淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2007201013261400
中文論文名稱 使用振動台於建築物受風實際水平振動之舒適度評估
英文論文名稱 Evaluation of Wind-Induced Human Comfort Criteria to Horizontal Vibration of Actual Buildings by Motion Simulator
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 姚凱德
研究生英文姓名 Kai-Te Yao
學號 696380061
學位類別 碩士
語文別 中文
口試日期 2010-07-13
論文頁數 110頁
口試委員 指導教授-吳重成
委員-張景鐘
委員-鄭啟明
委員-陳若華
委員-吳重成
中文關鍵字 風致振動  隨機振動  舒適度標準  回歸週期  振動模擬台  包松分佈 
英文關鍵字 Wind-Induced Motion  Random Vibration  Comfort Criteria  Return Period  Motion Simulator  Poisson Distribution 
學科別分類 學科別應用科學土木工程及建築
中文摘要 建築物在受風擾動下,除安全性上受關注,其使用人員的舒適度在結構設計裡亦是一個重要的議題。對於建築物受風影響造成的振動,其舒適度規範的制定長久以來一直備受爭議,除了身體因素之外,還包括心理、外在因素等眾多影響。台灣目前風力規範訂定之舒適度標準為 5 mm/sec² 加速度,對應之回歸週期為半年。

為建立在地資料以作為未來風力規範改進之參考,本研究使用淡江大學風工程研究中心之振動模擬台,具體執行簡諧振動與真實建築物之隨機振動試驗,獲得問卷調查資料,並據以建立舒適度規範(2%、5%與50%人員發生抱怨百分比)與對應之回歸週期。

由結果得知:
一、舒適度門檻值將隨不同振動頻率而改變 (0.1Hz~1.08Hz)。
二、簡諧振動下處於前後振動方向較處於左右振動方向敏感;隨機振動下
則無顯著方向差異。
三、簡諧振動下振動頻率越高,加速度門檻越低。
四、隨機振動下振動頻率越高,加速度門檻越高。
五、 隨機振動下,振動主頻越低則舒適度門檻受瞬間尖峰振動之影響較大;
振動主頻越高則受整體振動感覺之影響較大。


然而依據本論文之方法求得之回歸週期,無法合理地隨反對百分比增加而增長。原因可能為考慮振動大小之包松分佈不完備所致。未來接續之研究將對此做更好的修正,使回歸週期之決定更合理。
英文摘要 Under wind disturbance, the comfort of occupants in buildings is an important issue in the structural design aside from safety consideration. The human comfort criterion for wind-induced motion has been a long-time controversial issue because many factors, either physiological or psychological, can considerably differentiate the outcome. Recently, a constant criterion of 5 cm/sec2 for a half-year return period was regulated in Taiwan building wind code.
In an attempt to build up the local data base in preparation for improving the building wind code in the future, this research aims to conduct surveys to investigate the comfort criteria by using a motion simulator in the wind engineering research center, Tamkang University. A methodology and feasible procedure to determine the comfort threshold and the return period were proposed in this study. Two types of surveys by using harmonic motion and random motion, respectively, were performed to obtain the comfort thresholds for 2%, 10% and 50% of people objecting and their corresponding return periods.

The survey results indicate that
(1) The comfort thresholds are frequency-dependent in 0.1~1.08 Hz.
(2) Under a harmonic motion, people with body orientation in fore-aft direction are more sensitive to vibration than in side-to-side direction. But this observation does not apply to random motion situation.
(3) Under a harmonic motion, the comfort (acceleration) threshold decreases as the vibration frequency increases.
(4) Under a random motion, the comfort (acceleration) threshold increases as the vibration frequency increases.
(5) Under a random motion, the peak motion effect plays an more important role in comfort when the vibration frequency is lower, while the average motion effect (root-mean-square) is more emphasized in terms of feeling if the vibration frequency is higher.

