§ 瀏覽學位論文書目資料
系統識別號 U0002-2007200513262300
DOI 10.6846/TKU.2005.00893
論文名稱(中文) 免熱敏電阻校正的Thermopile 感應器 演算法
論文名稱(英文) The Algorism of Thermopile Sensor without Thermistor Calibration
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 93
學期 2
出版年 94
研究生(中文) 吳彰榮
研究生(英文) Chang-Jung Wu
學號 790350085
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2005-06-06
論文頁數 89頁
口試委員 指導教授 - 江正雄
委員 - 李楊漢
委員 - 呂學坤
關鍵字(中) 熱敏電阻
熱電堆
溫度測量
紅外線耳溫槍
黑體
冷接面
熱接面
關鍵字(英) Thermopile
Cold Junction
Hot Junction
lack body
Temperature measurement
infrared Ear-Thermometer
第三語言關鍵字
學科別分類
中文摘要
應用Thermopile 感應器所設計的溫度測量裝置,生產時都必須作好熱敏電阻及Thermopile感應零敏度的校正。免熱敏電阻校正的Thermopile 感應器演算法,用於改善舊有以Thermopile感應器為測量元件所製作的溫度量測裝置,在生產時所面對的複雜的校正問題。主要目的為提高測量準確度及大幅降低校正所需的時間,由原來需要5分鐘的校正時間,改善為4秒鐘完成校正。係應用Thermopile的Cold Junction與Hot Junction的溫度差異關係,對應Thermopile輸出的電壓曲線,分析其相關特性,確定曲線符合數學模式,可以建立一組聯立方程式,並解出相對應的兩組重要參數(熱敏電阻誤差及Thermopile感應零敏度)。達到不需要單獨針對熱敏電阻作個別校正的目的。
大多數以Thermopile Sensor 所設計的測量裝置,都以8-Bit MCU為運算處理單元,無浮點運算能力。解聯立方程式極為困難。為了解決這個問題,在本文中探討以一種8-Bit MCU可執行的循環運算流程,達到解聯立方程式的運算目的。這項運算流程同樣適用於部份微處理器在代數運算方面的應用。
英文摘要
Conventional thermopile thermometers must perform two calibration procedures for the thermistor tolerance and the thermopile sensitivity during the production. This project focuses on the calibration-free algorism for thermistor tolerance of thermopile sensor. It intends to simplify the complex calibration process of thermopile thermometers. The aim is to increase the measurement accuracy and reduce the calibration time. By analyzing the characteristic of the thermopile output voltage curve that is relevant to the temperature difference between the cold junction and hot junction, a mathematical model that fits the curve can be found. Therefore, we can form a simultaneous equation and thereby solve it to obtain two essential parameters: thermistor tolerance and thermopile sensitivity. As a result, there is no need to calibrate thermistor individually. By applying this algorism, the calibration time can be reduced from 5 minutes to 4 seconds. 
Most of thermopile thermometers are implemented with 8-bit MCUs as the central processing unit. However, this type of MCU does not have the floating point unit to execute a complex mathematical calculation such as to solve simultaneous equations. To solve this issue, this project applies a particular calculation flowchart that can be used by an 8-bit MCU to solve simultaneous equations. This calculation flowchart is also suitable for other MCUs that need to solve complex mathematics.
第三語言摘要
論文目次
誌  謝	I
中文摘要	II
英文摘要	III
目錄	V
圖目	VIII
表目	X
第一章: 緒論	1
1.1 研究背景	1
1.2 論文架構	4
第二章: 電器特性說明	5
2.1物理特性	5
2.2元件說明	8
2.3量測原理	12
2.4 負溫度係數(NTC)熱敏電阻的特性	15
第三章: 相關技術探討	17
3.1元件靈敏度	17
3.2誤差來源	18
3.3 Thermopile Sensor 的重要參數	20
3.4運算放大器的選擇	26
3.5 Thermo Noise	30
3.6導波管原理	33
3.7電路說明	34
3.8 參數計算	37
3.9參數校正	41
3.10 Lookup Table的應用	43
第四章:相關校正演算法說明	47
4.1含熱敏電阻校正演算法	47
4.2免熱敏電阻校正演算法	49
4.3免熱敏電阻校正演算法的數學推導	51
4.4 MCU對複雜計算的對策	54
4.5免熱敏電阻校正演算法流程圖	57
第五章:結果模擬及差異分析	58
5.1實際測量結果	58
5.2免熱敏電阻校正演算法模擬	61
5.3相關演算法的差異分析	63
第六章: 結論與未來展望	66
附錄(一):實驗測量數據	68
附錄 (1.1)	68
附錄 (1.2)	70
附錄 (1.3)	72
附錄(二):發明專利說明書	74
參考文獻	88
圖目
圖2.1 黑體熱輻射頻譜	5
圖2.2 Thermopile Sensor 感應示意圖	6
圖2.3 熱電堆元件電壓轉換原理	8
圖2.4 Thermopile Sensor 外觀圖	9
圖2.5 Thermopile Sensor 內部結構圖	10
圖2.6 Thermopile Sensor等效電路圖	12
圖2.7 Thermopile Sensor電壓輸出曲線	15
圖2.8 熱敏電阻阻值與溫度曲線	16
圖3.1 Thermopile Sensor不理想電壓輸出曲線	19
圖3.2 TPS333 Thermopile Sensor規格書	22
圖3.3 TS-118 Thermopile Sensor規格書	23
圖3.4 MAX4238/LTC1150 運算放大器規格書	29
圖3.5 Thermo Noise干擾示意圖	32
圖3.6 導波結構示意圖	34
圖3.7 Thermopile 電壓放大電路圖	35
圖3.8 Thermistor 電路架構圖	36
圖3.9 Thermopile 溫度計電路架構圖	37
圖4.1 Thermopile Sensor校正流程圖	48
圖4.2免Thermistor校正示意圖	50
圖4.3免Thermistor校正流程圖	57
表目
表3.1 Thermistor溫度vs.阻抗Lookup Table	43
表3.2 Thermopile輸出電壓Vir vs.溫度Lookup Table	46
表5.1實際測量結果	60
表5.2免熱敏電阻校正法模擬試算結果	62
表5.3各類型校正演算法比較表	65
參考文獻
[1] D.R. Mack, “The top 10 equations [electrical engineering],” Potentials, IEEE Vol.15, Issue 5, Dec. 1996-Jan. 1997, pp. 39 – 40.
