§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2001201421533000
DOI 10.6846/TKU.2014.00760
論文名稱(中文) 質子交換膜燃料電池之絕熱水轉移反應系統設計與操作度分析
論文名稱(英文) Design and operability analysis of adiabatic water gas shift reactor systems for proton exchange membrane fuel cells
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 1
出版年 103
研究生(中文) 徐士恩
研究生(英文) Shih-En Hsu
學號 600400641
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-01-15
論文頁數 159頁
口試委員 指導教授 - 陳逸航(yihhang@mail.tku.edu.tw)
委員 - 張煖(nhchang@mail.tku.edu.tw)
委員 - 錢義隆(ilungchien@ntu.edu.tw)
委員 - 陳逸航(yihhang@mail.tku.edu.tw)
關鍵字(中) 水轉移反應
反應器設計
最適化
操作度
氫氣
關鍵字(英) Water gas shift reaction
Design
Optimization
Operability
Hydrogen
第三語言關鍵字
學科別分類
中文摘要
本論文中以Aspen Plus 模擬軟體建立水轉移反應系統數學模式,並與文獻實驗數據確認其準確度。水轉移反應器結構分成單一及兩顆水轉移反應系統來探討。根據水轉移反應模式,最適化問題為改變反應器進口溫度、進料組成及一氧化碳轉化率之最小水轉移反應器體積,燃料處理系統出口氫氣流量需要滿足2.2 kW之質子交換膜燃料電池使用,一氧化碳濃度限制在20 ppm。結果顯示當一氧化碳轉化率超過平衡轉化率時,含有熱交換器之兩顆水轉移反應系統之反應系統體積會大幅減少。從建立出來之設計通則可以快速決定水轉移反應系統流程。由靈敏度分析可以得到水轉移反應系統控制架構。操作度分析結果顯示當氫氣流量改變,單一水轉移反應系統操作範圍會比兩顆水轉移反應系統來的大,兩顆水轉移反應系統之操作度因為進口一氧化碳濃度增加而減少。
英文摘要
In this work, Aspen plus simulation software were used to develop a model to describe  water gas shift (WGS) reactor systems which validated with experimental data. The WGS reactor structures, single and two, were investigated. Based on the WGS reactor systems model, optimization problem was formulated and performed to minimize the reactor volume by varying reactor inlet temperatures and feed compositions and CO conversion while maintaining the hydrogen flow rate (2.2 kW PEMFC used) and CO concentration constraint 20 ppm. The results show that two WGS reactors in series systems with intercoolers can largely reduce the reaction volume when CO conversion exceeded equilibrium conversion.Then, design heuristic was built to provide a quick determination of WGS reactor system flowsheet. After sensitivity analysis was made, control structures are explored here.The result shows single WGS reactor system has larger operability range than two WGS reactors in series during hydrogen throughput change. Operability range of two WGS reactors in series systems was reduced by an increasing inlet CO composition.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	III
圖目錄	VII
表目錄	XII
第一章、緒論	1
1.1.	前言	1
1.2.	文獻回顧	5
1.3.	研究動機	9
1.4.	論文組織	9
第二章、從碳氫化合物之蒸氣重組產生氫氣	11
2.1系統描述	11
2.2碳氫化合物的來源	13
2.2.1烷類蒸氣重組	13
2.2.2醇類蒸氣重組	20
2.2.3高碳數碳氫化合物	26
2.3水轉移反應	31
2.3.1水轉移反應器進料組成	31
2.3.2水轉移反應平衡常數	32
2.3.3水轉移反應平衡轉化率	33
2.4水轉移反應觸媒與動力學	39
2.5總結	45
第三章、絕熱水轉移反應系統之體積最小化設計	46
3.1水轉移反應系統之模式建立與模式驗證	46
3.1.1 模式假設	47
3.1.2 模式	47
3.1.3 模擬結果與模式驗証	51
3.2單一與串聯水轉移反應系統之設計最適化	53
3.2.1目標函數與最適化變數	55
3.2.2單一水轉移反應系統之最適化設計	56
3.2.3串聯水轉移反應系統之最適化設計	57
3.3水轉移反應系統設計選擇	64
