淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2001201415043700
中文論文名稱 拉伸流場中紅血球破壞探討
英文論文名稱 Red Blood Cell Damage in Extensional Flow
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 102
學期 1
出版年 103
研究生中文姓名 蔡明勳
研究生英文姓名 Hsun-Ming Tsai
學號 600480403
學位類別 碩士
語文別 中文
口試日期 2014-01-10
論文頁數 57頁
口試委員 指導教授-盧博堅
委員-丁大為
委員-張正興
中文關鍵字 溶血  拉伸應力  突縮之微短毛細管  紅血球 
英文關鍵字 hemolysis  extensional stress  sharp contraction of a short capillary  CFD  red blood cells 
學科別分類 學科別應用科學環境工程
中文摘要 在現今社會心血管疾病是造成國人死因的前幾名,為了改善疾病,人們開發了人工器官,如心室輔助器、人工心瓣、導管等,但心血管中會造成非生理性的流況,其流況所產生的血流應力會引發血液的破壞,特別是紅血球的損傷,稱為溶血。真實流場應包含有剪應力和拉伸應力。本研究以突縮之微細短毛細管做為實驗流場,其在進口端會產生一強烈的拉伸應力場,此流場先經由CFD的計算,求出其應力值,然後採用豬的新鮮紅血球,進行溶血的測試,以了解拉伸應力對溶血的影響。結果顯示和先前的研究結果是一致的,拉伸應力為影響紅血球破壞的主要機械力,且其閥值約為1000Pa。
英文摘要 Cardiovascular disease is the major leading cause of death in nowadays society. For cure the disease, people have developed artificial organs, such as ventricular assist devices, artificial heart valves,catheters. But tubing can create non-physiologic flow conditions within the cardiovascular system. The stress forces generated in these flow fields can induce blood cell damage, particularly red blood cell damage or hemolysis. However, actual flow field forces include both shear stress and extensional stress. In this study, we created a strong extensional stress flow field with the sharp contraction of a short capillary. The flow field generated at the entrance of the capillary was calculated with CFD to determine the stress values, which was followed by hemolysis experiments with porcine red blood cells to determine the effects of extensional stress on hemolysis. Our results were consistent with prior studies in that the extensional stress was the primary mechanical force involved in hemolysis with a threshold value of 1000 Pa.
論文目次 目錄
淡江大學研究生中文論文提要 I
Abstract: II
謝誌 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 2
1-3 研究過程 4
第二章 文獻回顧 6
2-1 血球破壞閥值 6
第三章 實驗設置 11
3-1 CFD數值方法設定與模式模擬 11
3-2 拉伸流 13
3-3 溶血實驗 流場設置 13
3-4紅血球破壞實驗 14
第四章 結果與討論 18
4-1 流場模擬應力分布 18
4-2 流線上三應力之變化 31
4-3 平均權重法 32
4-3-1 溶血結果 34
4-3-2 速度與溶血指數IH之關係 36
4-3-3 應力與溶血指數IH之關係 38
4-4 迴歸分析 42
4-5 建議與改進 50
第五章 結論 51
參考文獻 52
圖目錄

圖2-1. 漸縮與突縮流場示意圖(a)漸縮流場示意圖(b)突縮流場示意圖。 10
圖3-1. 流場模擬設計圖。 12
圖3-2. 流場速度矢量圖。 13
圖3-3. 流場設置圖。 14
圖3-4. 溶寫實驗設置(a)步進馬達(b)不鏽鋼管。 17
圖3-5. 溶寫實驗設置之馬達控制器。 17
圖4-1.接近突縮口之切向應力(τ_rz)的等應力圖 19
圖4-2. 接近突縮口之拉伸應力(τ_zz)的等應力圖 20
圖4-3. 接近突縮口之拉伸應力(τ_rr)的等應力圖 21
圖4-4. 接近突縮口之切向應力(τ_rz)的等應力圖 22
圖4-5. 接近突縮口之拉伸應力(τ_zz)的等應力圖 23
圖4-6. 接近突縮口之拉伸應力(τ_rr)的等應力圖 24
圖4-7. 接近突縮口之切向應力(τ_rz)的等應力圖 25
圖4-8. 接近突縮口之拉伸應力(τ_zz)的等應力圖 26
圖4-9. 接近突縮口之拉伸應力(τ_rr)的等應力圖 27
