淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2007200616573400
中文論文名稱 感應馬達之電氣參數自動辨識研究
英文論文名稱 Research on Automatic Electrical Parameters Identification for Induction Motors
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 李韋瑩
研究生英文姓名 Wei-Ying Li
學號 693340563
學位類別 碩士
語文別 中文
口試日期 2006-07-14
論文頁數 72頁
口試委員 指導教授-楊勝明
委員-蔡明祺
委員-劉添華
委員-楊勝明
委員-廖聰明
委員-賴炎生
中文關鍵字 感應馬達  參數自動辨識  參數估測 
英文關鍵字 Induction Motor  Self-Commissioning  Parameter Estimation 
學科別分類 學科別應用科學機械工程
中文摘要 感應馬達在執行向量控制或進階控制,如無位置感測器控制時,皆需要有正確的電氣參數,本論文綜合文獻中可以找到較容易實現且可以得到較正確之結果的方法,經過適當的改良及整理成一參數自動辨識方法。此方法主要利用控制馬達的電壓或電流在一些特定的波形,利用電壓命令及量測之電流,經過計算以估測馬達的電氣參數。馬達可以轉動或不轉動,辨識的參數包含定子電阻、轉子電阻、漏電感、定子電感及互感等。以此方法估測的參數相當準確,與用手動方法測得的參數相當接近,並且亦可在極短的時間,約15-30秒鐘完成整個參數自動辨識流程。本文除理論分析外,建立適當的模型外,亦提供實驗驗證結果供參考。
英文摘要 Accurate motor electrical parameters are required for vector-controlled induction motor drives and motor drives contain advanced control laws, such as sensorless position control. This thesis presents a scheme for automatic parameter measurement, or self-commissioning, of induction motor drives. The scheme is modified from several existing methods found in the publications surveyed. In this scheme, the motor controller outputs specific voltage or current waveforms to the motor, and the parameters are estimated based on the voltage commands and the measured motor currents. The motor is allowed to rotate or can’t rotate. The parameters estimated include: stator resistance, rotor resistance, leakage inductance, and mutual inductance. The total time required to complete the estimation process is approximately 15-30 seconds. The measured parameters are quite accurate comparing to the parameters measured with the manual method. This thesis contains the theoretical analysis, modeling, and the experimental verification of the proposed scheme.
論文目次 目錄
中文摘要
英文摘要
目錄 I
圖目錄 III
表目錄 V
符號說明 VI
第一章 緒論 1
1.1 研究背景與目的 1
1.2 文獻回顧 3
1.3 內容大綱 5
第二章 感應馬達動態模式與控制 6
2.1 單相等效電路 6
2.2 d-q軸模式 8
2.3 d-q軸等效電路 14
2.4 單相激磁模式 16
2.5 轉子磁場導向向量控制 17
2.6 電流控制 19
第三章 電氣參數自動辨識 23
3.1 無載與堵轉試驗 23
3.2 定子電阻自動量測 26
3.3 轉子電阻與漏電感自動量測 28
3.4 定子瞬間電感自動量測 30
3.5 互感自動量測 33
3.6 電氣參數自動辨識流程 38
第四章 實驗結果與分析 39
4.1 實驗系統架構 39
4.1.1 系統介面 40
4.1.2 控制程式 42
4.2 無載與堵轉試驗結果 44
4.3 電氣參數自動辨識結果 45
4.4 電氣參數自動辨識流程 55
4.5 參數驗證 57
4.6 結果整理與討論 60
第五章 結論與未來研究方向 61
5.1 結論 61
5.2 未來研究方向 62
參考文獻 63
附錄一 感應馬達規格 69
附錄二 實驗系統照片 70

圖目錄

圖2.1 定子與轉子單相等效電路 7
圖2.2 轉子等效電路 8
圖2.3 感應馬達單相穩態等效電路 8
圖2.4 理想三相交流感應馬達的線圈電路圖 9
圖2.5 d-q軸與定子、轉子軸關係圖 11
