§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2005201916570500
DOI 10.6846/TKU.2019.00590
論文名稱(中文) Streptomyces thermocarboxydus 所生產 幾丁質酶之分離及其於幾丁質寡糖製備之應用
論文名稱(英文) The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 陳氏娥
研究生(英文) Thi-Ngoc Tran
學號 606185014
學位類別 碩士
語言別 英文
第二語言別
口試日期 2019-05-07
論文頁數 27頁
口試委員 指導教授 - 王三郎
指導教授 - 阮安順
委員 - 王全祿
委員 - 糜福龍
委員 - 王三郎
關鍵字(中) 甲殼素
幾丁質酶
烏賊軟骨
Streptomyces thermocarboxydus
抗氧化
Prebiotic
關鍵字(英) Chitin
Chitinase
Squid pens
Streptomyces thermocarboxydus
Anti-oxidant
Prebiotic
第三語言關鍵字
學科別分類
中文摘要
微生物幾丁質酶於醫藥、生物以及農業之應用,近年來備受矚目。本研究利用含有烏賊軟骨粉做為唯一碳氮源之培養基,從台灣土壤篩選到超過五十株幾丁質酶生產菌。依據幾丁質分解活性分析結果,選擇具有較強幾丁質酶活性之Streptomyces thermocarboxydus TKU045進行後續研究。較適培養條件探討結果顯示,於含有1%烏賊軟骨粉液態培養基,菌株TKU045於45 °C經過36小時培養結果, 能生產最高之幾丁質酶活性(52.985 U/mL)。分離所得幾丁質酶之定性結果顯示,具有較其他Streptomyces屬幾丁質酶更低之分子量(12.8 kDa,SDS-PAGE定量)以及較酸之最適反應酸鹼值(pH4)。經由HPLC以及MALDI-TOF分析結果顯示,TKU045幾丁質酶水解懸浮態幾丁質所得幾丁質寡糖之聚合度分布在1-7。此低聚合度幾丁質寡糖具有抗氧化以及促進乳酸菌生長之活性。綜合此結果,TKU045幾丁質酶水解懸浮態幾丁質所得幾丁質寡糖之抗氧化以及益生素活性,於醫藥以及保健食品方面具有應用潛力。
英文摘要
Microbial chitinase has received great attention due to its medical, biological, and agricultural applications. In this study, over 50 bacterial strains were isolated from Taiwanese soils using medium containing squid pen powder (SPP) as the sole source of carbon/nitrogen. Based on chitinolytic activity, Streptomyces thermocarboxydus TKU045 was selected for further study. Optimized culture conditions revealed S. thermocarboxydus TKU045 could produce the highest chitinase activity (52.985 U/mL) when cultured in a medium containing 1% (w/v) SPP at 45 °C for 36 h. Characterized TKU045 chitinase showed novel properties with a smallest molecular weight (12.8 kDa by Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis) and more acidic optimal pH (pH 4) than those of other Streptomyces chitinases. A combination of high-performance liquid chromatography and matrix-assisted laser desorption ionization time of flight mass spectrometer data revealed that chitin oligomers (COS) obtained from the hydrolysis of colloidal chitin by TKU045 chitinase comprise oligomers with multiple degrees of polymerization (DP) varying from 1 to 7. The COS with low DP exhibited enhanced 2,2-diphenyl-1-picrylhydrazyl radical scavenging capability and promoted the growth of Lactobacillus lactis. Taken together, the COS obtained by hydrolyzing colloidal chitin with TKU045 chitinase could have the potential to be used in medicine or nutraceuticals due to its active anti-oxidant and prebiotic contents.
