淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2006202014412600
中文論文名稱 加強台灣生質能源供應管理策略之研究
英文論文名稱 Enhancement of managerical strategy for bioenergy feedstock supply in Taiwan.
校院名稱 淡江大學
系所名稱(中) 管理科學學系博士班
系所名稱(英) Doctoral Program, Department of Management Sciences
學年度 108
學期 2
出版年 109
研究生中文姓名 張耿豪
研究生英文姓名 Keng-Hao Chang
學號 802620186
學位類別 博士
語文別 英文
口試日期 2020-06-12
論文頁數 119頁
口試委員 指導教授-婁國仁
委員-曹銳勤
委員-陳水蓮
委員-吳東昆
委員-鄭建中
中文關鍵字 生質能  生物能源  生質酒精  林業廢棄物  稻稈  生命週期 
英文關鍵字 Bioenergy  Bioethanol  Biomass  Harvest wood product  Rice Paddy  LCA 
學科別分類
中文摘要 石化能源經過數百年的使用除了促進世界經濟的發展也導致了地球環境的污染,相對的人類對其依賴性也跟隨著使用量不斷成長不斷擴大,但其經由大自然產生要有相當的條件跟時間,所以在可預期的未來也會漸漸枯竭,綜合以上種種的狀況人類勢必積極尋找替代能源,以補足未來所產生的缺口。
台灣土地空間狹小有限,缺乏能源, 98%依賴進口,化石能源依賴度甚高,因此應充分調查台灣生產生質能源之潛力。本研究提
供了生質能源供應情境假模擬,以台灣休耕地進行稻米生產及台灣林業部門生產木材後所產生的廢棄物,進行生質能源的產出。在本研究中,計算上述兩種料源生產過程中的碳平衡情形。並估算從目前耕作地收獲後所產生的稻殼及稻稈廢棄量,及從休耕地復耕後所產生的稻殼及稻稈廢棄量。林業部門的廢棄物則包括來自木材加工廠及進口木材產品經加工後,所產生的伐後木質產品廢棄量。並從過去的消費情形推估未來50年(至2065年)內所可使用的的生質廢棄物。
生質能資源是全球最大的自然資源,可藉由直接或轉化使用生質物作為燃料產生熱、電或動力。相較於燃燒化石燃料產生之二氧化碳進入生態圈,燃燒生質燃料所產生之二氧化碳可藉由生態圈之生物固碳作用加以吸收,屬於碳中性燃料。
在本研究結果中,這些生質廢棄物製造成生質乙醇及殘餘物進行燃燒後,將可產生能源分別為222.37 PJ和206.77 PJ,相較於目前台灣2016年生質能源產量約為76.4PJ,生質能源的成長,將可大幅提高為332.56%及323.24%。從研究結果顯示台灣伐後木質產品將有相當高的生物能源利用潛力,並從綠色供應鏈及生命週期評估的角度加入循環經濟的策略,以對台灣在2025 年達到2000年排放量的水準做出貢獻。
英文摘要 Promoting biofuel to replace fossil fuels and alternative utilization schemes to replace conventional measures of biomass waste disposal have been considered a priority to mitigate CO2 emissions. Despite fewer land resources and higher reliance on imported energy and raw material resources, the potential for bioenergy supply in a place like Taiwan should be fully investigated. This paper presents a case study regarding the utilization of waste biomass derived from an enhanced production of rice paddy and from the forest sector in Taiwan for biofuel production. In this study, the carbon balance for the two aforementioned bioenergy production scenarios was calculated. The amount of biomass waste expected to be derived from rice husk and rice straw produced from currently planted paddy and from reactivated fallow rice paddy was estimated. Forest sector wastes consist of biomass derived from processing domestically harvested and post-consumer harvested wood products. The projection was made up to 2065. The overall annual bioenergy providing potential of the biomass, estimated by this study, to replace gasoline through bioethanol production and residual combustion and to substitute coal for power generation via combustion were approximately 222.37 PJ and 206.77 PJ, respectively. These values represent 332.56 % and 323.24 % of the current level of bioenergy supplies, compared to the 76.4 PJ from biomass and waste incineration in 2016. This is the first time the bioenergy potential of post-consumer harvested wood products is being identified.