Unfortunately, it is found that, following the methodology proposed, the return period obtained does not reasonably increase with percentage of people objecting. It might be due to the assumption of Poisson distribution in regard to the vibration, which is worth further investigating in the future studies.
論文目次 目錄………………………………………………………………………Ⅰ
表目錄……………………………………………………………………Ⅳ
圖目錄…………………………………………………………………VII
符號對照表………………………………………………………………XI


第一章 緒論…………………………………………………………1
1.1前言……………………………………………………………1
1.2文獻回顧………………………………………………………2
1.3 研究動機與目的……………………………………………7
1.4論文架構………………………………………………………8

第二章 實驗設計與流程………………………………………………15
2.1實驗設備與器材……………………………………………15
2.1.1水平振動台……………………………………………15
2.1.2感受室…………………………………………………16
2.2第一階段實驗設計-簡諧試驗………………………………17
2.2.1振動參數之選取………………………………………17
2.2.2實驗要項………………………………………………17
2.2.3試驗流程………………………………………………18
2.3第二階段實驗設計-隨機試驗………………………………19
2.3.1振動參數之選取………………………………………19
2.3.2實驗要項………………………………………………20
2.3.3試驗流程………………………………………………21
2.4問卷設計……………………………………………………22
2.4.1先期問卷………………………………………………22
2.4.2舒適度問卷……………………………………………24
第三章 方法與理論…………………………………………………38
3.1舒適度門檻值之分析………………………………………38
3.1.1 對數常態分佈(Log-Normal Distribution)之假設38
3.2回歸週期分析………………………………………………39
3.2.1 包松分佈(Poisson Distribution)之假設………40
3.2.2考慮振動大小之包生分佈(fixed Poison
Distribution………………………………………40
3.2.3負面抱怨百分比之期望值與回歸週期之關係……42

第四章 問卷統計結果…………………………………………………44
4.1簡諧試驗之前後振動感受…………………………………44
4.1.1 門檻值………………………………………………44
4.1.2 回歸週期……………………………………………45
4.2簡諧試驗之左右振動感受…………………………………46
4.2.1 門檻值………………………………………………46
4.2.2 回歸週期……………………………………………47
4.3隨機試驗之前後振動感受(RMS門檻)………………………48
4.3.1 門檻值………………………………………………48
4.3.2 回歸週期……………………………………………49
4.4隨機試驗之前後振動感受(peak門檻)……………………50
4.4.1 門檻值………………………………………………51
4.4.2 回歸週期……………………………………………52



4.5隨機試驗之左右振動感受(RMS門檻)………………………53
4.5.1 門檻值………………………………………………53
4.5.2 回歸週期……………………………………………54

4.6隨機試驗之左右振動感受(peak門檻)……………………55
4.6.1 門檻值………………………………………………55
4.6.2 回歸週期……………………………………………56

4.7本研究舒適度門檻與ISO 6987-1984 之比較……………57

第五章 討論與建議………………………………………………97

參考文獻………………………………………………………………103
附錄一 先期問卷………………………………………………………106
附錄二 簡諧試驗驗-舒適度問卷-……………………………………109
附錄三 隨機試驗-舒適度問卷………………………………………110

表目錄

表(1.2.1)Takeshi Goto建議之感受標準……………………………10
表(1.2.2)Isyumov與Kilpatrick建議之感受標準…………………10
表(2.2.1)簡諧試驗頻率、振幅與最大加速度對應表………………27
表(2.3.1)隨機試驗頻率、振幅與加速度均方根對應表……………27