3.3.1產品規格	64
3.3.2不同轉化率下水轉移反應器選擇	65
3.3.3不同進料組成下水轉移反應系統選擇	71
3.3.3.1 一氧化碳莫耳分率(yCO)改變	71
3.3.3.2 λ值改變	75
3.3.3.3水之莫耳分率(yH2O)改變	79
3.4水轉移反應系統設備成本分析	81
3.5單位水轉移反應系統體積之一氧化碳轉化效能(X.E.)	85
3.6結果與討論	89
3.6.1水轉移反應系統之設計經驗法則	89
3.6.2水轉移反應系統選擇區塊	94
3.7總結	97
第四章、控制架構設計及操作度	98
4.1控制目標	99
4.2水轉移反應系統靈敏度分析	99
4.2.1水轉移反應系統操作溫度之影響	100
4.2.2水轉移反應系統進料水量之影響	107
4.3水轉移反應系統控制架構設計	111
4.4 水轉移反應系統操作度分析	113
4.4.1單一水轉移反應系統操作度分析114
4.4.2串聯水轉移反應系統操作度分析121
4.4.3結果與討論	127
4.5總結	134
五、結論	136
符號說明	137
參考文獻	141
附錄	153
圖目錄
圖2-1、燃料處理器程序流程圖	12
圖2-2、水轉移反應平衡常數對溫度關係圖	33
圖2-3、水轉移反應進料組成無因次與轉化率表示圖	33
圖2-4、碳氫化合物水轉移反應之平衡轉化率對不同碳氫化合物進料組成關係圖36
圖3-1、高溫絶熱水轉移反應器串聯系統流程圖	47
圖3-2、各成分莫耳流率及溫度對水轉移反應器體積關係圖	52
圖3-3、(a) 單一, (b) 串聯高溫絶熱水轉移反應系統流程圖	54
圖3-4、(a) 單一水轉移反應系統, (b) 串聯水轉移反應系統體積最適化物流資料表	58
圖3-5、體積最適化水轉移反應系統溫度分布對一氧化碳轉化率關係圖	61
圖3-6、最適化體積之水轉移反應系統各成分濃度、反應速率以及溫度對反應器體積關係圖	63
圖3-7、yCO=3.5 mol%,yH2O=40.8 mol%及λ=5.3,單一與串聯水轉移反應系統之進出口溫度、總體積變化差異、總流量、出口氫氣量及反應器體積佔有率對一氧化碳轉化率關係圖	70
圖3-8、yCO=10.6 mol%,yH2O=40.8 mol%及λ=5.3,單一與串聯水轉移反應系統之進出口溫度、總體積變化差異、總流量、出口氫氣量及反應器體積佔有率對一氧化碳轉化率關係圖	73
圖3-9、yCO=2.6 mol%,yH2O=40.8 mol%及λ=5.3,單一與串聯水轉移反應系統之進出口溫度、總體積變化差異、總流量、出口氫氣量及反應器體積佔有率對一氧化碳轉化率關係圖	74
圖3-10、yCO=2.6 mol%,yH2O=40.8 mol%及λ=2.9,單一與串聯水轉移反應系統之進出口溫度、總體積變化差異、總流量、出口氫氣量及反應器體積佔有率對一氧化碳轉化率關係圖	77
圖3-11、yCO=2.6 mol%,yH2O=40.8 mol%及λ=1.1,單一與串聯水轉移反應系統之進出口溫度、總體積變化差異、總流量、出口氫氣量及反應器體積佔有率對一氧化碳轉化率關係圖	78
圖3-12、yCO=2.6 mol%,yH2O=33.5 mol%及λ=2.9,單一與串聯水轉移反應系統之進出口溫度、總體積變化差異、總流量、出口氫氣量及反應器體積佔有率對一氧化碳轉化率關係圖	80
圖3-13、不同進料組成下,水轉移反應系統之反應器設備成本對一氧化碳轉化率關係圖	83
圖3-14、不同進料組成下,水轉移反應系統設備成本對一氧化碳轉化率關係圖	84
圖3-15、不同進料組成之下,單位水轉反應系統體積之一氧化碳轉化效能對一氧化碳轉化率關係圖	86
圖3-16、單位水轉反應器體積之一氧化碳轉化效能對一氧化碳轉化率關係圖	88
圖3-17、不同進料組成水轉移反應系統總體積變化對一氧化碳轉化率關係圖	90
圖3-18、水轉移反應系統選擇對一氧化碳轉化率關係圖	93
圖3-19、(a) 不同水轉移觸媒, (b) 改變yCO, (c) 改變λ值 (d) 改變yH2O溫度對一氧化碳轉化率關係圖	96
圖4-1、用電負荷量及氫氣需求量示意圖	99
圖4-2、單一水轉移反應系統改變進口溫度對於反應器出口溫度、水轉移反應速率、出口組成關係圖	102
圖4-3、串聯水轉移反應系統改變第一顆反應器進口溫度對反應器出口溫度、水轉移反應速率、出口組成關係圖	105
圖4-4、串聯水轉移反應系統改變第二顆反應器進口溫度對反應器出口溫度、水轉移反應速率、出口組成關係圖	106
圖4-5、單一水轉移反應系統改變進料添加水量對反應器出口溫度、水轉移反應速率、出口組成關係圖	108
圖4-6、串聯水轉移反應系統改變進料添加水量對反應器出口溫度、水轉移反應速率、出口組成關係圖	110
圖4.7、(a) 單一, (b) 串聯水轉移反應系統濃度控制結構圖	112
圖4.8、(a) 單一, (b) 串聯水轉移反應系統存量控制結構圖	113
圖4-9、單一水轉移反應系統(a) 操作度分布, (b) A1(ΔFTot=100 %), (c) B1(ΔFTot=55.3%), (d) C1(ΔFTot=30 %)溫度分布圖	116
圖4-10、單一水轉移反應系統(a) 操作度分布, (b) A2(ΔFTot=100 %), (c) B2(ΔFTot=61.3 %), (d) C2(ΔFTot=30 %)溫度分布圖	118
圖4-11、單一水轉移反應系統(a) 操作度分布, (b) A3(ΔFTot=100 %), (c) B3(ΔFTot=50 %), (d) C3(ΔFTot=99.9 %)溫度分布圖	120
圖4-12、串聯水轉移反應系統(a) 操作度分布, (b) A1(ΔFTot=100 %), (c) B1(ΔFTot=42.4 %), (d) C1(ΔFTot=30 %)溫度分布圖	122
圖4-13、串聯水轉移反應系統(a) 操作度分布, (b) A1(FTot=100 %), (c) B2(ΔFTot=66.2 %), (d) C2(ΔFTot=30 %)溫度分布圖	124
圖4-14、串聯水轉移反應系統(a) 操作度分布, (b) A3(ΔFTot=100 %), (c) B3(ΔFTot=50 %), (d) C3(ΔFTot=99.9 %)溫度分布圖	126
圖4-15、不同進料組成之水轉移反應系統操作度對一氧化碳轉化率關係圖	128