圖2.6 L模式之d-q軸等效電路 15
圖2.7 T模式之d-q軸等效電路 15
圖2.8 單相激磁接線圖 17
圖2.9 單相激磁等效電路 17
圖2.10 間接轉子磁場導向向量控制方塊圖 19
圖2.11 同步座標軸PI電流控制與馬達方塊圖 20
圖2.12 轉子磁場導向之同步軸電流控制方塊圖 21
圖2.13 加入解耦與電壓補償之同步軸電流控制方塊圖 21
圖2.14 加入補償並經簡化後之同步軸電流控制方塊圖 22
圖3.1 無載試驗之馬達等效電路 24
圖3.2 無載試驗之馬達簡化等效電路 24
圖3.3 堵轉試驗之馬達等效電路 25
圖3.4 堵轉試驗之馬達簡化等效電路 25
圖3.5 直流試驗量測定子電阻示意圖 28
圖3.6 直流試驗之電壓與電流示意圖 28
圖3.7 單相交流試驗之電壓與電流示意圖 30
圖3.8 高頻脈衝試驗之電壓與電流示意圖 31
圖3.9 三相交流無載試驗電壓、電流向量示意圖 34
圖3.10 激磁電流試驗之電壓與電流示意圖 37
圖3.11 電氣參數自動辨識流程圖 38
圖4.1 系統硬體架構圖 39
圖4.2 感應馬達控制架構圖 40
圖4.3 DAC7625架構方塊圖 41
圖4.4 控制程式架構流程圖 42
圖4.5 量測系統架構圖 44
圖4.6 以不同電壓命令得到之定子電阻值 46
圖4.7 直流試驗之電壓與電流波形 46
圖4.8 以不同電壓命令得到之轉子電阻值 47
圖4.9 以不同頻率得到之轉子電阻值 48
圖4.10 單相交流試驗量測轉子電阻時之電壓與電流波形 48
圖4.11 以不同電壓命令得到之漏電感值 49
圖4.12 以不同頻率得到之漏電感值 50
圖4.13 單相交流試驗量測漏電感之電壓與電流波形 50
圖4.14 以不同電壓命令得到之定子瞬時電感 51
圖4.15 高頻脈衝試驗之電壓與電流波形 52
圖4.16 三相交流試驗之電壓與電流波形 53
圖4.17 以不同電流命令得到之定子電感值 54
圖4.18 激磁電流試驗之電壓與電流波形 54
圖4.19 電氣參數自動辨識時序圖 55
圖4.20 電氣參數自動辨識流程 56
圖4.21 負載為100%時,相電壓、電流與轉速關係圖 58
圖4.22 負載為50%時,相電壓、電流與轉速關係圖 59

表目錄

表4.1 無載與堵轉試驗實驗數據 45
表4.2 利用無載與堵轉試驗得到之馬達電氣參數(10次平均值) 45
表4.3 無載、堵轉試驗量測之參數及自動辨識量測之參數比較(10次平
均值) 60

參考文獻 [1] K. Hasse, “Zur Dynamik Drehzahlgeregelter Antriebe Mit Stromrichterg- espeisten Asynchron - Kurzschlublaufermaschinen”, Ph. D Dissertation, Techn. Hochschule Darmstadt, July 17, 1969.
[2] F. Blaschke, “A New Method for the Structural Decoupling of AC Induction Machines”, IFAC Symposium, Duesseldorf, Germany, pp. 1-5, Oct. 1971.
[3] D. W. Novotny and R. D. Lorenz, “Introduction to Field Orientation and High Performance AC Drivers”, IEEE-IAS Conf. Tutorial, 1986.
[4] B. K. Bose, “Power Electronics and AC Drives”, Prentice-Hall, Englewood Cliffs, NJ, USA, 1986.
[5] A. M. Trzynadlowski, “The Field Orientation Principle in Control of Induction Motors”, Kluwer Academic Publishers, Netherland, 1992.
[6] I. Boldea and S. A. Nasar, “Vector Control of AC Drivers”, CRC Press, 1992.
[7] P. Vas, “Vector Control of AC Machines”, Oxford Science Publications, 1990.
[8] D. W. Novotny and T. A. Lipo, “Vector Control and Dynamics of AC Drives”, Oxford Science Publications, 1996.
[9] C. D. Schauder and R. Caddy, “Current Control of Voltage-source Inverters for Fast Four-quadrant Drive Performance”, IEEE Trans. on Ind. Applicat., Vol. IA-18, 1982, pp. 163-171.
[10] K. Yanagawa, K. Sakai, S. Ishida, T. Endou, and H. Fujii, “Auto Tuning for General Purpose Inverter with Sensorless Vector Control”, in Conf. Rec. IEEE-IPEC Annual Meeting., 1995, pp. 1005-1009.