第三語言摘要
論文目次
Catalog                                                 Page 

Acknowledgment 	                                           I
Abstract	                                          II
Abbreviation used	                                  IV
Catalog 	                                           V
List of tables	                                         VII
List of figures	                                        VIII
1. Introduction	                                           1
2. Experimental section	                                   3
2.1. Materials 	                                           3
2.2. Screening and identification of microorganisms	   3
2.3. Chitinase activity assay	                           3
2.4. Optimization of culture conditions for the chitinase-producing strain	                                   4
2.5. Purification and characterization of Streptomyces thermocarboxydus TKU045 chitinase	                   4
2.6. Effects of temperature and pH on the activity and stability of TKU045 chitinase	                           4
2.7. Preparation of chitin oligomers	                   5
2.8. MALDI-TOF mass spectrometry analysis	           5
2.9. HPLC analysis	                                   5
3. Results and discussion	                           6
3.1. Isolation, screening and identification of a chitinase-producing strain	                                   6
3.2. Effects of the C/N source on chitinase production	   6
3.3. Optimization of culture conditions	                   7
3.4. Purification of TKU045 chitinase	                  10
3.5. Effects of temperature and pH on the activity and stability of TKU045 chitinase	                          12
3.6. Chitin hydrolysis	                                  13
3.7. Anti-oxidant activity of COS	                  15
3.8. Effects of COS on the growth of lactic acid bacteria 16
4. Conclusions	                                          18
Reference	                                          19
Appendix	                                          24
Appendix 1: Identification of strain TKU045	          24
Appendix 2: List of publication	                          27

	
 
List of tables                                          Page 
Table 3.1. Comparison of culture conditions before and after optimization	                                           9
Table 3.2. Purification of the chitinase from S. thermocarboxydus TKU045	                                  10
Table 3.3. Comparison of chitinases produced by TKU045 and other Streptomyces strains	                          12

 
List of figures                                         Page
Figure 3.1. Production of chitinase by S. thermocarboxydus TKU045 in 1% of different chitin-containing medium.	   7
Figure 3.2. The effects of some parameters on chitinase production by S. thermocarboxydus TKU045	           8
Figure 3.3. Cultivation curves for chitinase production before and after optimization	                           9
Figure 3.4. A typical elution profile of S. thermocarboxydus TKU045 chitinase on Macro-Prep High Q	                  11
Figure 3.5. SDS-PAGE analysis of the chitinase produced by S. thermocarboxydus TKU045	                          11
Figure 3.6. Effects of temperature and pH on TKU045 chitinase activity	                                  13
Figure 3.7. MALDI-TOF-MS spectra of the COS mixtures obtained during the colloidal chitin hydrolysis for 5 h with the TKU045 chitinase.	                                  14
Figure 3.8. HPLC spectrum (c) and content analysis (d) of the COS obtained during colloidal chitin (1%) hydrolysis with TKU045 chitinase at pH 5 (50 mM sodium acetate buffer) for 5 h.	                                          15
Figure 3.9. DPPH radical scavenging activities of colloidal chitin (C.C.) hydrolysates, high DP COS, and low DP COS	  16
Figure 3.10. Effects of supplement MRS broth with colloidal chitin (C.C) hydrolysate, high DP COS, and low DP COS on the growth of Lactobacillus lactis BCRC 10791	          17
參考文獻
References

1.	S.L. Wang, T.W. Liang, Microbial reclamation of squid pens and shrimp shells, Res. Chem. Interm., 2017, 43, 3445-3462. 
2.	G. Akca, A. Özdemir, Z.G. Öner, S. Şenel, Comparison of different types and sources of chitosan for the treatment of infections in the oral cavity, Res. Chem. Interm., 2018, 44, 4811-4825.
3.	F. Ding, H. Li, Y. Du, X. Shi, Recent advances in chitosan-based self-healing materials, Res. Chem. Interm., 2018, 44, 4827-4840. 
4.	M.M. Jaworska, A. Górak, New ionic liquids for modification of chitin particles, Res. Chem. Interm., 2018, 44, 4841-4854.
5.	L.C. Tsai, M.L. Tsai, K.Y. Lu, F.L. Mi, New ionic liquids for modification of chitin particles, Res. Chem. Interm., 2018, 44, 4855-4871.
6.	A. Mohandas, W. Sun, T.R. Nimal, S.A. Shankarappa, N.S. Hwang, R. Jayakumar, Injectable chitosan-fibrin.nanacurcumin composite hydrogel for the enhancement of angiogenesis, Res. Chem. Interm., 2018, 44, 4873-4887.