論文目次 CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 SUSTAINABLE MANAGEMENT 3
1.3 CIRCULAR ECONOMY 7
1.4 HISTORY AND CURRENT SCENARIO OF RENEWABLE ENERGY IN TAIWAN 12
1.5 OBJECTIVE 19
CHAPTER 2 RESEARCH OF BIOMASS RESOURCES FROM WASTE OF RICE PADDIES AND FOREST SECTORS. 27
2.1 BIOMASS FEEDSTOCK AND SUPPLY CHAIN 27
2.2 BIOMASS FEEDSTOCK AND LCA 30
2.3 BACKGROUND 33
2.4 AGRICULTURAL AND FORESTRY WASTE IN TAIWAN 40
2.5 THE OVERVIEW OF HWP IMPORT AND EXPORT IN TAIWAN 46
2.6 HWP CARBON ESTIMATION 53
CHAPTER 3 EVALUATION OF BIOMASS FROM RICE PADDIES AND FOREST SECTORS 61
3.1 RICE PADDY WASTE 61
3.2 RICE HUSK, RICE STRAW, AND ROUGH RICE 61
3.3 BIOMASS WASTE FROM POST-CONSUMER HWP 64
3.4 DIRECT COMBUSTION 66
3.5 BIOETHANOL WITH RESIDUE FOR COMBUSTION 67
CHAPTER 4. ESTIMATION OF BIOENERGY PRODUCTION 68
4.1 RESULTS AND DISCUSSION 68
4.1.1 Biomass accumulation from forest sector wastes 71
4.1.2 CO2 emission by unmanaged incineration 76
4.2. BIOETHANOL ACCUMULATION AND RESIDUE COMBUSTION 76
4.2.1. Bioethanol from rice paddy wastes 76
4.2.2. Bioethanol from forest sector wastes 78
4.3. DIRECT COMBUSTION 81
4.3.1 Combustion of rice paddy wastes 81
4.3.2 Combustion of biomass waste from the forest sector 83
CHAPTER 5 CONCLUSION 87
5.1 MAJOR FINDING 87
5.2 IMPLICATION 89
5.3 RECOMMENDATION 91
REFERENCES 93
APPENDIX. 104
TABLE A1 AR PROJECTION OF PADDY AREA, RICE HUSK AND RICE STRAW BIOMASS IN TAIWAN 104
TABLE A2 AR PROJECTION OF BIOMASS WASTE FROM DOMESTIC LOGGING IN TAIWAN 105
TABLE A3 EXTRAPOLATION OF HWP CARBON TONNAGE PRIOR TO 1990 108
TABLE A4 EXTRAPOLATION AND PROJECTION OF SAWN WOOD CARBON STORAGE AND BIOMASS 109
TABLE A5 EXTRAPOLATION AND PROJECTION OF WOOD PANEL CARBON STORAGE AND 112
TABLE A6 EXTRAPOLATION AND PROJECTION OF PAPER CARBON STORAGE AND BIOMASS 115
TABLE A7 PROJECTION OF DECAYED BIOMASS OF HWP FROM 2017 TO 2065 118
List of Table
Table 2-1 Historical data of rice husk and rice straw in Taiwan 42
Table 2-2 Historical data of domestic logging volume and estimation of biomass waste from self-logging in Taiwan 45
Table 2-3 Statistics of domestic produced HWP from 1990 to 2016 48
Table 2-4 Import statistics of import HWP. Thickness of plain and fancy plywood is 3.175 mm 50
Table 2-5 Export statistics of import HWP 52
Table 2-6 Biomass tonnage of import and export HWP 55
Table 2-7 Carbon conversion from HWP statistics 57
Table 2-8 Carbon inflow statistics of HWP from 2007 to 2016 59
Table 3-1 Coefficients for forest biomass calculation and estimation 63
Table 4-1 Projected annual carbon sequestration and bioenergy capacities derived from rice straw and rice husks from active and reactivated fallow rice paddy during
2017–2065 70
Table 4-2 Projected annual biomass generated from decayed domestic HWP production wastes and domestic post-consumer HWP biomass during 2017–2065 74
Table 4-3 Projected annual bioethanol and recovered bioenergy generated from rice straw and rice husks from active and re-activated fallow rice paddy during 2017–2065 75
Table 4-4 Projected annual bioethanol and recovered bioenergy generated from biomass waste of post-consumer HWP biomass and domestic HWP production wastesduring 2017–2065 80
Table 4-5 Projected annual energy harvested and carbon sequestration from combustion of waste biomass of rice straw and rice husks from active and re-activated fallow rice paddies during 2017–2065 82
Table 4-6 Projected annual energy harvested and carbon sequestration from combustionof biomass waste from the forest sector during 2017–2065 84
List of Figures
Figure 2-1 Map of Taiwan. The rice paddy areas and forest are in light gray. Legends: rice paddy (light brown); hardwood forests (dark green); temperate hardwood/softwood mixed forests (mid green); cold temperate softwood forests (mid green); sub-alpine softwood forests (yellow) 36