[11] P. J. Chrzan and H. Klaassen, “Parameter Identification of Vector-Controlled Induction Machines”, Electrical Engineering, Vol. 79, No. 1, 1996, pp. 39-46.
[12] H. Schierling, “Fast and Reliable Commissioning of AC Variable Speed Drives by Self-Commissioning”, in Conf. Rec. IEEE-IAS Annual Meeting, Oct. 1988, pp. 489-492.
[13] H. Schierling, “Self-Commissioning - A Novel Feature of Modern Inverter-fed Induction Motor Drives”, in Conf. Rec. IEE-Conference on Power Electronics and Variable Speed Drives, 1998, pp. 287-290.
[14] A. M. Khambadkone and J. Holtz, “Vector-Controlled Induction Motor Drive with a Self-Commissioning Scheme”, IEEE Trans. on Ind. Electronics, Vol. 38, No. 5 Oct. 1991, pp. 322-327.
[15] T. Caussat, X. Roboam, J. C. Hapiot, J. Faucher, and M.Tientcheu, “Self-Commissioning for PWM Voltage Source Inverter-Fed Induction Motor at Standstill”, Proc. of the IEEE IECON, Vol. 1, 1994, pp. 198-203.
[16] M. Ruff and H. Grotstollen, “Identification of the Saturated Mutual Inductance of an Asynchronous Motor at Standstill by Recursive Least Squares Algorithm”, in Proc. Europe. Conf. Power Electron. Applicat., Vol. 5, 1993, pp. 103-108.
[17] M. Ruff, A. Bunte, and H. Grotstollen, “A New Self-Commissioning Scheme for an Asynchronous Motor Drive System”, in Proc. IEEE-IAS Annual Meeting, 1994, pp. 616-623.
[18] M. Ruff and H. Grotstollen, “Off-Line Identification of the Electrical Parameters of an Industrial Servo Drive System”, in Proc. IEEE-IAS Annual Meeting, 1996, pp. 213-220.
[19] A. Gastil , M. Iwasaki, and N.Matsui, “An Automated Equivalent Circuit Parameter Measurements of an Induction Motor Using a V/F PWM Inverter”, in Proc. IEEE-IPEC, Vol. 2, 1990, pp. 659-666.
[20] M. Summer and G. M. Asher, “Self-Commissioning for Voltage-Referenced Fed Vector Controlled Induction Motor Drives” in Proc. IEEE-IPEC, 1992, pp. 139-144.
[21] C. Wang, D. W. Novotny, and T. A. Lipo, “An Automated Rotor Time Constant Measurement System for Indirect Field-Oriented Drives”, IEEE Trans. Ind. Applicat., Vol. 24, Jan./Feb. 1988, pp. 151-159.
[22] R. D. Lorenz, “Tuning of Field Oriented Induction Motor Controllers for High Performance Application”, in Proc. IEEE-IAS Annual Meeting, 1985, pp. 607-612.
[23] S. I. Moon and A. Keyhani, “Estimation of Induction Machine Parameters from Standstill Time-Domain Data”, IEEE Trans. Ind. Applicat. Vol. 30, Nov./Dec. 1994, pp. 1606-1615.
[24] H. Karayaka and M. Marwali, “Induction Machine Parameter Tracking From Data via PWM Inverters”, IEEE-IAS Annual Meeting, Oct. 1997, pp. 227-233.
[25] M. Summer and G. M. Asher, “Self- Commissioning for Voltaged- Referenced Fed Vector Controlled Induction Motor Drivers” Conf. Rec. IEEE- PESC, 1998, pp. 139-144.
[26] M. Summer and G. M. Asher, “Auto-Commissioning for Voltage- Referenced Voltage-fed Vector-Controlled Induction Motor Drives”, IEE Proceedings, part B, Vol. 140, No. 3, May 1993, pp. 187-200.
[27] A. Bunte and H. Grotstollen, “Parameter Identification of an Inverter-Fed Induction Motor at Standstillwith a Correlation Method”, in Proc. Europe. Conf. Power Electron. Applicat., Vol. 5, 1993, pp. 97-102.
[28] N. R. Klaes, “Parameters Identification of an Induction Machine with Regard to Dependencies on Saturation”, in Proc. IEEE-IAS Annual Meeting, 1991, pp. 21-27.
[29] A. Bunte and H. Grotstollen, “Offline Parameter Identification of an Inverter-Fed Induction Motor at Standstill”, in Proc. Europe. Conf. Power Electron. Applicat., 1995, pp. 3.492-3.496.