圖4-16、XCO=80.6 %,yCO=3.5 mol%,yH2O=40.8 mol%及λ值為5.3,ΔFTot=49.5%串聯水轉移系統溫度分佈圖	130
圖4-17、XCO=80%,yCO=10.6 mol%,yH2O=40.8 mol%及λ值為5.3,ΔFTot=86.4 %串聯水轉移系統溫度分佈圖	132
圖4-18、不同進料一氧化碳濃度下,串聯水轉移反應系統之(a) 總流量需求, (b) 一氧化碳反應量, (c) 操作度, (d) XCO=80 %,達操作溫度上限之溫度分布圖133
表目錄
表1-1、低碳數烷類碳氫化合物水轉移反應系統結構整理表	7
表1-2、醇類及高碳數碳氫化合物水轉移反應系統結構整理表	8
表2-1、碳氫化合物蒸氣重組反應途徑整理表	15
表2-2、甲烷蒸氣重組文獻整理表	16
表2-3、乙烷蒸氣重組之文獻整理表	19
表2-4、甲醇蒸氣重組文獻整表	21
表2-5、乙醇蒸氣重組之文獻整理表	24
表2-6、乙醇蒸氣重組之文獻整理表(續)	25
表2-7、液化石油氣蒸氣重組文獻整理表	28
表2-8、柴油蒸氣重組文獻整理表	30
表2-9、烷類碳氫化合物進料組成與水轉移反應之平衡轉化率整理表	37
表2-10、醇類及高碳數碳氫化合物進料組成與水轉移反應之平衡轉化率整理表	38
表2.11、高溫水轉移觸媒整理表	40
表2.12、高溫水轉移觸媒整理表(續)	41
表2-13、低溫水轉移觸媒整理表	43
表2-14、低溫水轉移觸媒整理表(續)	44
表3-1、蒸氣重組系統之各個反應器進出口端物流組成與溫度數據	49
表3-2、水轉移反應器尺寸及觸媒用量	50
表3-3、最適化水轉移反應系統總體積與操作溫度比較表	59
參考文獻
[1]	Ozturk, I. T.; Hammache, A.; Bilgen, E. ‘An improved process for H2SO4 decomposition step of the sulfur-iodine cycle’, Energy Conversion and Management, 36, 11-21, 1995. 
[2]	Levin, D. B.; Pitt, L., Love; M. ‘Biohydrogen production: prospects and limitations to practical application’, International Journal of Hydrogen Energy, 29, 173-185, 2004.
[3]	Inui, T. ‘Rapid catalytic processes in reforming of methane and successive synthesis of methanol and its derivatives’, Applied Surface Science, 121, 26-33, 1997
[4]	Vakili, R.; Pourazadi, E.; Setoodeh, P.; Eslamloueyan, R.; Rahimpour, M. R. ‘Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor’’, Applied Energy, 1211-1223, 2011
[5]	Northrop, W. F.; Choi, S. O.; Thompson; L. T. ‘Thermally integrated fuel processor design for fuel cell applications’, International Journal of Hydrogen Energy, 37, 3447-3458, 2012.
[6]	Funke, M.; Kuhl, H. D.; Faulhaber, S.; Pawlik, J. ‘A dynamic model of the fuel processor for a residential PEM fuel cell energy system’, Chemical Engineering Science, 64, 1860-1867, 2009.
[7]	Krumpelt, M.; Krause, T. R.; Carter; J. D.; Kopasz, J. P.; Ahmed, S. ‘Fuel processing for fuel cell systems in transportation and portable power applications’, Catalysis Today, 77, 3-16, 2002.
[8]	Zalca, J. M.; Lofflerb, D. G. ‘Fuel processing for PEM fuel cells: transport and kinetic issues of system design’, Journal of Power Sources 111, 58-64, 2002.
[9]	Lin, S. T.; Chen, Y. H.; Yu, C. C.; Liu, Y. C.; Lee, C. H. ‘Modeling of an experimental fuel processor’, Journal of Power Sources, 148, 43-53, 2005.
[10]	Ersoz, A.; Olgun, H.; Ozdogan, S., ‘Reforming options for hydrogen production from fossil fuels for PEM fuel cells’, Journal of Power Sources, 154, 67-73, 2006.
 

[11]	Nogare, D. D.; Baggio, P.; Tomasi, C.; Mutri, L.; Canu, P. ‘A thermodynamic analysis of natural gas reforming processes for fuel cell application’, Chemical Engineering Science, 62, 5418-5424, 2007.