表(4.1.1)簡諧試驗前後振動下受試者出現負面抱怨之百分比……59
表(4.1.1a) 簡諧試驗前後振動下出現2%負面抱怨之加速度門檻值與回歸週期…………………………………………………………………59
表(4.1.1b) 簡諧試驗前後振動下出現10%負面抱怨之加速度門檻值與回歸週期…………………………………………………………………59
表(4.1.1c) 簡諧試驗前後振動下出現50%負面抱怨之加速度門檻值與回歸週期…………………………………………………………………………60
表(4.1.2)簡諧試驗前後振動下受試者不能忍受一年內再次出現 次該振動之百分比……………………………………………………………60
表(4.2.1)簡諧試驗左右振動下受試者出現負面抱怨之百分比……61
表(4.2.1a) 簡諧試驗左右振動下出現2%負面抱怨之加速度門檻值與回歸週期……………………………………………………………………61
表(4.2.1b) 簡諧試驗左右振動下出現10%負面抱怨之加速度門檻值與回歸週期…………………………………………………………………61
表(4.2.1c) 簡諧試驗左右振動下出現50%負面抱怨之加速度門檻值與回歸週期…………………………………………………………………62
表(4.2.2)簡諧試驗左右振動下受試者不能忍受一年內再次出現 次該振動之百分比……………………………………………………………62
表(4.3.1)隨機試驗前後振動下受試者出現負面抱怨之百分比……63
表(4.3.1a) 隨機試驗前後振動下出現2%負面抱怨之加速度門RMS檻值與回歸週期………………………………………………………………63
表(4.3.1b) 隨機試驗前後振動下出現10%負面抱怨之加速度RMS門檻值與回歸週期……………………………………………………………64
表(4.3.1c) 隨機試驗前後振動下出現50%負面抱怨之加速度RMS門檻值與回歸週期……………………………………………………………64
表(4.4.1a) 隨機試驗前後振動下出現2%負面抱怨之加速度peak門檻值與回歸週期……………………………………………………………65
表(4.4.1b) 隨機試驗前後振動下出現10%負面抱怨之加速度peak門檻值與回歸週期……………………………………………………………65
表(4.4.1c) 隨機試驗前後振動下出現50%負面抱怨之加速度peak門檻值與回歸週期……………………………………………………………65
表(4.3.2) 隨機試驗前後振動下受試者不能忍受一年內再次出現 次該振動之百分比…………………………………………………………66

表(4.5.1) 隨機試驗左右振動下受試者出現負面抱怨之百分比……66
表(4.5.1a) 隨機試驗左右振動下出現2%負面抱怨之加速度RMS門檻值與回歸週期………………………………………………………………67
表(4.5.1b) 隨機試驗左右振動下出現10%負面抱怨之加速度RMS門檻值與回歸週期……………………………………………………………67
表(4.5.1c) 隨機試驗左右振動下出現50%負面抱怨之加速度RMS門檻值與回歸週期……………………………………………………………67
表(4.6.1a) 隨機試驗左右振動下出現2%負面抱怨之加速度peak門檻值與回歸週期……………………………………………………………68
表(4.6.1b) 隨機試驗左右振動下出現10%負面抱怨之加速度peak門檻值與回歸週期……………………………………………………………68
表(4.6.1c) 隨機試驗左右振動下出現50%負面抱怨之加速度peak門檻值與回歸週期……………………………………………………………68
表(4.5.2) 隨機試驗左右振動下受試者不能忍受一年內再次出現 次該振動之百分比比………………………………………………………69






















圖目錄

圖(1.2.1)特殊用途建築物內人體之振動感受門檻值;曲線1–容許加速度值之最低門檻;曲線2–容許加速度值之平均門檻……………11
圖(1.2.2)曲線1–一般用途建築物容許加速度門檻值;曲線2–離岸結構(Off-Shore Fixed Structures)容許加速度門檻值……………12
圖(1.3.3)水平向正弦波之感受門檻值………………………………13
圖(1.3.4)水平向之舒適度標準………………………………………14
圖(1.3.5)一年回歸週期下之各國舒適度規範………………………14


圖(2.1)舒適度感受實驗室……………………………………………28
圖(2.1.1)水平振動模擬台……………………………………………28
圖(2.1.2a)感受室外觀…………………………………………………29
圖(2.1.2b)感受室內觀透視圖…………………………………………29
圖(2.1.2c)感受室內部實景……………………………………………30

圖(2.3.1a)百世大樓數值模擬受風振動位移時間歷時………………31
圖(2.3.1b)百世大樓數值模擬受風振動軌跡圖………………………31
圖(2.3.1c)百世大樓數值模擬受風振動能量頻譜……………………32
圖(2.3.1d)百世大樓數值模擬受風振動濾波前後之能量頻譜………33

圖(2.3.1e)隨機振動試驗使用之0.1099Hz下4種等級之位移………34
圖(2.3.1f)隨機振動試驗使用之0.3235Hz下4種等級之位移………34
圖(2.3.1g)隨機振動試驗使用之0.7507Hz下4種等級之位移………35
圖(2.3.1h)隨機振動試驗使用之1.08Hz下4種等級之位移…………35
圖(2.3.2a)隨機振動試驗使用之0.1099Hz下4種等級之加速度……36
圖(2.3.2b)隨機振動試驗使用之0.3235Hz下4種等級之加速度……36
圖(2.3.2c)隨機振動試驗使用之0.7507Hz下4種等級之加速度……37
圖(2.3.2d)隨機振動試驗使用之1.08Hz下4種等級之加速度………37


圖(4.1.1) 簡諧試驗前後振動下舒適度門檻值之累積分佈函數(CDF)……………………………………………………………………………70
圖(4.1.2a) 簡諧試驗前後振動下2% 受試者出現負面抱怨時,加速度與回歸週期關係…………………………………………………………71
圖(4.1.2b) 簡諧試驗前後振動下10% 受試者出現負面抱怨時,加速度與回歸週期關係………………………………………………………72
圖(4.1.2c) 簡諧試驗前後振動下50% 受試者出現負面抱怨時,加速度與回歸週期關係………………………………………………………73
圖(4.2.1) 簡諧試驗左右振動下舒適度門檻值之累積分佈函數(CDF)…………74
圖(4.2.2a) 簡諧試驗左右振動下2% 受試者出現負面抱怨時,加速度與回歸週期關係…………………………………………………………75
圖(4.2.2b) 簡諧試驗左右振動下10% 受試者出現負面抱怨時,加速度與回歸週期關係………………………………………………………76
圖(4.2.2c) 簡諧試驗左右振動下50% 受試者出現負面抱怨時,加速度與回歸週期關係………………………………………………………77






圖(4.3.1) 隨機試驗前後振動下舒適度門檻值之累積分佈函數(CDF)……………………………………………………………………………78
圖(4.3.2a) 隨機試驗前後振動下2% 受試者對RMS振動出現負面抱怨時,加速度與回歸週期關係……………………………………………79
圖(4.3.2b) 隨機試驗前後振動下10% 受試者對RMS振動出現負面抱怨時,加速度與回歸週期關係……………………………………………80
圖(4.3.2c) 隨機試驗前後振動下50% 受試者對RMS振動出現負面抱怨時,加速度與回歸週期關係……………………………………………81

圖(4.4.1) 隨機試驗前後振動下舒適度尖峰門檻值之累積分佈函數(CDF)……………………………………………………………………82
圖(4.4.2a) 隨機試驗前後振動下2% 受試者對尖峰振動出現負面抱怨時,加速度與回歸週期關係……………………………………………83
圖(4.4.2b) 隨機試驗前後振動下10% 受試者對尖峰振動出現負面抱怨時,加速度與回歸週期關係…………………………………………84
圖(4.4.2c) 隨機試驗前後振動下50% 受試者對尖峰振動出現負面抱怨時,加速度與回歸週期關係…………………………………………85

圖(4.5.1) 隨機試驗左右振動下舒適度RMS門檻值之累積分佈函數(CDF)……………………………………………………………………86
圖(4.5.2a) 隨機試驗左右振動下2% 受試者對RMS振動出現負面抱怨時,加速度與回歸週期關係……………………………………………87
圖(4.5.2b) 簡諧試驗左右振動下10% 受試者對RMS振動出現負面抱怨時,加速度與回歸週期關係……………………………………………88
圖(4.5.2c) 簡諧試驗左右振動下50% 受試者對RMS振動出現負面抱怨時,加速度與回歸週期關係……………………………………………89