7.	P. Hiranpattanakul, T. Jongjitpissamai, S. Aungwerojanawit, W. Tachaboonyakiat, Fabrication of a chitin/chitosan hydrocoilloid wound dressing and evaluation of its bioactive properties, Res. Chem. Interm., 2018, 44, 4913-4928.
8.	D. Kotatha, K. Morishima, S. Uchida, M. Ogino, M. Ishikawa, T. Furuike, H. Tamura, Preparation and characterization of gel electrolyte with bacterial cellulose coated with alternating layers of chitosan and alginate for electric double-layer capacitors, Res. Chem. Interm., 2018, 44, 4971-4987.
9.	T.W. Liang, W. T. Chen, Z.H. Lin, Y.H. Kuo, A.D. Nguyen, P.S. Pan, S.L. Wang, An amphiprotic novel chitosanase from Bacillus mycoides and its application in the production of chitooligomers with their antioxidant and anti-inflammatory evaluation, Int. J. Mol. Sci., 2016, 17, 1302.
10.	S. Sinha, S. Chand, P. Tripathi, Recent progress in chitosanase production of monomer-free chitooligosacchrides: bioprocess strategies and future applicatios, Appl. Biochem. Biotechnol., 2016, 180, 883-899.
11.	Q. Xiong, Y. Wei, H. Xie, Z. Feng, Y. Gan, C. Wang, M. Liu, F. Bai, F. Xie, G. Shao, Effect of different adjuvant formulations on the immunogenicity and protective effect of a live Mycoplasma hyopneumoniae vaccine after intramuscular inoculation, Vaccine, 2014, 32, 3445-51.
12.	C. Villiers, M. Chevallet, H. Diemer, R. Couderc, H. Freitas, A. Van Dorsselaer, P.N. Marche, T. Rabilloud, From secretome analysis to immunology: chitosan induces major alterations in the activation of dendritic cells via a TLR4-dependent mechanism, Mol. Cell. Proteomics, 2009, 8, 1252-64.
13.	D.V. Gerasimenko, I.D. Avdienko, G.E. Bannikova, O. Yu. Zueva, V.P. Varlamov, Antibacterial effects of water-soluble low-molecular-weight chitosans on different microorganisms, Appl. Biochem. Microbiol., 2004, 40, 253–257.
14.	S. Sinha, P. Tripathi, S. Chand, A new bifunctional chitosnase enzyme from Streptomyces sp. and its application in production of antioxidant chitooligosacchrides, Appl. Biochem. Biotechnol., 2012, 167, 1029-1039.
15.	P.J. Park, J.Y. Je, S.K. Kim, Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer, Carbohydr. Polym., 2004, 55, 17-22.
16.	W.J. Jung, R.D. Park, Bioproduction of chitooligosaccharides: present and perspectives, Mar Drugs, 2014, 12, 5328-56.
17.	Saima, M. Kuddus, Roohi, I.Z. Ahmad, Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase, J. Gen. Eng. Biotechnol., 2013, 11, 39-46.
18.	S.L. Wang, T.W. Liang, Y.H. Yen, Bioconversion of chitin-containing wastes for the production of enzymes and bioactive materials, Carbohydr. Polym., 2011, 84, 732-742.
19.	S.L. Wang, H.T. Yu, M.H. Tsai, C.T. Doan, V.B. Nguyen, V.C. Do, A.D. Nguyen, Conversion of squid pens to chitosanases and dye adsorbents via Bacillus cereus, Res. Chem. Interm., 2018, 44, 4903-4911. 
20.	C.L. Wang, J.W. Su, T.W. Liang, A.D. Nguyen, S.L. Wang, Production, purification and characterizatiob of a chitosanase from Bacillus cereus, Res. Chem. Interm., 2014, 40, 2237-2248.
21.	T.W. Liang, Y.Y. Chen, P.S. Pan, S.L. Wang, Purification of a chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor, Int. J. Biol. Macromol., 2014, 63, 8-14.