[2] J.L. Pan, H.K. Choy, and C.G. Fonstad, “Very large radiative transfer over small distances from a black body for thermophotovoltaic applications,” IEEE Transactions Electron Devices, Vol. 47, Issue 1, Jan. 2000, pp. 241 – 249.
[3] R. Muanghlua, S. Cheirsirikul, and S. Supadech, “The study of silicon thermopile,” TENCON 2000, Vol. 3, 24-27 Sept. 2000, pp.226 – 229. 
[4] http://www.opto.com.tw/products/semi-technicalsupport2.asp?langtype=eng 
[5] http://cms.hlplanar.de/data-live-planar/docs/pdf/Datasheets_eng/TS118-5eng.pdf
[6] H. Yamamoto, A. Shibata, K. Hajime, F. Takao, K. Sugisawa, Y.Niwatsukino, H. Shishiba, and S.I. Takeda, “The development of high sensitivity NTC thermistors” Applications of Ferroelectrics, ISAF '94., Ninth IEEE International Symposium, Aug.7-10 1994, pp.735 – 738.
[7] A. Ikegami, H. Arima, H. Tosaki, Y. Matsuoka, A. Mitsuro, H. Minorikawa, Y. Asahino, “Thick-Film Thermistor and Its Applications,” IEEE Transactions, Components, Hybrids, and Manufacturing Technology, Vol. 3, Issue 4, Dec. 1980, pp.541 – 550. 
[8] C. Menolfi and Qiuting Huang, “A CMOS instrumentation amplifier with 600 nV offset, 8.5 nV/√(Hz) noise and 150 dB CMRR,” IEEE Custom Integrated Circuits Conference, May.11-14 1998, pp.369 – 372.
[9] G.A. Bennett and S.D. Briles, “Calibration procedure developed for IR surface -temperature measurements,” IEEE Transactions, Components, Hybrids, and Manufacturing Technology, Vol.12, Issue 4, Dec.1989, pp. 690 – 695.
[10] http://optoelectronics.perkinelmer.com/catalog/Product.aspx?ProductID=TPS333
[11] http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3407 (MAX4238)
[12] http://www.linear.com/pc/productDetail.do?navId=H0,C1,C1154,C1009,C1100,P1310
[13] A.L. Coban and P.E. Allen, “A 1.75 V rail-to-rail CMOS op amp” IEEE 1994 International Symposium, Circuits and Systems, Vol.5, May.30- Jun. 2 1994, pp.497 – 500. 
[14] T. Toriyama, M. Yajima, and S. Sugiyama, “Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile,” Micro Electro Mechanical Systems,(MEMS 2001 ), The 14th IEEE International Conference, Jan. 2001, pp.562 – 565.
[15] P.J. Hurst and R.A. Levinson, “Delta-sigma A/D convertor with reduced sensitivity to op amp noise and gain” IEEE International Symposium, Circuits and Systems, vol.1, May 1989, pp. 254 – 257. 
[16] M. Ishihara, T. Arai, M. Kikuchi, H. Nakano, and M. Obara, “Temperature measurements by thermal radiation during ArF excimer laser ablation with gelatin gel,” Engineering in Medicine and Biology Society, 20th Annual International Conference of the IEEE, Vol.4, 29 Oct.-1 Nov. 1998, pp.1873 – 1874.
[17] J.W. Bruce, “Meeting the analog world challenge. Nyquist-rate analog-to-digital converter architectures,” IEEE Potentials, Vol.17, Issue 5, Dec. 1998-Jan. 1999, pp. 36 – 39. 
[18] A.K. Betts, J.T. Taylor, and D.G. Haigh, “Investigation of a switched-capacitor integrator-pair with low-sensitivity to non-ideal op-amp effects,” IEE 1988 Saraga Colloquium Electronic Filters, May 1988, pp. 301 – 311.
[19] http://www.ni.com/pdf/products/us/20044546301101dlr.pdf
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信