圖(4.6.1) 隨機試驗左右振動下舒適度尖峰門檻值之累積分佈函數(CDF)……………………………………………………………………90
圖(4.6.2a) 隨機試驗左右振動下2% 受試者對尖峰振動出現負面抱怨時,加速度與回歸週期關係……………………………………………91
圖(4.6.2b) 隨機試驗左右振動下10% 受試者對尖峰振動出現負面抱怨時,加速度與回歸週期關係…………………………………………92
圖(4.6.2c) 隨機試驗左右振動下50% 受試者對尖峰振動出現負面抱怨時,加速度與回歸週期關係…………………………………………93

圖(4.7.1)簡諧振動試驗結果與ISO 6897之比較……………………94
圖(4.7.2)隨機振動試驗RMS門檻結果與ISO 6897之比較……………95
圖(4.7.3)隨機振動試驗Peak門檻結果與ISO 6897之比較…………96

參考文獻 1. Fazlur R. Khan and Richard A. Parmelee (1971), “Service Criteria for Tall Buildings for Wind Loading”, Proceedings of 3rd International Conference on Wind Effects on Buildings and Structures, Tokyo, Japan, pp. 401-407.
2. Peter W. Chen and Leslie E. Robertson (1972), “Human Perception Threshold of Horizontal Motion”, ASCE Journal of Structural Division, Vol. 98, No. ST8, pp. 1681-1695, 1972.
3. Robert J. Hansen、John W. Reed and Eric H. Vanmarcke, (1973), ”Human Response to Wind-induced Motion of Buildings”, ASCE Journal of Structural Division, Vol. 99, No. ST7, pp. 1589-1605.
4. Takeshi Goto (1983), “Studies on Wind-Induced Motion of Tall Buildings Based on Occupants’ Reactions”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 13, pp. 241-252.
5. A.P.Jeary, R.G.Morris and R.W.Tomlinson (1988), “Perception of Vibration – Tests in a Tall Building”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 29, pp.361-370.
6. Andy W. Irwin (1978), ”Human Response to Dynamic Motion of Structures”, The Structural Engineer, Vol. 56A , No. 9, pp. 237-244.
7. Andy W. Irwin (1986), ”Motion in Tall Buildings”, Proceedings of Conference on Tall Buildings and Urban Habitat - Second Century of the Skyscraper, Van Nostrand, Chicago, pp. 759-778.
8. International Organization for Standardization (1984), Guidelines for the evaluation of the response of occupants of fixed structures, especially buildings and off-shore structures, to low-frequency horizontal motion (0.063 to 1 Hz), ISO6897-1984, Geneva, Switzerland.
9. N. Isyumov (1993), “Criteria for Acceptable Wind-Induced Motions of Tall Buildings”, Proceedings of International Conference on Tall Buildings, Council on Tall Buildings and Urban Habitat, Rio de Janeiro.
10. N. Isyumov and J. Kilpatrick (1996), “Full-Scale Experience with Wind-Induced Motions of Tall Buildings”, Procceedings of ASCE Structures Congress, Chicago, USA.
11. W. H. Melbourne and J.C.J. Cheung (1988), “Designing for Serviceable Accelerations in Tall Buildings”, Proceedings of 4th International Conference on Tall Buildings, Hong Kong and Shanghai, pp. 148-155.