[12]	Boyano, A.; Blanco-Marigorta, A. M.; Tsatsaronis, G. ‘Conventional and advanced exergoenvironmental analysis of a steam methane reforming reactor for hydrogen production’, Journal of Cleaner Production, 20, 152-160, 2012.
[13]	Adams II, T. A.; Barton, P. I. ‘High-efficiency power production from natural gas with carbon capture’, Journal of Power Sources, 195, 1971-1983, 2010.
[14]	Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y. ‘A natural-gas fuel processor for a residential fuel cell system’, Journal of Power Sources, 188, 244-255, 2009.
[15]	Rahimpour, M. R.; Aboosadi, Z. A.; Jahanmiri, A. H. ‘Synthesis gas production in a novel hydrogen and oxygen perm-selective membranes tri-reformer for methanol production’, Journal of Natural Gas Science and Engineering, 9, 149-159, 2012.
[16]	Zhang, N.; Lior, N. ‘Two novel oxy-fuel power cycles integrated with natural gas reforming and CO2 capture’, Energy, 33, 340–351, 2008.
[17]	Dehkordi, A. M.; Savari, C.; Ghasemi, M. ‘Steam reforming of methane in a tapered membrane – assisted fluidized – bed reactor: modeling and simulation’, International Journal of Hydrogen Energy, 36, 490-504, 2011.
[18]	Hong, S. K.; Dong, S. K.; Han J. O.; Lee, J. S.; Lee, Y. C. ‘Numerical study of effect of operating and design parameters for design of steam reforming reactor’, Energy, 61, 410-418, 2013
[19]	Lee, S.; Bae, J.; Lim, S.; Park, J. ‘Improved configuration of supported nickel catalysts in a steam reformer for effective hydrogen production from methane’, Journal of Power Sources, 180, 506-515, 2008.
 

[20]	Aboosadi, Z. A.; Rahimpour, M. R.; Jahanmiri, A. ‘A novel integrated thermally coupled configuration for methane-steam reforming and hydrogenation of nitrobenzene to aniline’ International Journal of Hydrogen Energy, 36, 2960-2968, 2011.
[21]	Wang, F.; Shuai, Y.; Wang, Z.; Leng, Y.; Tan H. ‘Thermal and chemical reaction performance analyses of steam methane reforming in porous media solar thermochemical reactor’, International Journal of Hydrogen Energy, 39, 718-730, 2014.
[22]	De Jong, M.; Reinders; A. H. M. E.; Kok, J. B. W.; Westendorp, G. ‘Optimizing a steam-methane reformer for hydrogen production’, International Journal of Hydrogen Energy, 34, 285-292, 2009.
[23]	Mohammadzadeh, J. S. S.; Zamaniyan, A.; ‘Catalyst shape as a design parameter—optimum shape for methane-steam reforming catalyst’, Chemical Engineering Research and Design, 80, 383-391, 2002.
[24]	Salemme, L.; Menna, L.; Simeone, M. ‘Calculation of the energy efficiency of fuel processor-PEM (proton exchange membrane) fuel cell systems from fuel elementar composition and heating value’, Energy, 57, 368-374, 2013.
[25]	Laosiripojana, N.; Sangtongkitcharoen, W.; Assabumrungrat, S. ‘Catalytic steam reforming of ethane and propane over CeO2 - doped Ni/Al2O3 at SOFC temperature: improvement of resistance toward carbon formation by the redox property of doping CeO2’, Fuel, 85, 323-332, 2006.
[26]	Huang, X.; Reimert, R. ‘Kinetics of steam reforming of ethane on Ni/YSZ (yttria-stabilised zirconia) catalyst’, Fuel, 106, 380–387, 2013.
[27]	Schadel, B, T.; Duisberg, M.; Deutschmann, O. ‘Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst’, Catalysis Today, 142, 42-51, 2009.
[28]	Bilal, M.; Gillan, C.; Fowles, S.; Jackson S. D. ‘Steam reforming of ethane and ethanol over Rh/Alumina: a comparative study’, 23th North American Catalyst Society Meeting, 2013.
 

[29]	Gillan, C.; Fowles, M.; French, S.; Jackson, S. D., ‘Ethane steam reforming over a platinum/alumina catalyst: effect of sulfur poisoning’, Industrial & Engineering Chemistry Research, 52, 13350-13356, 2013.
[30]	Takeguchi, T.; Kani, Y.; Yano, T.; Kikuchi, R.; Eguchi, K.; Tsujimoto, K.; Uchida, Y.; Ueno, A.; Omoshiki, K.; Aizawa, M. ‘Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets’, Journal of Power Sources, 112, 588-595, 2002.
[31]	Graf, P. O.; Mojet, B. L.; Lefferts, L. ‘Influence of potassium on the competition between methane and ethane in steam reforming over Pt supported on yttrium-stabilized zirconia’, Applied Catalysis A: General, 346, 90-95, 2008.
[32]	Veranitisagul, C.; Koonsaeng, N.; Laosiripojana, N.; Laobuthee, A. ‘Preparation of gadolinia doped ceria via metal complex decomposition method: its application as catalyst for the steam reforming of ethane’, Journal of Industrial and Engineering Chemistry, 18, 898-903, 2012.