Figure 2-2 Framework of this study 39
Figure 4-1 Historical and AR projection for biomass generated from rice paddy wastes. Legends:Rice husk (Blue line with hollow square); rice straw (Red line with hollow circle) 69
Figure 4-2 Waste biomass generated from domestic HWP production for exponential growthscenario. Legends: Logging slash (Blue line with hollow square); log process waste(Red line with hollow circle) 73
參考文獻 1. Akorede, M., Hizam, H., Ab Kadir, M., Aris, I., Buba, S., 2012. Mitigating the anthropogenic global warming in the electric power industry. Renew. Sustain. Energy Rev. 16(5), 2747-2761.
2. Apergis, N., Payne, J.E., 2014. Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model. Energy Econ. 42, 226-232.
3. Arbolino, R., De Simone, L., Yigitcanlar, T., Ioppolo, G., 2018. Facilitating solid biomass production planning: Insights from a comparative analysis of Italian and German marginalized areas. J. Clean. Prod. 181, 819-828.
4. ASTM, 2013. Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (precision Method) ASTM D240-17. ASTM International, Conshohocken, PA, USA.
5. Baliban, R.C., Elia, J.A., Floudas, C.A., Gurau, B., Weingarten, M.B., Klotz, S.D., 2013. Hardwood biomass to gasoline, diesel, and jet fuel: 1. Process synthesis and global optimization of a thermochemical refinery. Energy Fuels 27(8), 4302-4324.
6. Bhuiyan, A.A., Naser, J., 2015. CFD modelling of co-firing of biomass with coal under oxy-fuel combustion in a large scale power plant. Fuel 159, 150-168.
7. Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K., Pandey, A., 2010. Bioethanol production from rice straw: an overview. Bioresour. Technol. 101(13), 4767-4774.
8. Bureau of Energy, 2016. Energy statistics handbook 2015. Bureau of Energy, Ministry of Economic Affairs, Taiwan, Republic of China. https://web3.moeaboe.gov.tw/ecw/english/content/ContentDesc.aspx?menu_id=1539. (accessed August 20, 2018)
9. Chang, K. H., Lou, K. R., & Ko, C. H. 2019. Dataset of biomass waste of rice paddies and forest sectors supporting the assessment of the potential for bioenergy production in Taiwan. Data in brief, 27, 104613.
10. Chen, L.-C., Lin, J.-C., Wu, C.-S., Huang, G.-M., Chen, Y.-H., 2012. The current status of the wood product demand in Taiwan. Quarterly Journal of Forest Research (In Chinese with English abstract) 34(4), 287-296.
11. Council of Agriculture, 2017. 2016 Yearly report of Taiwan's agriculture. Council of Agriculture, Taiwan, Republic of China. https://eng.coa.gov.tw/ws.php?id=8842 (accessed May 24, 2018)
12. Council of Agriculture, 2017. Accounts of green national income: agricultural solid wastes. Council of Agriculture, Taiwan, Republic of China. (In Chinese). http://agrstat.coa.gov.tw/sdweb/public/common/Download_file.ashx?list_id=18 (accessed May 24, 2018)
13. Customs Administration, 2017. Query system for statistics database. (In Chinese). Customs Administration, Ministry of Finance, Taiwan, Republic of China. https://portal.sw.nat.gov.tw/APGA/GA03 (accessed May 24, 2018)
14. Customs Administration, 2017. Trade statistics search (In Chinese). Customs Administration, Ministry of Finance, Taiwan, Republic of China. http://web02.mof.gov.tw/njswww/WebProxy.aspx?sys=100&funid=defjsptgl (accessed May 24, 2018)
15. Daystar, J., Reeb, C., Gonzalez, R., Venditti, R., Kelley, S.S., 2015. Environmental life cycle impacts of cellulosic ethanol in the southern US produced from loblolly pine, eucalyptus, unmanaged hardwoods, forest residues, and switchgrass using a thermochemical conversion pathway. Fuel Process. Technol. 138, 164-174.
16. Deng, J., Wang, G.-H., Kuang, J.-H., Zhang, Y.-L., Luo, Y.-H., 2009. Pretreatment of agricultural residues for co-gasification via torrefaction. J.Anal.Appl.Pyrol. 86(2), 331-337.
17. EPA, 2016. 2015 Taiwan greenhouse gases inventory. Environmental Protection Administration (EPA), Council of Agriculture, Taiwan, Republic of China. http://unfccc.saveoursky.org.tw/2015nir/uploads/00_abstract_en.pdf (accessed May 24, 2018)
18. Forestry Bureau, 2017. Forestry Statistics 2016 Yearbook. Forestry Bureau, Council of Agriculture, Council of Agriculture, Taiwan, Republic of China. 2017. https://www.forest.gov.tw/EN/0001465 (accessed May 24, 2018)
19. Furubayashi, T., Nakata, T., 2018. Cost and CO2 reduction of biomass co-firing using waste wood biomass in Tohoku region, Japan. J. Clean. Prod. 174, 1044-1053.
20. Grafton, R.Q., Kompas, T., Van Long, N., To, H., 2014. US biofuels subsidies and CO2 emissions: An empirical test for a weak and a strong green paradox. Energy Policy 68, 550-555.
21. Gutiérrez, A.S., Eras, J.J.C., Huisingh, D., Vandecasteele, C., Hens, L., 2018. The current potential of low-carbon economy and biomass-based electricity in Cuba. The case of sugarcane, energy cane and marabu (Dichrostachys cinerea) as biomass sources. J. Clean. Prod. 172, 2108-2122.
22. IEA, 2017. Key world energy statistics. International Energy Agency, Paris France. https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf. (accessed May 24, 2018).
23. IPCC, 2003. Good Practice Guidance for Land Use, Land Use Change and Forestry (Edit. Penman et al.). Institute for Global Environmental Strategies (IGES) for the Intergovernmental Panel on Climate Change (IPCC), Kanagawa, Japan.
24. IPCC, 2006a. Agriculture, forestry and other land use. (Edit. Eggleston et al.). IPCC Guidelines for National Greenhouse Inventories. Paris, France: IPCC/OECD/IEA.
25. IPCC, 2006b. Energy. (Edit. Eggleston et al.). IPCC Guidelines for National Greenhouse Inventories. Paris, France: IPCC/OECD/IEA.
26. IPCC 2014, 2013 Revised Supplementary Methods and Good Practice Guidance Arising from the Kyoto Protocol, Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. and Troxler, T.G. (eds) Published: IPCC, Switzerland. https://www.ipcc-nggip.iges.or.jp/public/kpsg/pdf/KP_Supplement_Entire_Report.pdf
(accessed May 24, 2018)
27. IRENA, 2014. Global bioenergy supply and demand projections: a working paper for REmap 2030. International Renewable Energy Agency (IRENA), 1-88. Nakada, S., Saygin, D., Gielen, D., (eds) Published: IRENA, Abu Dhabi, UAE. http://www.irena.org/publications/2014/Sep/Global-Bioenergy-Supply-and-Demand-Projections-A-working-paper-for-REmap-2030 (accessed May 24, 2018)
28. Kim, S., Dale, B.E., 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass bioenergy 26(4), 361-375.
29. Lamlom, S., Savidge, R., 2003. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25(4), 381-388.
30. Littlefield, J. A., Marriott, J., Schivley, G. A., Skone, T, J., 2017. Synthesis of recent ground-level methane emission measurements from the U.S. natural gas supply chain, J. Clean. Prod. 148, 118-126.
31. MOEADOS, 2018. Industrial statistics-industrial production, shipment and inventory survey (In English). Department of Statistics, Ministry of Economic Affairs, R.O.C. http://dmz9.moea.gov.tw/gmweb/advance/AdvanceQuery.aspx (accessed May 24, 2018).
