淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2007201015362700
中文論文名稱 前瞻無線寬頻系統之效能評估及研析
英文論文名稱 Study and System Performance Evaluation for Advanced Broadband Wireless Communication System
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 曾憲威
研究生英文姓名 Hsien-Wei Tseng
電子信箱 hwtseng@ee.tku.edu.tw
學號 692351157
學位類別 博士
語文別 英文
口試日期 2010-04-24
論文頁數 97頁
口試委員 指導教授-李揚漢
委員-吳靜雄
委員-曹恆偉
委員-蔡志宏
委員-李三良
委員-許獻聰
委員-郭景致
委員-陳巽璋
委員-詹益光
中文關鍵字 Worldwide Interoperability for Microwave Access(WiMAX)  IEEE 802.16m  Long Term Evolution-Advanced(LTE-A)  Genetic Algorithm(GA)  Scheduling  Calibration Analysis  Link Budget 
英文關鍵字 Worldwide Interoperability for Microwave Access(WiMAX)  IEEE 802.16m  Long Term Evolution-Advanced(LTE-A)  Genetic Algorithm(GA)  Scheduling  Calibration Analysis  Link Budget 
學科別分類
中文摘要 本論文共分為三大部分四個章節來先後討論前瞻無線寬頻系統之效能評估及研析的研究。論文之先期研究利用基因演算法分來處理多使用者在封包排程之問題,進而將問題擴展至WiMAX IEEE 802.16e上之Subchannelization排程問題,最後針對不同的情境來評估及分析次世代行動通信系統並探討該如何提升效能、如何獲得更好的品質之方向來設計及撰寫一套系統評估系統,並利用此套評估系統來評估分析前瞻無線寬頻系統之效能。
第一個部份:在多個頻道的網路下,封包排程(Packet Scheduling)的最佳化是一需要解決的問題,如何把多個頻道上的不同封包,密集的安排到有限且較少的頻道上,這一類有多種組合且困難的排序問題我們統稱為NP-hard問題。
基因演算法(Genetic Algorithm)是一種模仿自然界生物演進的方式而成的演算法,其中多點搜尋以及適者生存的特性,可以幫助我們快速且有效的解決NP-hard的問題,利用這樣特別的演算法來趨近找到優秀的答案,因此在本論文中,將基因演算法的架構上提出一種改良及可實現的硬體架構,利用這樣的架構可以在提升封包排程當中找到最佳化排程的速度,更進一步的靠著實現此架構來應用在光纖通訊網路上之DWDM (Dense Wavelength Division Multiplexing)技術。
第二部份:接續第一部分,我們提出另一種的基因演算法之架構,並應用在WiMAX (IEEE 802.16e) 上之Fast Fourier Transform subchannelization scheduling (FFTSS) 的排程解決方案。此解決方案在於能快速的收斂出在多使用者傳輸的狀況下其下傳鏈路次訊框的最短傳輸時間排列方式。論文中提出已改良及可實現的基因演算法硬體架構,利用這樣的硬體架構來實現在多使用者之傳輸狀況下,下傳鏈路次訊框的最短傳輸時間之排列方式及提升其傳輸的效能與降低所花費的成本。並將基因演算法硬體實現在FPGA上以實際驗證其收歛的結果。
第三個部份:此部份針對分析的情境不同來評估及分析次世代行動通信系統,並探討該如何提升效能、如何獲得更好的品質,這些都是目前各無線通訊大廠以及電信營運商所希望可以達到的目標,這樣的一個目標效益已經不能只單單使用資訊排程的方式來處理,所需要的是一套包含整體模擬分析之模擬系統來分析及評估。
由於需要模擬系統來分析及評估,故本論文整合了規格書(Standard)中所提及之模組(1.流量模型, 2.Link budget, 3.通道模型)來進行本部份之重要分析及評估並使用Matlab軟體之人機介面來設計及撰寫一套系統評估系統。評估系統中利用Traffic Model來亂數產生基地台在傳輸情況下可能之網路使用者流量,並使用基地台中的參數列表來做鏈路估算(Link Budget),之後透過多種不同的Channel Model (包含 Urban Macrocell, Suburban Macrocell, Urban Microcell …等等),來評估所有可能的環境及分析基地台的訊號涵蓋範圍並模擬計算出使用者在不同的情境(室外、室內、不同室內環境)及距離下所可能獲得的調變及Throughput,最後也提出為解決在室內的訊號涵蓋不足的問題,在假設加裝Repeater之設備情況下來分析此時之室內訊號涵蓋品質的評估及分析。
英文摘要 In this thesis it consists of three parts with four chapters to consider the system performance evaluation and system development of the advanced broadband wireless communication system. We first use the Genetic Algorithm (GA) to solve and manage packets scheduling problem for multi-users system. Then, the algorithm is extended to solve the sub-channelization scheduling issue in the WiMAX IEEE802.16e. Finally, we evaluate and analyze the system performance of the next generation mobile communication system under various transmission environments and to design a system performance evaluation guide from the consideration of how to improve the system performance and how to get better transmission quality; it then utilizes this guide to evaluate and analyze the system performance of the next generation wireless communication system.
In part one, a common design issue in the transmission of packets through a network with multiple channels is how to optimally design a packets scheduling algorithm. In the packets scheduling it tries to rearrange the packets that are generated from multiple channels and reassemble them into the finite and less available output channels. This is generally classified as an NP-hard problem.
The Genetic Algorithm (GA) is one of the most efficient ways to solve NP-hard scheduling problem. It endeavors to find a suitable solution to our problem through multiple processors by applying GA characteristic to search for the fittest survivor. Modified and feasible hardware architecture of GA is presented in this part. By utilizing this kind of architecture it not only increases the processing speed in the search of optimal packets scheduling but also utilizes this technique to enhance the efficiency of DWDM (Dense Wavelength Division Multiplexing) in optical fiber communication networks.
In part two, we continue the consideration of the technique as stated in part one by proposing a method of using a heuristic Genetic Algorithm (GA) to solve the Fast Fourier Transform sub-channelization scheduling (FFTSS) problem in WiMAX (IEEE 802.16e) broadband wireless access system. By utilizing this algorithm it can in the shortest time interval to quickly search and find the optimal scheduling of sub-frames in the transmission of the multi-user information through the channel. Modified and feasible GA-based hardware architecture is then proposed in the search for the best configurations of the uplink and/or downlink sub-frames so as to obtain the optimal system throughput as well as to maintain the quality of services. The hardware architecture is finally realized through Field-Programmable Gate-Array (FPGA) to verify the convergence and performance of the designed algorithm.
In part three, system performances under various transmission environments for next generation mobile communications system are evaluated and analyzed; it also investigates the methodology of how to improve the performance and get better quality of service; these are the main tasks that the current wireless communication companies and system service providers currently emphasize on. These tasks can not be achieved by simply utilizing the conventional GA scheduling algorithm a complete and novel system simulation tool to simulate and analyze the whole system behavior and performance is required.
In the development of system simulation tool we integrate the modules as depicted in the IEEE 802.16m standard, such as the traffic flow module, the link budget module and the channel model module, to perform the system analysis and performance evaluation. It also utilizes the main-machine interface of MATLAB software to design and prepare a system evaluation system. In this evaluation system it randomly generates the traffic flows, following the statistical distributions as stated in the 802.16m standard, at the base station at any time instant and then the traffics are transmitted through various channel models to simulate the various RF transmission environments, either indoor or outdoor, and then utilizes the link budget formulas and system parameters to evaluate the system coverage area, system throughput and other system performance characteristics. Finally in the thesis it also proposes several methods to solve the problem of insufficient RF coverage encountered in the indoor receiving; it then evaluates the possible system performance improvement when a repeater is added in the outdoor-indoor transmission.
論文目次 TABLE OF CONTENTS

CHINESE ABSTRACT I
ENGLISH ABSTRACT III
TABLE OF CONTENTS V
LIST OF FIGURES VIII
LIST OF TABLES X
CHAPTER 1 INTRODUCTION 1
1.1 Study Motivation 1
1.1.1 Review the Hardware Genetic Algorithm 2
1.1.2 Review the Implementation of Subchannelization Scheduler 3
1.1.3 Software Simulation Tool for the Capacity Analysis of WiMAX Base Stations 5
1.1.4 System Performance Evaluation for Advanced Broadband Wireless Communication System 6
1.2 Organization 7
CHAPTER 2 HARDWARE IMPLEMENTATION OF GENETIC ALGORITHM IN OPTIMAL PACKET SCHEDULING 11
2.1 Introduction 11
2.2 Application of GA for Optimal Packet Scheduling 12
2.2.1 Optimization of Packet Scheduling 12
2.2.2 Application of GA 14
2.2.3 MATLAB Simulation 16
2.3 Hardware Architecture 18
2.3.1 Main Architecture 18
2.3.2 Genetic Crossover and Mutation Unit 19
2.3.3 Selection Unit 20
2.3.4 Collector Unit 22
2.3.5 Random Generator Unit 23
2.3.6 Register Allocation Unit 23
CHAPTER 3 SUBCHANNEL SCHEDULING IN IEEE 802.16 BROADBAND WIRELESS ACCESS SYSTEMS 25
3.1 Introduction 25
3.2 Scheduler Architecture Design 26
3.2.1 Subscriber Station Source Data 26
3.2.2 Design FFTSS by Using a Genetic Algorithm 29
3.2.2.1 Chromosomes of Parent Generation 30
3.2.2.2 Crossover and Mutation 33
3.3 Analysis and Implementation FFTSS 36
3.3.1 Analysis of FFTSS 36
3.3.2 Implementation of FFTSS 38
3.4 Simulation Results 40
3.4.1 Hardware Architecture of FFTSS 40
3.4.2 Co-simulation of FFTSS 42
CHAPTER 4 CAPACITY ANALYSIS OF WIMAX BASE STATIONS 46
4.1 Introduction 46
4.2 WiMAX Traffic Model 47
4.2.1 VoIP Model 47
4.2.2 Video Streaming 48
4.2.3 FTP 49
4.2.4 HTTP 50
4.3 Chanel Path Loss Model 51
4.3.1 COST-231 Model 51
4.3.2 SUI Model 52
4.4 Link Budget 53
4.5 The Software Design for the Simulation and Analysis of WiMAX Base Station Capacity 56
4.6 Calibration Analysis 58

CHAPTER 5 SYSTEM PERFORMANCE EVALUATION FOR WIRELESS COMMUNICATION SYSTEM 63
5.1 Introduction 63
5.2 Channel Model Description 64
5.2.1 Urban Macrocell 65
5.2.2 Suburban Macrocell 65
5.2.3 Urban Microcell 65
5.2.4 Indoor Small Office 66
5.2.5 Indoor Hot Spot 66
5.2.6 Outdoor to indoor 66
5.2.7 Shadowing factor 67
5.3 Performance Evaluation System Architecture Distribution 68
5.3.1 System Link Budget 68
5.3.2 Steps or procedures in the Link Budget calculation 72
5.3.3 Calculation the SNR and Distance and PER 74
5.4 System Performance 77
5.4.1 Fist Case: Signal Coverage Range of Ideal Base Station 77
5.4.2 Second Case: Signal Coverage Range Model of Near Real Base Station 79
5.4.3 Third Case: Repeater is included 82
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 86
REFERENCES 91


LIST OF FIGURES

Figure 1-1 The Organization of Chapter Dissertation 7
Figure 1-2 The Organization of Architectures Dissertation 8
Figure 2-1 First example of packet scheduling 14
Figure 2-2 Second example of packet scheduling 14
Figure 2-3 Schematic diagram of the conventional architecture in the implementation of genetic algorithm 17
Figure 2-4 Simulation result of packet scheduling using MATLAB software 17
Figure 2-5 Main hardware architecture 19
Figure 2-6 Architecture of crossover hardware 21
Figure 2-7 Architecture of mutation hardware 22
Figure 2-8 Architecture of random number generator 23
Figure 3-1 Functional Block Diagrams for Design and Simulation 30
Figure 3-2 Illustration of the Representation of a Chromosome 32
Figure 3-3 Illustration of Crossover (a) Before Crossover (b) After Crossover 34
Figure 3-4 Illustration of Mutation 35
Figure 3-5 Relationship between Users and Generations 37
Figure 3-6 Hardware Architecture for Implementing Genetic Algorithm 39
Figure 3-7 ALTERA Stratix EP1S80 DSP Development Board 41
Figure 3-8 Timing Sequence Diagrams for Processing 20 Users 41
Figure 3-9 Simulation Platform 44
Figure 3-10 Actual Simulation Platform 44
Figure 3-11 Percentages of Packages Served 45
Figure 4-1 Typical Phone Conversation Profile 48
Figure 4-2 Video Streaming Traffic Model 49
Figure 4-3 FTP Traffic Patterns 49
Figure 4-4 HTTP Traffic Pattern 50
Figure 4-5 GUI of the Software for the Simulation and Analysis of WiMAX Base Station Capacity 56
Figure 4-6 The Functional Block Diagram in the Optimizing Operation of 59
Figure 4-7 Transmission Efficiency Before Calibration (16 QAM) 60
Figure 4-8 RSSI vs. CINR 61
Figure 4-9 Throughput vs. CINR 61
Figure 4-10 The Transmission Efficiency after Calibration (16 QAM) 62
Figure 4-11 Report Profile of the Simulation Result 62
Figure 5-1 Transmitter and Receiver Channel Model 64
Figure 5-2 Performance Evaluation System Architecture 69
Figure 5-3 Receiver SNR vs. Distance (Channel Model: Urban Macrocell) 75
Figure 5-4 MS received PER vs. Distance (Channel Model: Urban Macrocell) 76
Figure 5-5 Signal Coverage Range Model for The Ideal Base Station 78
Figure 5-6 First Case Performance Evaluation Result 79
Figure 5-7 Signal Coverage Range Model of The Near Real Base Station 80
Figure 5-8 The Path Loss vs. Distance of The Second Model 80
Figure 5-9 Evaluated System Performance of the Second Case 81
Figure 5-10 Evaluated System Performance of the Second Case 81
Figure 5-11 Signal Coverage Range Model of a Repeater 83
Figure 5-12 The fundamental characteristics of a sample repeater 84
Figure 5-13 Third Case Performance Evaluation Result 84
Figure 5-14 Third Case Performance Evaluation Result 85
Figure 6-1 The Organization of Future Works 90


LIST OF TABLES

Table 2-1 Register allocation 24
Table 3-1 Link Parameters 28
Table 3-2 Maximum Number of Users in Different Transmission Conditions 29
Table 3-3 User’s Amount of Information and Their Corresponding Number of Symbols 31
Table 3-4 Sub-Channel Assignments for Users, from sub-channel 1 to sub-channel 8, Based on the Outcomes of Random Number Generator 33
Table 3-5 Convergent Rates in Various Generations (%) 38
Table 3-6 Hardware Synthesized and Simulation Results 42
Table 3-7 Convergent Time and the Number of Symbols Transmitted 42
Table 3-8 Simulated Transmission Results between the Ideal and FFTSS Hardware System 42
Table 4-1 VoIP Traffic Model Parameters Specification 47
Table 4-2 Near Real Time Video Streaming Traffic Model Parameters 48
Table 4-3 FTP Traffic Parameters 49
Table 4-4 HTTP Traffic Parameters 50
Table 4-5 Environment Parameters 53
Table 4-6 Link Budget Template 54
Table 4-7 WiMAX Field Trial Data at Fixed Location 60
Table 5-1 Standard deviation of shadow fading distribution 67
Table 5-2 Link Budget Template 70
Table 5-3 PER Simulation Parameter 76
Table 5-4 The Simulation Parameters 77
Table 5-5 The Threshold Parameter with the Modulation Relation 78
參考文獻 REFERENCES

[1] P. Green, “Progress in Optical Networking,” IEEE Communications magazine, January 2001, Vol. 39, No. 1, pp. 54-61.
[2] S. T. Sheu, Y. R. Chuang, Y. J. Cheng, H. W. Tseng, “A Novel Optical IP Router Architecture for WDM Networks,” 15th International Conference on Information Networking (ICOIN'01) , Jan 2001, pp. 335-¬340.
[3] S. T. Sheu, Y. R. Chuang, Y. H. Chern, “An Optimization Solution for Packet Scheduling: A Pipeline-Based Genetic Algorithm Accelerator”, Genetic and Evolutionary Computation — GECCO 2003, July 2003, Vol. 2723/2003, pp. 681-692.
[4] Hsien-Wei Tseng, Ming-Hsueh Chuang, Rong-Hou Wu, Yang-Han Lee, Shiann-Tsong Sheu, and Yung-Kuang Wang, “Application of Hardware Architecture of Genetic Algorithm for Optimal Packet Scheduling” International Journal of Fuzzy Systems, Vol. 10, No. 3, pp. 2021-206, September 2008.
[5] C. Aporntewan, P. Chongstitvatana, “A Hardware Implementation of the Compact Genetic Algorithm,” Evolutionary Computation, Vol. 1, 2001. Proceedings of the 2001 Congress on Evolutim Computatim1, pp. 624–629, May 2001.
[6] I. Kallel, M. Jmaiel and A. M. Alimi, “A Multi-agent Approach for Genetic Algorithm Implementation,” Systems, 2002 IEEE International Conference on Man and Cybernetics, Oct. 2002, Vol. 7, pp. 358-363.
[7] M. S. Sharawi, J. Quinlan, and H. S. Abdel-Aty-Zohdy, “A Hardware Implementation of Genetic Algorithms for Measurement Characterization,” 9th International Conference on Electronics, Circuits and Systems, Sept. 2002, Vol. 3, pp. 1267–1270.
[8] W. Tang and L. Yip, ”Hardware Implementation of Genetic Algorithms Using FPGA”, The 2004 47th Midwest Symposium on Circuits and Systems, July 2004, Vol. 1, pp. I-549 - I-552.
[9] Y. H. Lee, Y. G. Jan and H. W. Tseng, “Hardware Implementation of QoS Scheduling for WiMAX System by Using Genetic Algorithm,” International Journal of Fuzzy Systems, December 2005, Vol. 7, No. 4, pp. 191-198.
[10] IEEE 802.16 Broadband Wireless Access Working Group, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems” IEEE 802.16 Working Group on Broadband Wireless Access Standards, Revision of IEEE Standard 802.16-2001, Jan. 2004.
[11] IEEE 802.16 Broadband Wireless Access Working Group, “DRAFT Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Broadband Wireless Access Systems,” IEEE 802.16 Working Group on Broadband Wireless Access Standards, P802.16Rev2/D1, Revision of IEEE Std 802.16-2004 as amended by IEEE Std 802.16f-2005 and IEEE Std 802.16e-2005, Jan. 2007.
[12] Wongthavarawat, K. and Ganz, A., “Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems,” International Journal of Communication Systems, 2003, Vol. 16, No.1, pp. 81-96.
[13] Xergias, S. A., Passas, N. and Merakos, L., 2005, “Flexible Resource Allocation in IEEE 802.16 Wireless Metropolitan Area Networks,” The 14th IEEE Workshop on Local and Metropolitan Area Networks (LANMAN 2005), 2005, Chania, Crete, Greece, pp. 1-6.
[14] David E. Goldberg, “Genetic Algorithms in Search, Optimization, and Machine Learning,” Addison-Wesley, 1989,
[15] Yaghoobi, H., 2004, “Scalable OFDMA Physical Layer in IEEE 802.16 WirelessMAN,” Intel Technology Journal, Vol. 8, No. 3, pp. 201-212.