圖4-10. 接近突縮口之切向應力(τ_rz)的等應力圖 28
圖4-11. 接近突縮口之拉伸應力(τ_zz)的等應力圖 29
圖4-12. 接近突縮口之拉伸應力(τ_rr)的等應力圖 30
圖4-13. 三應力在流線上之變化。(d=0.051 cm,μ=17 cP,V=16 m/s)。 31
圖4-14. 此圖為等間隔流線於流場中,為一流場所取的十條線分布。 32
圖4-15. Velocity與溶血之關係圖。 36
圖4-16. (τ_rz)與溶血之關係圖。 38
圖4-17. (τ_rr)與溶血之關係圖。 39
圖4-18. (τ_zz)與溶血之關係圖。 40
圖4-19. (τ_zz)與溶血指數(IH)關係圖(D=0.051cm,μ=17cP、31cP)。 41
圖4-20. 切應力(τ_rz)與IH(%)之迴歸分析。 42
圖4-21. 切應力(τ_rr)與IH(%)之迴歸分析。 43
圖4-22. 切應力(τ_zz)與IH(%)之迴歸分析。 43
圖4-23.為0.051cm-17cP在速度條件下,(τ_rz)完整流場分布。 46
圖4-24.為0.051cm-17cP在速度條件下,(τ_zz)完整流場分布。 47
圖4-25.為0.051cm-17cP在速度條件下,(τ_rz)完整流場分布。 48
表目錄
表3-1.此為流場初始條件設計之依據,初始平均流速與Re數的數值。 12
表4-1. 17cP與31cP以面積權重法所得之流場應力值。 33
表4-2. 5cP、17cP、31cP溶血與對應之狹縫平均流速。 35
表4-3.以臨界流線的方式取得狹縫尺寸0.061cm(16:1)流線上對應之應力。 44
表4-4.以臨界流線的方式取得狹縫尺寸0.051cm(19:1)流線上對應之應力。 45




參考文獻 參考文獻
1. Apel J, Paul R, Klaus S et al. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs 2001; 25(5): 341-347.
2. Arora D, Behr M, and Pasquali M. A tensor-based measure for estimating blood damage. Artif Organs 2004; 28(11): 1002-1015.
3. Arora D, Behr M, Coronado-Matutti O, Pasquali M. Estimation of hemolysis in centrifugal blood pumps using morphology tensor approach. Computational Fluid and Solid Mechanics 2005; 578-582.
4. Arora D, Behr M, and Pasquali M. Hemolysis estimation in a centrifugal blood pump using a tensor-based measure. Artif Organs 2006; 30(7):539-547.
5. Arvand AM, Hormes M, Reul A. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump. Artif Organs 2005; 29:531-40.
6. Behbahani M, Behr M, Hormes M, Steinseifer U, Arora D, Pasquali M. A review of computational fluid dynamics analysis of blood pumps. Eur. J. Appl. Math. 2009; 20:369-97.
7. Bluestein D, Li YM, and Krukenkamp IB. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 2002; 35(12): 1533-1540.
8. Chan WK, Wong YW, Ding Y et al. Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump. Artif Organs 2002; 26(9):785-793.
9. Chen Y, Sharp MK. Astrain-based flow-induced hemolysis prediction model calibrated by in vitro erythrocyte deformation measurements. Artif Organs 2011; 35(2):145-56.
10. De WD and Verdonck P. Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs 2002; 26(7):576-582.
11. Dhaene M, Gulbis B, Lietaer N, et al. Red blood cell destruction in single-needle dialysis. Clin. Nephrol 1989; 31:327-31.
12. Down LA, Papavassiliou DV, O’Rear EA. Significance of extensional stresses to red blood cell lysis in a shearing flow. Ann. Biomed. Eng. 2011; 39(6):1632-42.
13. Farinas MI, Garon A, Lacasse D, N’dri D. Asymptotically consistent numerical approximation of hemolysis. J. Biomech. