K. Yokoi and K. Tanie, “Stepping over obstacles with humanoid robots,” IEEE Trans. Robotics, vol. 22, no. 5, pp. 958-973, Oct. 2006.
[4] K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi and H. Hirukawa, “Real-time planning of humanoid robot’s gait for force-controlled manipulation,” IEEE/ASME Trans. Mechatron., vol. 12, no. 1, pp. 53-62, Feb., 2007.
[5] E. S. Neo, K. Yokoi, S. Kajita and K. Tanie, “Whole-body motion generation integrating operator’s intention and robot’s autonomy in controlling humanoid robots,” IEEE Trans. Robotics, vol. 23, no. 4, pp.763-775, Aug. 2007.
[6] D. Xu, Y. F. Li, M. Tan and Y. Shen, “A new active visual for humanoid robots,” IEEE Trans. Syst. Man & Cyber., Part B, vol. 38, no. 2, pp. 320-330, Apr. 2008.
[7] G. Arechavaleta, J. P. Laumond, H. Hicheur and A. Berthoz, “An optimality principle governing human walking,” IEEE Trans. Robotics, vol. 24, no. 1, pp. 5-14, Feb. 2008.
[8] L. Montesano, M. Lopes, A. Bernardino and Jos´e Santos-Victor, “Learning object affordances: from sensory–motor coordination to imitation,” IEEE Trans. Robotics, vol. 24, no. 1, pp. 15-264, Feb. 2008.
[9] T. Nomura, T. Kanda, T. Suzuki and K. Kato, “Prediction of human behavior in human–robot interaction using psychological scales for anxiety and negative postures toward robots,” IEEE Trans. Robotics, vol. 24, no. 2, pp. 442-451, Apr. 2008.
[10] C. Fu and K. Chen, “Gait synthesis and sensory control of stair climbing for a humanoid robot,” IEEE Trans. Ind. Electronics, vol. 55, no. 5, pp. 2111-2120, May 2008.
[11] T. Kanda, T. Miyashita, T. Osada, Y. Haikawa and H. Ishiguro, “Analysis of humanoid appearances in human–robot interaction,” IEEE Trans. Robotics, vol. 24, no. 3, pp. 725-735, Jun. 2008.
[12] E. Yoshida, C. Esteves, I. Belousov, J. P. Laumond, T. Sakaguchi and K. Yokoi, “Planning 3-D collision-free dynamic robotic motion through iterative reshaping,” IEEE Trans. Robotics, vol. 24, no. 3, pp. 1186-1197, Oct. 2008.
[13] C. Chevallereau, J. W. Grizzle and C. L. Shih, “Asymptotically stable walking of a five-link underactuated 3-D bipedal robot”, IEEE Trans. Robotics, vol. 25, no. 1, pp. 37-50, Feb. 2009.
[14] R. Marin, G. León, R. Wirz, J. Sales, J. M. Claver, P. J. Sanz and J. Fernández , “Remote Programming of Network Robots Within the UJI Industrial Robotics telelaboratory: FPGA Vision and SNRP Network Protocol,” IEEE Trans. Ind. Electronics, vol. 56, no. 12, pp. 4806-4816, Dec. 2009.
[15] P. Y. Hsiao, C. L. Lu and L. C. Fu, “Multilayered image processing for multiscale Harris corner detection in digital realization,” IEEE Trans. Ind. Electronics, vol. 57, no. 5, pp. 1799-1805, May 2010.
[16] M. Armand, J. P. Huissoon and A. E. Patla, “Stepping over obstacles during locomotion: insights from multiobjective optimization on set of input parameters,” IEEE Trans. Rehabilitation Engineering, vol. 6, no. 1, pp. 43-52, Mar. 1998.
[17] A. R. Jarfi, Q. Huang, L. Zhang, J. Yang, Z. Wang and S. Lv, “Realization and trajectory planning for obstacle stepping over by humanoid robot BHR-2,” Proceedings of the IEEE Int. Conf. on Robotics and Biomimetics, pp. 1384-1389, December 17-20, 2006, Kunming, China.
[18] M. Vukobratovi and B. Borovac, “Zero-moment point - Thirty five years of its life,” International Journal of Humanoid Robotics, vol. 1, no. 1, pp. 157–173, 2004.
[19] P. Sardain and G. Bessonne, “Acting on a biped robot. center of pressure-Zero moment point,” IEEE Trans. Syst. Man & Cybern.-Part A, vol. 34, no. 5, pp. 630-637, Sep. 2004.
[20] P. Sardain and G. BessonnetForces, “Zero moment point- measurements from a human walker wearing robot feet as shoes,” IEEE Trans. Syst. Man & Cybern.-Part A, vol. 34, no. 5, pp. 638-648, Sep. 2004.
[21] M. Wisse, D. G. E. Hobbelen and A. L. Schwab, “Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism,” IEEE Trans. Robotics, vol. 23, no. 1, pp.112-123, Feb. 2007.
[22] URL: http://www.eettaiwan.com/SEARCH/ART/MEMS.HTM
[23] 楊武智編譯,感測器與數位信號處理,全華科技圖書股份有限公司,1999。
[24] 張智星,Audio Signal Processing and Recognition (音訊處理與辨識),On-line Books.
[25] 蒙以正,數位信號處理 應用MATLAB,旗標出版社,2004
[26] URL: http://en.wikipedia.org/wiki/Kalman_filter
[27] URL: http://tom.pycke.be/mav/92/kalman-demo-application
[28] J. K. Lee and E. J. Park, “Minimum-order Kalman filter with vector selector for accurate estimation of human body orientation,” IEEE Trans. Robotics, vol. 25, no. 5, pp. 1196-1201, Oct. 2009.
[29] 苗士桓,自我平衡二輪機器人之設計與實現,淡江大學電機工
程學系碩士論文,2010。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-07-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-07-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信