[33]	Graf, P. O.; Mojet, B. L.;van Ommen, J. G.; Lefferts, L. ‘Comparative study of steam reforming of methane, ethane and ethylene on Pt, Rh and Pd supported on yttrium-stabilized zirconia’, Applied Catalysis A: General, 332, 310-317, 2007.
[34]	Joensen, F.; Rostrup-Nielsen, J. R. ‘Conversion of hydrocarbons and alcohols for fuel cells’, Journal of Power Sources, 105, 195-201, 2002.
[35]	Chuang, C. C.; Cheng ,Y. H.; Ward, J. D.; Yu, C. C.; Liu,Y. C.; Lee, Y. C. ‘Optimal design of an experimental methanol fuel reformer’, International Journal of Hydrogen Energy, 33, 7062-7073, 2008.
[36]	Han, J.; Lee, S. M.; Chang, H. ‘Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle’, Journal of Power Sources, 112, 484-490, 2002.
[37]	Agarwal, V.; Patel, S.; Pant, K. K. ‘H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: transient deactivation kinetics modeling’, Applied Catalysis A: General, 279 155–164, 2005.
[38]	Emonts, B.; Hansen, J. B., Jorgensen; S. L.; Hohlein, B.; Peters, R. ‘Compact methanol reformer test for fuel-cell powered light-duty vehicles’, Journal of Power Sources, 71, 288-293, 1988.
[39]	Wiese, W.;Emonts, B.; Peters, B. ‘Methanol steam reforming in a fuel cell drive system’, Journal of Power Sources, 84, 187-193, 1999.
[40]	Pan, L.; Wang, S. ‘Methanol steam reforming in a compact plate-fin reformer for fuel-cell systems’, International Journal of Hydrogen Energy, 30, 973-979, 2005.
[41]	Varesano, A.;Guaglio, I.; Saracco, G.; Maffettone, P. L. ‘Dynamics of a methanol reformer for automotive applications’, Industrial & Engineering Chemistry Research, 44, 759-768, 2005.
[42]	Sohn, J. M.; Byun, Y. C.; Cho, J. Y.; Choe, J.; Song, K. H. ‘Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol’, International Journal of Hydrogen Energy, 32 , 5103–5108, 2007.
[43]	Pan, S.; Plant, K. K. ‘Kinetic modeling of oxidative steam reforming of methanol over Cu/ZnO/CeO2/Al2O3 catalyst’, Applied Catalysis A: General, 30, 189-200, 2009.
[44]	Cao, W.; Chen, G.; Li, S.; Yuan, Q. ‘Methanol-steam reforming over a ZnO–Cr2O3/CeO2–ZrO2/Al2O3 catalyst’, Chemical Engineering Journal, 119, 93-98, 2006.
[45]	Bowers, B. J.; Zhao, J. L.; Ruffo, M.; Khan, R.; Dushman; Beziat, J. C.; Boudjemaa, F. ‘Onboard fuel processor for PEM fuel cell vehicles’, International Journal of Hydrogen Energy, 32, 1437-1442, 2007.
[46]	Aicher, T.; Full, J.; Schaadt, M. ‘A portable fuel processor for hydrogen production from ethanol in a 250Wel fuel cell system’, International Journal of Hydrogen Energy, 34, 8006-8015, 2009.
[47]	Salemme, L.; Menna, L.; Simeone, M. ‘Thermodynamic analysis of ethanol processors – PEM fuel cell systems’, International Journal of Hydrogen Energy, 35, 3480-3489, 2010.
[48]	Francesconi, J. A.; Mussati, C. M.; Aguirre, P. A. ‘Analysis of design variables for water-gas-shift reactors by model-based optimization’, Journal of Power Sources, 173, 467-477, 2007.
[49]	Liu, J. Y.; Lee, C. C.; Wang, C. H.; Yeh, C. T.; Wang, C. B. ‘Application of nickel–lanthanum composite oxide on the steam reforming of ethanol to produce hydrogen’, International Journal of Hydrogen Energy, 35, 4069-	4075, 2010.
[50]	Torres, J. A.; Llorca, J.; Casanovas, A.; Dom’ınguez, M.; Salvado, J.; Montane, D. ‘Steam reforming of ethanol at moderate temperature:Multifactorial design analysis of Ni/La2O3-Al2O3, and Fe- and Mn-promoted Co/ZnO catalysts’, Journal of Power Sources, 169, 158–166, 2007.
[51]	Lopez, E; Divins, N. J.; Anzolab, A.; Schbib, S.; Borio, D.; Llorca, J. ‘Ethanol steam reforming for hydrogen generation over structured catalysts’, International Journal of Hydrogen Energy, 38, 4418-4428, 2013.
[52]	Bespalko, N.; Roger, A. C.; Bussi, J. ‘Comparative study of NiLaZr and CoLaZr catalysts for hydrogen production by ethanol steam reforming Effect of CO2 injection to the gas reactants. Evidence of Rh role as a promoter’, Applied Catalysis A: General, 407, 204-210, 2011.
[53]	Llorca, J.; Casanovas, A.; Trifonov, T.; Rodriguez, A.; Alcubilla, R. ‘First use of macroporous silicon loaded with catalyst film for a chemical reaction: A microreformer for producing hydrogen from ethanol steam reforming’, Journal of Catalysis, 255, 228–233, 2008
[54]	Lopez, E., Gepert, V., Gritsch. A., Nieken, U., and Eigenberger, G. ‘Ethanol steam reforming thermally coupled with fuel combustion in a parallel plate reactor’ Industrial & Engineering Chemistry Research, 51, 4143–4151, 2012.
[55]	Liguras, D. K.; Kondarides, D. I.; Verykios, X. E., ‘Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts’, Applied Catalysis B: Environmental, 43, 345–354, 2003.
 

[56]	Cai, W.; Zhang, B.; Li, Y.; Xu, Y.; Shen, W. ‘Hydrogen production by oxidative steam reforming of ethanol over an Ir/CeO2 catalyst’, Catalysis Communications, 8, 1588-1594, 2007.
[57]	Zhang, B.; Tang, X.; Li, Y., Xu; Y., Shen, W. ‘Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts’, International Journal of Hydrogen Energy, 32, 2367-2373, 2007.
[58]	Mas, V.; Bergamini, M. L.; Baronetti, G.; Amadeo, N.; Laborde, M. ‘A kinetic study of ethanol steam reforming using a nickel Bbsed catalyst’, Topics in Catalysis, 55. 1-4, 39-48, 2008.
[59]	Llera, I.; Mas, V., Bergamini, M. L.; Laborde, M.; Amadeo, N. ‘Bio-ethanol steam reforming on Ni based catalyst. kinetic study’ Chemical Engineering Science, 71, 356-366, 2012.
[60]	Peela, N. R.; Mubayi, A.; Kunzru, D. ‘Steam reforming of ethanol over Rh/CeO2/Al2O3 catalysts in a microchannel reactor’, Chemical Engineering Journal, 167, 578-587, 2011.
[61]	Diagne, C.; Idriss, H.; Kiennemann, A. ‘Hydrogen production by ethanol reforming over Rh-CeO2-ZrO2 catalysts’, Catalysis Communications, 3, 565-571, 2002.
[62]	Biswas, P.; Kunzru, D. ‘Steam reforming of ethanol for production of hydrogen over Ni/CeO2–ZrO2 catalyst: Effect of support and metal loading’, International Journal of Hydrogen Energy, 32 969–980, 2007.
[63]	Cipiti, F.; Recupero, V.; Pino, L.; Vita, A.; Lagana, M. ‘Experimental analysis of a 2 kWe LPG-based fuel processor for polymer electrolyte fuel cells’, Journal of Power Sources, 157, 914–920, 2006.
[64]	Recupero, V.; Pino, L.; Vita, A.; Cipiti, F.; Cordaro, M.; Lagana, M. ‘Development of a LPG fuel processor for PEFC systems:Laboratory scale evaluation of autothermal reforming and preferential oxidation subunits’, International Journal of Hydrogen Energy, 30, 963–971, 2005.
[65]	Wichert, M.; Men, Y.; O’Connell M.; Tiemann, D.; Zapf, R.; Kolb, G., Butschek,;S.; Frank , R.; Schiegl, A. ‘Self-sustained operation and durability testing of a 300 W-class micro-structured LPG fuel processor’, International Journal of Hydrogen Energy, 36, 3496–3504, 2011.
[66]	Kolb, G.; Zapf, R.; Hessel, V.; Lowe, H. ‘Propane steam reforming in micro-channels—results from catalyst screening and optimization’, Applied Catalysis A: General, 277, 155–166, 2004.
[67]	Sato, K.;Tanaka, Y.; Negishi, A.; Kato, T. ‘Dual fuel type solid oxide fuel cell using dimethyl ether and liquefied petroleum gas as fuels’, Journal of Power Sources, 217, 37-42, 2012.
[68]	Pino, L.; Vita, A.; Cipiti, F.; Lagana, M.; Recupero, V. ‘Performance of Pt/CeO2 catalyst for propane oxidative steam reforming’, Applied Catalysis A: General, 306, 68-77, 2006.
[69]	Sopena, D.; Melgar, A.; Briceno, Y.; Navarro, R. M.; Alvarez-Galvan, M. C.; Rosa, F. ‘Diesel fuel processor for hydrogen production for 5 kW fuel cell application’, International Journal of Hydrogen Energy, 32, 1429-1436, 2007.
[70]	Cutillo, A.; Specchia, S.; Antonini, M.; Saracco, G.; Specchia, V. ‘Diesel fuel processor for PEM fuel cells: Two possible alternatives (ATR versus SR)’, Journal of Power Sources, 154, 379-385, 2006.
[71]	Engelhardt, P.; Maximini, M.; Beckmann, F. ‘Integrated fuel cell APU based on a compact steam reformer for diesel and a PEMFC’, International Journal of Hydrogen Energy, 37, 13470-13477, 2012.
[72]	Kolb, G.; Hofmann, C.; O'Connell, M.; Schure, J. ‘Microstructured reactors for diesel steam reforming, water-gas shift and preferential oxidation in the kiloWatt power range’ Catalysis Today, 147, 176–184, 2009.
[73]	Achouri, I. E.; Abatzoglou, N.; Fauteux-Lefebvre, C.; Braidy, N. ‘Diesel steam reforming: Comparison of two nickel aluminate catalysts prepared by wet-impregnation and co-precipitation’ Catalysis Today, 207, 13-20, 2013.
[74]	Kim, D. H.; Kang, J. S.; Lee, Y. J.; Park, N. K.; Kim, Y. C.; Hong, S. I.; Moon, D. J. ‘Steam reforming of n-hexadecane over noble metal-modified Ni-based catalysts’, Catalysis Today, 136, 228–234, 2008.
[75]	Yoon, S.; Kang, I; Bae, J. ‘Suppression of ethylene-induced carbon deposition in diesel autothermal reforming’, International Journal of Hydrogen Energy, 34, 1844-1851, 2009.
[76]	Parmar, R. D.; Kundu, A.; Karan, K. ‘Thermodynamic analysis of diesel reforming process: Mapping of carbon formation boundary and representative independent reactions’, Journal of Power Sources, 194, 1007–1020, 2009.
[77]	Maximini, M.; Engelhardt, P.; Grote, M.; Brenner, M. ‘Further development of a microchannel steam reformer for diesel fuel’, International Journal of Hydrogen Energy, 37, 10125-10134, 2012.
[78]	Thormann, J.; Maier, L.; Pfeifer, P.; Kunz, U.; Deutschmann, O.; Schubert, K. ‘Steam reforming of hexadecane over a Rh/CeO2 catalyst in microchannels: Experimental and numerical investigation’, International Journal of Hydrogen Energy, 34, 5108-5120,2009.
[79]	Mundschau, M. V.; Burk, C. G.; Gribble Jr, A. G. ‘Diesel fuel reforming using catalytic membrane reactors’, Catalysis Today, 136, 190–205, 2008
[80]	Quiney, A. S.; Germani, G.; Schuurman Y. ‘Optimization of a water–gas shift reactor over a Pt/ceria/alumina monolith’, Journal of Power Sources, 160, 1163-1169, 2006.
[81]	De Bruijn, F. A. ‘The current status of fuel cell technology for mobile and stationary applications’, Green Chemical, 7, 132-150, 2005.
[82]	Nielsen, J. R. ‘Syngas for C1-Chemistry. Limits of the steam reforming process’, Studies in Surface Science and Catalysis, 36, 73-78, 1988.
[83]	Lwin, Y.; Daud, W. R. W.; Mohamad, A. B.; Yaakob, Z. ‘Hydrogen production from steam–methanol reforming: thermodynamic analysis’, International Journal of Hydrogen Energy, 25, 47–53, 2000.
[84]	Wang, J.; Chen, H.; Tian, Y.; Yao, M.; Li., Y. ‘Thermodynamic analysis of hydrogen production for fuel cells from oxidative steam reforming of methanol’, Fuel, 97, 805–811, 2012.
[85]	Silveira, J. L.; Braga, L. B.; Souza, A. C.; Antunes, J. S.; Zanzi, R. ‘The benefits of ethanol use for hydrogen production in urban transportation’, Renewable Sustainable Energy Reviews, 13, 2525-2534., 2009.
[86]	Simson, A.; Waterman, E.; Farrauto, R.; Castaldi, M. ‘Kinetic and process study for ethanol reforming using a Rh/Pt washcoated monolith catalyst’, Applied Catalysis B: Environmental, 89, 58-64, 2009.
[87]	Ni, M.; Leung, D. Y. C.; Leung, M. K. H. ‘A review on reforming bio-ethanol for hydrogen production’, International Journal of Hydrogen Energy, 32, 3238–3247, 2007.
[88]	Sahoo, D. R.; Vajpai, S.; Patel, S.; Pant, K. K. ‘Kinetic modeling of steam reforming of ethanol for the production of hydrogen over Co/Al2O3 catalyst’, Chemical Engineering Journal, 125, 139-147, 2007.
[89]	Laosiripojana, N.; Assabumrungrat, S. ‘Hydrogen production from steam and autothermal reforming of LPG over high surface area ceria’, Journal of Power Sources 158 1348–1357, 2006.
[90]	Zeng, G.; Tian, Y.; Li, Y. D. ‘Thermodynamic analysis of hydrogen production for fuel cell via oxidative steam reforming of propane’, International Journal of Hydrogen Energy, 35, 6726–6737, 2010.
[91]	O’Connell, M.; Kolb, G.; Schelhaas, K. P.; Schuerer, J., Tiemann, D.; Ziogas, A.; Hessel, V. ‘Development and evaluation of a microreactor for the reforming of diesel fuel in the kW range’, International Journal of Hydrogen Energy, 34, 6290-6303, 2009.
[92]	Smith, J. M., and Ness, H. C. V., ‘Introduction to chemical engineering thermodynamic (4 ed)’, McGraw-Hill, New York, INTERNATIONAL EDTIONS, 496-542, 1988. 
[93]	Keiski; R. L.; Salmi, T.; Niemisto, P.; Ainassaari, J.; Pohjola, V. J. ‘Stationary and transient kinetics of the high temperature water-gas shift reaction’, Applied Catalysis A: General, 137, 349-370, 1996.
[94]	Phatak, A. A.; Koryabkina; N.; Rai, S.; Ratts, J. L.; Ruettinger, W.; Farrauto, R. J.; Blau, G. E.; Delgass, W. N.; Ribeiro, F. H. ‘Kinetics of the water–gas shift reaction on Pt catalysts supported on alumina and ceria’ Catalysis Today, 123, 224–234, 2007.
[95]	Boon, J.; Dijk, E. V.; Pirgon-Galin, O.; Haije, W.; Brink, R. V. D. ‘Water–Gas Shift Kinetics Over FeCr-based Catalyst: Effect of Hydrogen Sulphide’, Catalysis Letters, 131, 406–412, 2009.
[96]	Hla, S. S.; Park, D.; Duffy, G. J.; Edwards, J. H.; Roberts, D. G.; Ilyushechkin, A.; Morpeth, L. D.; Nguyen, T. ‘Kinetics of high-temperature water-gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngases’, Chemical Engineering Journal, 146, 148–154, 2009.
 

[97]	Rhodes, C.; Hutchings G. J. ‘Studies of the role of the copper promoter in the iron oxide/chromia high temperature water gas shift catalyst’, Physical Chemistry Chemical Physics, 12, 2719-2723, 2003.
[98]	Maciel, C. G.; de Freitas Silva, T.; Assaf, E. M.; Assaf, J. M. ‘Hydrogen production and purification from the water–gas shift reaction on CuO/CeO2–TiO2 catalysts’, Applied Energy, 112, 52–59, 2013.
[99]	Kusar, H.; Hocevar, S.; Levec, J. ‘Kinetics of the water–gas shift reaction over nanostructured copper–ceria catalysts’, Applied Catalysis B: Environmental, 63, 194–200, 2006.
[100]	Thinon, O.; Rachedi, K.; Diehl, F.; Avenier, P.; Schuurman, Y. ‘Kinetics and mechanism of the water–gas shift reaction over Platinum supported catalysts’, Topics in Catalysis, 52, 1940–1945, 2009.
[101]	Criscuoli, A.; Basile, A.; Drioli, E. ‘An analysis of the performance of membrane reactors for the water–gas shift reaction using gas feed mixtures’, Catalysis Today, 56, 53–64, 2000.
[102]	Twigg, M. V.; Spencer, M. S. ‘Deactivation of supported copper metal catalysts for hydrogenation reactions’ Applied Catalysis A: General, 212, 161–174, 2001.
[103]	Choi, Y.; Stenger, H. G. ‘Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen’, Journal of Power Sources, 124, 432–439, 2003.
[104]	Kim, G. Y.; Mayor, J. R.; Ni, J. ‘Parametric study of microreactor design for water gas shift reactor using an integrated reaction and heat exchange model’, Chemical Engineering Journal, 110, 1–10, 2005
[105]	Baier, T.; Kolb, G. ‘Temperature control of the water gas shift reaction in microstructured reactors’ Chemical Engineering Science, 62, 4602–4611, 2007.
[106]	Pour, A. N.; Housaindokht, M. R.; Tayyari, S. F.; Zarkesh, J. ‘Kinetics of the water-gas shift reaction in Fischer-Tropsch synthesis over a nano-structured iron catalyst’, Journal of Natural Gas Chemistry, 19, 362–368, 2010.
 

[107]	Chen, W. H.; Hsieh, T. C.; Jiang, T. L. ‘An experimental study on carbon monoxide conversion and hydrogen generation from water gas shift reaction’ Energy Conversion and Management, 49 2801–2808, 2008.
[108]	Salmi, T; Hakkarainen, R. ‘Kinetic study of the low-temperature water-gas shift eeaction over a Cu-ZnO Catalyst’, Applied Catalysis, 49, 285-306, 1989.
[109]	Koryabkina, N. A.; Phatak, A. A.; Ruettinger, W. F.; Farrauto, R. J.; Ribeiro, F. H., ‘Determination of kinetic parameters for the water–gas shift reaction on copper catalysts under realistic conditions for fuel cell applications’, Energy Conversion and Management, 49, 2801–2808, 2008.
[110]	Robinson, P. J.; Luyben, W. L., ‘Integrated gasification combined cycle dynamic model: H2S absorption/stripping water-gas shift reactors and CO2 absorption/stripping’, Industrial & Engineering Chemistry Research, 49, 4766–4781, 2010.
[111]	Moe J. M. ‘Design of water-gas shift reactors’, Chemical Engineering Progress, 58, 33-36, 1962.
[112]	Shah, R. K. ‘Heat exchanger basic design methods, in Low Reynolds Number Flow Heat Exchangers, W. M. Rohsenow, J. P. Hartnett, and E. N. Gani~ (eds.), 21-71, McGraw-Hill, New York, 1983.
[113]	Douglas, J. M. ‘Conceptual design of chemical processes’, McGraw-Hill, New York, 1988
[114]	Amphlett, J. C.; Mann, R. F.; Peppley, B. A. ‘On board hydrogen purification for steam reformation/ PEM fuel cell vehicle power plants’, International Journal of Hydrogen Energy, 21, 673-678, 1996
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信