[16] Hsien-Wei Tseng, Yen-Hsih Chou, Ming-Hsueh Chuang, Yang-Han Lee, Shiann-Tsong Sheu, and Yih-Guang Jan, “Design and Implementation of Subchannelization Scheduler in IEEE 802.16 Broadband Wireless Access Systems,” Journal of the Chinese Institute of Engineers, Vol. 31, No. 6, pp. 967-976, September 2008.
[17] Tachibana, T., Murata, Y., Shibata, N., Yasumoto, K., and Ito, M., “General Architecture for Hardware Implementation of Genetic Algorithm,” 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM 2006 14th Annual), 2006, Napa, California, pp. 291 - 292.
[18] Tang, Wallace and Yip, Leslie, 2004, “Hardware implementation of genetic algorithms using FPGA,” The 2004 47th Midwest Symposium on Circuits and Systems (MWSCAS 2004), Hiroshima, Japan, Vol. 1, pp. I - 549-52.
[19] Thomson, P. and Miller, J.F., 1994, “Optimization techniques based on the use of genetic algorithms (GAs) for logic implementation on FPGAs,” IEE Colloquium on Software Support and CAD Techniques for FPGAs, pp. 4/1 - 4/4.
[20] Vega-Rodriguez, M.A., Gutierrez-Gil, R., Avila-Roman, J.M., Sanchez-Perez, J.M., and Gomez-Pulido, J.A., “Genetic algorithms using parallelism and FPGAs: the TSP as case study,” International Conference Workshops on Parallel Processing, (ICPP 2005), 2005, Oslo, Norway ,pp. 573 - 579.
[21] IEEE 802.16 Broadband Wireless Access Working Group, “IEEE 802.16m System Requirements Document (SRD),” IEEE 802.16 Working Group on Broadband Wireless Access Standards, IEEE 802.16m-07/002r10, Jan. 2010.
[22] IEEE 802.16 Broadband Wireless Access Working Group, “IEEE 802.16m System Description Document (SDD),” IEEE 802.16 Working Group on Broadband Wireless Access Standards, IEEE 802.16m-09/0034r, Sep.. 2009.
[23] IEEE 802.16 Broadband Wireless Access Working Group, “IEEE 802.16m Evaluation Methodology Document (EMD),” IEEE 802.16 Working Group on Broadband Wireless Access Standards, IEEE 802.16m-08/004r5, Jan. 2009.
[24] J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun, “On the Non-stationarity of Internet Traffic,” Proc. ACM SIGMETRICS 2001, pp. 102-112. 2001.
[25] K. C. Claffy, and S. McCreary, “Internet measurement and data analysis: passive and active measurement,” ASA stat newsletter99 paper, 1999, Available: http://www.caida.org/publications/papers/1999/Nae4hansen/Nae4hansen.html
[26] P. Barford and M. Crovella, “Generating Representative Web Workloads for Network and Server Performance Evaluation,” In Proc. ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 151-160, 1998.
[27] S. Deng, “Empirical Model of WWW Document Arrivals at Access Link,” In Proceedings of the 1996 IEEE International Conference on Communication, vol. 3, pp. 1797 – 1802, 1996.
[28] R. Fielding, J. J. Gettys, C. Mogul, H. Frystik, L. Masinter, P. Leach, and T. Berbers-Lee, “Hypertext Transfer Protocol - HTTP/1.1,” RFC 2616, HTTP Working Group, 1999, Available: http://www.w3.org/Protocols/rfc2616/rfc2616.html
[29] B. Krishnamurthy, and M. Arlitt, “PRO-COW: Protocol Compliance on the Web,” Technical Report 990803-05-TM, AT&T Labs, 1999, Available: http://www.usenix.org/event/usits01/full_papers/krishnamurthy/krishnamurthy.ps
[30] B. Krishnamurthy, and C. E. Wills, “Analyzing Factors That Influence End-to-End Web Performance,” Computer Networks: The International Journal of Computer and Telecommunications Networking, Vol. 33, No.1-6, pp. 17-32, 2000.