22.	T.W. Liang, T.Y. Shieh, S.L. Wang, Purification of a thermostable chitinase from Bacillus cereus by chitin affinity and its application on microbial community changes in soil, Bioproc. Biosyst. Eng., 2014, 37, 1201-1209.
23.	S.L. Wang, C.P. Liu, T.W. Liang, Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU017, Carbohydr. Polym., 2012, 90, 1305-1313.
24.	T.W. Liang, J.L. Hsieh, S.L. Wang, Production and purification of a protease, a chitosanase and chitin oligosaccharides by Bacillus cereus TKU022 fermentation, Carbohydr. Res., 2012, 362, 38-46.
25.	S.L. Wang, P.C. Wu, T.W. Liang, Utilization of squid pen for the efficient production of chitosanase and antioxidant through prolonged autoclave treatment, Carbohydr. Res., 2009, 344, 979-984.
26.	K.J. Kim, Y.J. Yang, J.G. Kim, J. Purification and characterization of chitinase from Streptomyces sp. M-20, Biochem. Mol. Biol., 2003, 36, 185-189.
27.	Y. Han, B. Yang F. Zhang, X. Miao, Z. Li, Characterization of antifungal chitinase from marine Streptomysces sp. DA11 associated with South China Sea sponge Crabiella australiensis, Mar. Biotechnol., 2009, 11, 132-140.
28.	G.C. Pradeep, H.Y. Yoo, Y.H. Choi, J.C. Yoo, An extracellular chitinase from antagonistic Streptomyces violascens NRRL B2700, Appl. Biochem. Biotechnol., 2015, 175, 372-386.
29.	M. Rabeeth, A. Anitha, G. Srikanth, Purification of an antifungal endochitinase from a potential biocontrol agent Streptomyces griseus., Pak. J. Biol. Sci., 2011, 14, 788-97.
30.	A. Nagpure, P.K. Gupta, Purification and characterization of an extracellular chitinase from antagonis Streptomyces violaceusniger, J. Basic Microbiol., 2013, 53, 429-439.
31.	M. Gangwar, V. Singh, A.K. Pandey, C.K. Tripathi, Purification and characterization of chitinase from Streptomyces violascens NRRL B2700, Indian J. Exp. Biol., 2016, 54, 64-71. 
32.	C.T. Doan, T.N. Tran, V.B. Nguyen, A.D. Nguyen, S.L. Wang, Conversion of squid pens to chitosanases and proteases via Paenibacillus sp. TKU042, Mar. Drugs, 2018, 16, 83.
33.	T.W. Liang, S.C. Tseng, S.L. Wang, Production and characterization of antioxidant properties of exopolysaccharides from Paenibacillus mucilaginonus TKU032, Mar. Drugs, 2016, 14, 40.
34.	S.L. Wang, C.W. Yang, T.W. Liang, C.L. Wang, Degradation of chitin and production of bioactive materials by bioconversion of squid pens, Carbohydr. Polym., 2009, 78, 205-212.
35.	S.L. Wang, C.L. Lin, T.W. Liang, K.C. Liu, Y.H. Kuo, Conversion of squid pens by Serratia ureilytica for the production of enzymes and antioxidants, Bioresour. Technol., 2009, 100, 316-323.
36.	A.D. Nguyen, C.C. Huang, T.W. Liang, V.B. Nguyen, P.S. Pan, S.L. Wang, Production and purification of a fungal chitosanase and chitooligomers from Penicillium janthinellum D4 and discovery of the enzyme activators, Carbohydr. Polym., 2014, 108, 331-337.
37.	N. Shekhar, D. Bhattacharya, D. Kumar, R.L. Gupta, Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL-2, Can. J. Microbiol., 2006, 52, 805-808.
38.	P. Mander, S.S. Cho, Y.H. Cho, S. Panthi, Y.S. Cho, H.M. Kim, J.C. Yoo, Purification and characterization of chitinase showing antifungal and biodegradation properties obtained from Streptomyces anulatus CS242, Arch. Pharm. Res., 2016, 39, 878-886.
39.	N. Karthik, P. Binod, A. Pandey, Purification and characterization of an acidic and antifungal chitinase produced by a Streptomyces sp., Bioresour. Technol., 2015, 188, 195-201.
40.	M.A. Rahman, Y.H. Choi, G.C. Pradeep, J.C. Yoo, An ammonium sulfate sensitive chitinase from Streptomyces sp. CS501, Arch. Pharmac. Res., 2014, 37, 1522-1529.
41.	G.J. Joo, Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii, Biotechnol. Lett., 2005, 27, 1483-1486.
42.	G. Mukherjee, S.K. Sen, Purification, characterization and antifungal of chitinase from Streptomyces venezuelae P10, Curr. Microbiol., 2006, 53, 265-269.
43. S.L. Wang, T.Y. Huang, C.Y. Wang, T.W. Liang, Y.H. Yen, Y. Sakata, Bioconversion of squid pen by Lactobacillus paracasei subsp paracasei TKU010 for the production of proteases and lettuce growth enhancing biofertilizers, Bioresour. Technol., 2008, 99, 5436-5443.
43.	S.L. Wang, J.Y. Liou, T.W. Liang, K.C. Liu, Conversion of squid pen by using Serratia sp. TKU020 fermentation for the production of enzymes, antioxidants, and N-acetyl chitooligosaccharides, Process Biochem., 2009, 44, 854-861.
44.	S.L. Wang, D.Y. Kao, C.L. Wang, Y.H. Yen, M.K. Chern, Y.H. Chen, A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for beta-chitin preparation, Enzyme Microb. Technol., 2006, 39, 724-731.
45.	V.B. Nguyen, A.D. Nguyen, S.L. Wang, Utilization of fishery processing byproduct squid pens for Paenibacillus sp. fermentation on producing potent α-glucosidase inhibitors, Mar. Drugs, 2017, 15, 274.
46.	S.L. Wang, H.T. Li, L.J. Zhang, Z.H. Lin, Y.H. Kuo, Conversion of squid pen to homogentistic acid via Paenibacillus sp. TKU036 and the antioxidant and anti-inflammatory activities of homogentisic acid, Mar. Drugs, 2016, 14, 183.
47.	T.W. Liang, S.C. Tseng, S.L. Wang, Production and characterization of antioxidant properties of exopolysaccharides from Paenibacillus mucilaginonus TKU032, Mar. Drugs, 2016, 14, 40-51.
48.	T.W. Liang, C.C. Wu, W.T. Cheng, Y.C. Chen, C.L. Wang, I.L. Wang, S.L. Wang, Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029, Appl. Biochem. Biotechnol., 2014, 172, 933-950.
49.	C.L. Wang, T.H. Huang, T.W. Liang, S.L. Wang, Production and characterization of exopolysaccharides and antioxidant from Paenibacillus sp. TKU023, New Biotechnol., 2011, 28, 559-565.
50.	S.L. Wang, C.Y. Wang, Y.H. Yen, T.W. Liang, S.Y. Chen, C.H. Chen, Enhanced production of insecticidal prodigiosin from Serratia marcescens TKU011 in media containing squid pen, Process Biochem., 2012, 47, 1684-1690.
51.	S.L. Wang, W.H. Hsu, T.W. Liang, Conversion of squid pen by Pseudomonas aeruginosa K-187 fermentation for the production of N-acetyl chitooligosaccharides and biofertilizers, Carbohydr. Res., 2010, 345, 880-885.
52.	S.L. Wang, W.T. Chang, Purification and characterization of two biofunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium, Appl. Environ. Microbiol., 1997, 63, 380-386.
53.	T.W. Liang, Y.J. Chen, Y.H. Yen, S.L. Wang, The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656, Process Biochem., 2007, 42, 527-534.
54.	K. Kim, N. Rajapakse, Enzymatic production and biological activities of chitosan of oligosaccharides (COS): a review, Carbohydr. Polym., 2005, 62, 357-368. 
55.	H.W. Lee, Y.S. Parkb, J.S. Jungb, W.S. Shinb, Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp., Anaerobe, 2002, 8, 319–324.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信