淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2006200616031500
中文論文名稱 排列檢定與無母數檢定
英文論文名稱 Discussion on permutation tests and nonparametric tests
校院名稱 淡江大學
系所名稱(中) 數學學系碩士班
系所名稱(英) Department of Mathematics
學年度 94
學期 2
出版年 95
研究生中文姓名 柯舜傑
研究生英文姓名 Shun-Jie Ke
學號 692150641
學位類別 碩士
語文別 中文
口試日期 2006-06-01
論文頁數 27頁
口試委員 指導教授-鄭惟厚
委員-趙晨慶
委員-張玉坤
中文關鍵字 排列檢定  無母數檢定 
英文關鍵字 permutation tests  nonparametric tests 
學科別分類 學科別自然科學數學
中文摘要 大部分的參數檢定與無母數檢定問題都存在一個相對應的排列檢定(permutation test)處理,不管樣本是連續、順序或是類別的型態都可以應用,且排列檢定有時還有相同或更好的檢力(power)。而Good[1]在書中敘述,一般常見的無母數檢定當中,有百分之九十九可以視為將原始資料由rank取代後的排列檢定。本篇論文討論的無母數檢定是參考Conover[2]一書,藉由排列檢定的特性(equally likely)來探討無母數檢定與排列檢定間的關係。我們的討論方式是想辦法產生一些機率相同的結果,再整合出原先無母數檢定的統計量各種可能值的機率,如此便可以找到對應的排列分布。
我們得到的結論為:在一般的無母數檢定中,如果檢定與binomial test相關,基本上都可以視作排列檢定的一種;與卡方檢定相關的檢定,基本上和p值已知或是未知有關,這個p值為原始假設下所要檢定的母體機率值;其他檢定如Kolmogorov goodness-of-fit test,由於統計量的值是根據empirical distribution function決定,而不論如何重新排列樣本,其順序統計量都不變,所以無法視為一種排列檢定。
總結來說,大部分的無母數檢定可以視為排列檢定,關鍵在於是否可以找到一個合適的排列,而不同的問題中,「排列」可能有不同的定義。
英文摘要 For most parametric and nonparametric tests,there is a permutation counterpart,and permutation test can be applied to all kinds of data,including continuous、ordered and categorical data,and the resulting permutation test is often as powerful as or more powerful than alternative approaches.Good[1] made a interesting statement in his book:ninety-nine percent of common nonparametric tests are permutation tests in which the original observations have been replaced by ranks,but he did not elaborate.We want to check out this statement.In this thesis,we discuss the connection between nonparametric tests and permutation tests by the property of permutation test (equally likely) and the nonparametric tests we consider are those in Conover's book[2].
After comparing the two type of tests,we came to some conclusions.The tests based on binomial test can be regarded as some kind of permutation tests under certain definition of "permutaton".If the tests are related to statistics,then whether they can be viewed as permutation tests depends on if the value of the probability,p,is known where p is the population parameter in the null hypothesis.For tests like Kolmogorov goodness-of-fit test,since the statistics is calculated based on empirical distribution function,hence no matter how we repermutate the observations,the order statistics is the same.This kind of tests can't be regarded as permutation tests.
To sum up,we find that most of nonparametric tests can be regarded as permutation tests,and the key point is to find a appropriate definition of "permutation".
論文目次 目錄
1 序論 ...................................1
2 文獻回顧與簡介 .............................2
2.1 文獻回顧............................. 2
2.2 簡介排列檢定(permutation test) ............................. 4
3 排列檢定與無母數檢定之比較.....................8
3.1 二項檢定(binomial test) ............................. 8
3.2 Quantile test............................. 13
3.3 符號檢定(sign test)............................. 14
3.4 列聯表(contingency tables) 的相關統計問題....... 17
3.5 卡方適合度檢定(Chi-squared test for goodness of
fit) ............................. 23
3.6 Kolmogorov goodness-of-fit test 與相關的適合度
檢定............................. 24
4 結論 ...................................26
參考文獻 ...................................27
參考文獻 參考文獻
[1]Good,Phillip(1994), Permutation tests(Springer-Verlag)
[2]Conover W.J.(1999), Practical nonparametric statistics(John Wiley , Sons)
[3]Manly Bryan F.J.(1997), Randomization,bootstrap and Monte Carlo methods
in biology(Chapman,Hall)
[4]McNemar,Q.(1962),Psychological Statistics , 3rd ed,(Wiley)
[5]Cox, D.R. and Stuart, A,(1955), Some quick tests for trend in location
and dispersion.Biometrika ,42,pp.80-95
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2006-06-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2006-06-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信