32. Natarajan, E., Nordin, A., Rao, A.N., 1998. Overview of combustion and gasification of rice husk in fluidized bed reactors. Biomass Bioenergy 14(5), 533-546.
33. Popescu, S.C., 2007. Estimating biomass of individual pine trees using airborne lidar. Biomass Bioenergy, 31, 646-655.
34. Ren21, 2016. Global status report. Renewable energy policy network for the 21st century (Ren 21). Ren21 Secretariat, Paris, France. http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf (accessed May 24, 2018)
35. Sahu, S.G., Chakraborty, N., Sarkar, P., 2014. Coal-biomass co-combustion: An overview. Renew. Sustain. Energy Rev. 39, 575-586.
36. Sannigrahi, P., Ragauskas, A.J., 2011. Characterization of fermentation residues from the production of bio-ethanol from lignocellulosic feedstocks. J. Biobased Mater. Bioenergy 5(4), 514-519.
37. UNECE/FAO, 2010. Forest product conversion factors for the UNECE Region. Timber and forest discussion paper 49. UNECE/FAO, Geneva.
38. UNFCCC, 2015. Adoption of the Paris Agreement. I: Proposal by the President (Draft Decision), United Nations Office, Geneva, Switzerland. https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed May 24, 2018)
39. USEPA, 2018. Emission Factors for Greenhouse Gas Inventories. USEPA. https://www.epa.gov/sites/production/files/2018-03/documents/emission-factors_mar_2018_0.pdf (Assessed August 19, 2018).
40. Ver Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M., Fortin, M.J., 2017. Spatial autoregressive models for statistical inference from ecological data. Ecol. Monogr. 88, 36-59.
41. Vogel, K.P., Brejda, J.J., Walters, D.T., Buxton, D.R., 2002. Switchgrass Biomass production in the midwest USA: Harvest and nitrogen management. Agron. J. 94, 413-420.
42. Wang, M., Joel, A.S., Ramshaw, C., Eimer, D., Musa, N.M., 2015. Process intensification for post-combustion CO2 capture with chemical absorption: A critical review. Appl. Energy 158, 275-291.
43. WBA, 2016. WBA Global bioenergy statistics 2017. World bioenergy association (WBA), Stockholm, Sweden. http://worldbioenergy.org/uploads/WBA%20GBS%202017_hq.pdf . (accessed May 24, 2018)
44. Worasuwannarak, N., Sonobe, T., Tanthapanichakoon, W., 2007. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrol. 78(2), 265-271.
45. Yang, B.-Y., Cheng, M.-H., Ko, C.-H., Wang, Y.-N., Chen, W.-H., Hwang, W.-S., Yang, Y.-P., Chen, H.-T., Chang, F.-C., 2014. Potential bioethanol production from Taiwanese chenopods (Chenopodium formosanum). Energy 76, 59-65.
46. Zabaniotou, A., 2018. Redesigning a bioenergy sector in EU in the transition to Circular waste-based bioeconomy-A multidisciplinary review. J. Clean. Prod. 177, 197-206.
47. Hoffman, J. Andrew. From Heresy to Dogma: An Institutional History of Corporate Environmentalism. Stanford, California: Stanford University Press., 2001.
48. Lockwood, Charles. (2007). “Building the Green Way.,” Harvard Business Review on Green Business Strategy (1-20). United States of America: Harvard Business School Publishing Corporation.
49. McGinley, Kathlee, Bryan Finegan. Working in the Tropics: conservation Through Sustainable Management. Gainesville, Florida: University of Florida., 2002.
50. Ritchie, Mark. (2002). “Be a Local Hero: Strengthening Our Communities, Health, and Environment by Eating Local.” Juliet B. Schor and Betsy Taylor, Sustainable Planet: Solutions for the Twenty-first Century (93-108). Boston, Massachusetts: Beacon Press.
51. "Circularity Indicators". www.ellenmacarthurfoundation.org. Retrieved 2019-03-14.
52. Geissdoerfer, Martin; Savaget, Paulo; Bocken, Nancy M. P.; Hultink, Erik Jan (2017-02-01). "The Circular Economy – A new sustainability paradigm?". Journal of Cleaner Production. 143: 757–768. doi:10.1016/j.jclepro.2016.12.048.
53. Towards the Circular Economy: an economic and business rationale for an accelerated transition. Ellen MacArthur Foundation. 2012. p. 24. Archived from the original on 2013-01-10. Retrieved 2012-01-30.
54. Ranta, Valtteri; Aarikka-Stenroos, Leena; Ritala, Paavo; Mäkinen, Saku J. (August 2018). "Exploring institutional drivers and barriers of the circular economy: A cross-regional comparison of China, the US, and Europe". Resources, Conservation and Recycling. 135: 70–82. doi:10.1016/j.resconrec.2017.08.017.
55. Murray, Alan; Skene, Keith; Haynes, Kathryn (2015-05-22). "The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context". Journal of Business Ethics. 140 (3): 369–380. doi:10.1007/s10551-015-2693-2. ISSN 0167-4544.
56. Kaur, Guneet; Uisan, Kristiadi; Lun Ong, Khai; Sze Ki Lin, Carol (2017). "Recent trend in Green sustainable Chemistry & waste valorisation: Rethinking plastics in a circular economy". Current Opinion in Green and Sustainable Chemistry. 9: 30–39. doi:10.1016/j.cogsc.2017.11.003.
57. Casarejos, Fabricio; Bastos, Claudio R.; Rufin, Carlos; Frota, Mauricio N. (November 2018). "Rethinking packaging production and consumption vis-à-vis circular economy: A case study of compostable cassava starch-based material". Journal of Cleaner Production. 201: 1019–1028. doi:10.1016/j.jclepro.2018.08.114. ISSN 0959-6526.
58. Zaken, Ministerie van Algemene (2016-09-14). "A Circular Economy in the Netherlands by 2050 - Policy note - Government.nl". www.government.nl. Retrieved 2020-05-08.
59. "Furn 360 Project | Circular Economy in furniture sectors".
60. Circular economy in the Danish furniture sector". 2018-12-19.
61. 第二期能源國家型科技計畫-替代能源主軸中心。第二期能源國家型科技計畫 計畫辦公室。http://www.nepii.tw/language/zh/%e4%b8%bb%e8%bb%b8%e4%b8%ad%e5%bf%83/%e6%9b%bf%e4%bb%a3%e8%83%bd%e6%ba%90%e4%b8%bb%e8%bb%b8%e4%b8%ad%e5%bf%83/
62. 朱敬一,2013。行政院國家科學委員會執行「能源國家型科技計畫第一期程(2009~2013)目前執行內容與成效」專案報告。行政院國家科學委員會。http://www.taiwan921.lib.ntu.edu.tw/mypdf/twnen2013.pdf
63. 郭建志,2014。台糖生質酒精 投資案叫停。中國時報。https://www.chinatimes.com/newspapers/20140717000053-260202?chdtv
64. 陳文姿,2019。立院三讀《再生能源發展條例》 為綠電自由化開先鋒。環境資訊中心。https://e-info.org.tw/node/217445
65. 陳文姿,2019。《再生能源發展條例》十年大翻修 六大修法重點解析。環境資訊中心。https://e-info.org.tw/node/217428
66. 曾文生,2019。第二期能源國家型科技計畫全程結案總計畫成果效益報告。科技部。
67. Cambero, C. & Sowlati, T., 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
68. Biomass Harvesting, Processing, Storage, and Transport. Carly Whittaker, Ian Shield, in Greenhouse Gas Balances of Bioenergy Systems, 2018. Edited by P. Thornley P. Adam. Academic Press.
69. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Orshoven, Jos. (2014). Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review. Renewable and Sustainable Energy Reviews. 31. 657–670. 10.1016/j.rser.2013.12.036.
70. C Godard, J Boissy, B Gabrielle 2013. Life‐cycle assessment of local feedstock supply scenarios to compare candidate biomass sources. GCB Bioenergy, 2013 5, 16–29. doi: 10.1111/j.1757-1707.2012.01187.x
71. KC, R.; Aalto, M.; Korpinen, O.-J.; Ranta, T.; Proskurina, S. Lifecycle Assessment of Biomass Supply Chain with the Assistance of Agent-Based Modelling. Sustainability 2020, 12, 1964.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2020-07-02公開。
  • 同意授權瀏覽/列印電子全文服務,於2020-07-02起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信