12. W. H. Melbourne, (1998), “Comfort Criteria for Wind-Induced Motion in Structures”, Structural Engineering International 1/98, International Association of Bridge and Structural Engineering, pp. 40-44.
13. Andy W.Irwin (1978), ”Human Response to Dynamic Motion of Structures”, The Structural Engineer, Vol. 56A , No. 9, pp. 237-244.
14. Andy W.Irwin (1986), ”Motion in Tall Buildings”, Proceedings of Conference on Tall Buildings and Urban Habitat - Second Century of the Skyscraper, Van Nostrand, Chicago, pp. 759-778.
15. W. H. Melbourne and J.C.J. Cheung (1988), “Designing for Serviceable Accelerations in Tall Buildings”, Proceedings of 4th International Conference on Tall Buildings, Hong Kong and Shanghai, pp. 148-155.
16. W. H. Melbourne (1998), “Comfort Criteria for Wind-Induced Motion in Structures”, Structural Engineering International 1/98, International Association of Bridge and Structural Engineering, pp. 40-44.
17. Standards Australia/ Standards New Zealand (2002), AS/NZS 1170.2 Supplement 1:2002, Structural Design Actions - Wind Actions - Commentary (Supplement to AS/NZS 1170.2:2002), Sidney, Australia.
18. Takeshi Goto (1975), “Research on Vibration Criteria from the View Point of People Living in Tall Buildings. (Part 1) Various Responses of Humans to Motion”, Transactions of the Architectural Institute of Japan, Vol. 237, No. 11, pp.109-118.
19. J. Kanda, Y. Tamura and K. Fujii, (1988), “Probabilistic Criteria for Human Perception of Low-Frequency Horizontal Motions, Proceedings of Symposium/Workshop on Serviceability of Buildings, Ottawa, pp. 260-269.
20. N. Isyumov, (1993), “Criteria for Acceptable Wind-Induced Motions of Tall Buildings”, Proceedings of International Conference on Tall Buildings, Council on Tall Buildings and Urban Habitat, Rio de Janeiro.
21. N. Isyumov and Kilpatrick, J. (1996), “Full-Scale Experience with Wind-Induced Motions of Tall Buildings”, Procceedings of ASCE Structures Congress, Chicago, USA.
22.S. Nakata, Y.
Tamura and T. Otsuki,(1993), “Habitability under Horizontal Vibration of Law Building", International Colloquium on Structural Serviceability of Buildings, Göteborg, Sweden, IABSE Reports, Vol. 69, pp.39-44.
23.K. Shioya and
J. Kanda (1993), “Human Perception Thresholds of Horizontal Motion", International Colloquium on Structural Serviceability of Buildings, Göteborg, Sweden, IABSE Reports, Vol. 69, pp. 45-52.
24.Kenny C. S.
Kwok, Melissa D. Burton and Peter A. Hitchcock, (2007),“Occupant Comfort and Perception of Motion in Wind-Excited Tall Buildings", Proc. of 12th International Conference on Wind Engineering, Cairns, Australia, pp. 101-115.
25.Melissa D. Burton,
Roy O. Denoon, Richard D. Roberts, Kenny C. S. Kwok, and Peter A. Hitchcock (2003),“A motion simulator to investigate effects of wind-induced building mption", Proc. of 11th International Conference on Wind Engineering, Texas, USA, pp. 1341-1348.
26.John F. Golding(1998),
“Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness", Brain Research Bulletin, Vol.47, No. 5, pp.507-516.
27.John F. Golding(2006),
“Predicting individual differences in motion sickness susceptibility by questionnaire", Personality and Individual Differences 41, pp.237-248.
28.John F. Golding(2006),
“Motion sickness susceptibility", Autonomic Neuroscience: Basic and Clinical 129, pp.67-76.
29.Architectural Institute of
Japan (2004), Guidelines for the evaluation of habitability to building vibration, AIJES-V001-2004, Tokyo, Japan.
30.Architecture and Building
Research Institute of Taiwan (2007), Taiwan Building Wind Code, Taipei, Taiwan.
31.
應用超越門檻法建立基本設計風速之機率分析, “結構工程" 第二十一卷 第二期(1996), 著者 吳重成、鄭啟明、陳若華, pp.4-7
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-07-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-07-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信