[30] R. J. Kerkman, J. D. Thunes, T. M. Rowan, and D. Schlegel, “A Frequency Based Determination of the Transient Inductance and Rotor Resistance for Field Commissioning Purposes”, in Proc. IEEE-IAS Annual Meeting, 1995, pp. 359-366.
[31] W. H. Kwon, C. H. Lee, K. S. Youn, and G. H. Cho, “Measurement of Rotor Time Constant Taking into Account Magnetizing Flux in the Induction Motor”, in Proc. IEEE-IAS Annual Meeting, 1994, pp.88-92.
[32] M. Bertoluzzo, G. S. Buja, and R. Menis, “Self-Commissioning of RFO IM Drives: One-Test Identification of the Magnetization Characteristic of the Motor”, IEEE Trans. Ind. Applicat., Vol. 37, Nov./Dec. 2001, pp. 1801-1806.
[33] H. Rasmussen, M. Knudsen, and M. Tonnes, “Parameter Estimation of Inverter and Motor Model at Standstill Using Measured Currents Only”, in Proc. IEEE Int. Symp. Ind. Electron., 1996, pp. 331-336.
[34] M. Bertoluzzo, G. Buja, and R Menis, “Identification Techniques of Induction Motor Parameters for Self-Commissioning Field-Oriented Drives”, Automatika, Vol. 38, No. 3-4, 1997, pp. 103-115.
[35] G. Buja and R. Menis, “Identification of the Magnetizing Characteristic of an Induction Motor Incorporated into a Field-Oriented Drive for Self-Commissioning Purposes”, in Proc. Int. Conf. Power Electron. Motion Contr., 1998, pp. 3.75-3.80.
[36] 鄭超元, “具有參數估測之間接磁場導向感應馬達速度控制驅動系統”, 電子電力技術 第33期85年6月, pp. 45-46.
[37] 薛添福, “感應馬達的參數自動檢測與調適”, 電子電力技術, No. 36, 12月 1996, pp.11-26.
[38] 張勝傑, 交流感應馬達電流控制與馬達參數自動辨識研究, 淡江大學機械工程學系碩士論文, 1998
[39] 劉俊男, 向量控制感應機驅動器之參數自動量測, 國立台灣工業技術學院電機工程技術研究所碩士學位論文, 1997.
[40] 詹前茂, 向量控制感應馬達驅動器之自我啟始運轉, 國立台灣工業技術學院電機工程技術研究所博士學位論文, 1997.
[41] M. Globevnik, “Induction Motor Parameters Measurement at Stand Still”, in Proc. IEEE Ind. Electron. Soc. Annual Meeting, pp. 280-285, 1998.
[42] J. Godberson, “A Stand-still Method for Estimating the Rotor Resistance od Induction Motor”, in Proc. IEEE-IAS Annual Meeting, pp. 900-905, 1999.
[43] T. M. Rowan and R. J. Kerkman, “A New Synchronous Current Regulator and an Analysis of Current-Regulated PWM Inverters”, IEEE Trans. on Ind. Applicat., Vol. IA-22, No. 4, July/August 1986, pp. 678-690.
[44] J. Holtz and E. Bude, “Field-Oriented a Synchronous Pulse-width Modulation for High Performance AC Machine Drivers Operating at Low Switching Frequency”, IEEE Trans. on Ind. Applicat., Vol. 27, No. 3, May/June, 1991, pp. 574-581.
[45] R. J. Kerkman and T. M. Rowan, “Voltage-Controlled Current-Regulated PWM Inverters”, IEEE Trans. on Ind. Applicat., Vol. 26, No. 2, March/April 1990, pp. 244-251.
[46] M. A. Abbas and D. W. Novotny, “The Stator Voltage-controlled Current Source Inverter Induction Motor Drive”, IEEE Trans. Ind. Applicat. Vol. IA-18, No. 3, May/June 1982, pp.219-229.
[47] 謝政男, 蕭瑛東, “感應馬達向量控制之電流控制器之分析”, 電力電子技術, No. 39, 1997.06, pp. 96-103.
[48] S. M. Yang and F. C. Lin, “A Digital Current Control Technique for Voltage-Fed Induction Motor Drives”, International Journal of Electronics, Vol. 89, No. 12, Dec. 2002, pp.877-887.
[49] W. H. Beyer, “Standard Mathematical Tables”, CRC Press, 1981.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-07-31公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-07-31起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信