[31] H. K. Choi, and J. O. Limb, “A Behavioral Model of Web Traffic” Proceedings of the seventh International Conference on Network Protocols, pp. 327-334, 1999.
[32] IEEE 802.16 Broadband Wireless Access Working Group, “Channel models for fixed wireless applications,” IEEE 802.16 Working Group on Broadband Wireless Access Standards, IEEE 802.16.3c-01/029r4, July. 2001.
[33] A. F. Molisch, H. Asplund, R. Heddergott, Steinbauer, M. and T. Zwick, ‘The COST259 directional channel model – I. overview and methodology,’ IEEE Transactions on Wireless Communications, December 2006, 5, pp. 3421–3433 http://www.merl.com/papers/docs/TR2006-111.pdf
[34] Asplund, H., Glazunov, A. A., Molisch, A. F., Pedersen, K. I. and Steinbauer, M.: ‘The COST259 directional channel model II - macrocells’, IEEE Transactions on Wireless Communications, December 2006, Vol. 5, No. 12, pp. 3434–3450
[35] COST telecommunications, “COST Action 231: Digital mobile radio towards future generation systems, Final Report” European Commission, EUR 18957 (ISBN 92-828-5416-7)
[36] M. Hata, ‘Empirical formula for propagation loss in land mobile radio services’, IEEE Transactions on Vehicular Technology, August 1980, VT-29, pp. 317–325
[37] IEEE 802.16 Broadband Wireless Access Working Group, “Interim Channel Models for G2 MMDS Fixed Wireless Applications,” IEEE 802.16 Working Group on Broadband Wireless Access Standards, IEEE 802.16.3c-00/49r2, November 2000.
[38] V.S. Abhayawardhana, I. J. Wassell, Crosby, D. et al.: ‘Comparison of empirical propagation path loss models for fixed wireless access systems’ Vehicular Technology Conference, June 2005, No. 1, pp. 73 – 77
[39] T-S Chu, and L.J. Greenstein , ‘A quantification of link budget differences between the cellular and PCS bands’, IEEE Transactions on Vehicular Technology, January 1999, Vol. 48, No.1, pp. 60-65
[40] V. Erceg, et al, ‘An empirically based path loss model for wireless channels in suburban environments,’ IEEE JSAC, July 1999, Vol. 17, No. 7, pp. 1205-1211
[41] Recommendation ITU-R M.1225, “Guidelines for evaluation of radio transmission technologies for IMT-2000,” International Telecommunication Union, Feb. 1997.
[42] Recommendation ITU-R M.687, “International Mobile Telecommunications-2000 (IMT-2000)” International Telecommunication Union, Feb. 1997.
[43] G. Calcev, D. Chizhik, B. Goransson, S. Howard, H. Huang, A. Kogiantis, A. F. Molisch, A. L. Moustakas, D. Reed and H. Xu, “ A wideband spatial channel model for system-wide simulations,” IEEE Trans. Vehicular Technology, Vol. 56, No. 2, pp.389-403, March 2007.
[44] D.S. Baum, J. Hansen, and J. Salo, “ An interim channel model for beyond -3G systems- Extending the 3GPP spatial channel modle (SCM)”, Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st, Stockholm, Sweden, vol.5, pp.3132-3136, May 2005.
[45] Y. Oda, K. Tsunekawa, M. Hata, “Advanced LOS path-loss model in microcellular mobile communications,” IEEE Transactions on Vehicular Technology, November 2000, Vol. 49, No. 6, pp.2121-2125.
[46] Christian Hoymann,“Analysis and performance evaluation of the OFDM-based metropolitan area network IEEE 802.16,” The International Journal of Computer and Telecommunications Networking, October, 2005, vol. 49, pp.341-363.
[47] G. L. Stüber, Principles of Mobile Communication, 2nd ed. Norwell, MA: Kluwer, 2001.
[48] Coiler Repeater, “WiMAX TDD Repeaters : BR-2600,” http://www.coiler.com.tw/products_wimax.asp#1
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信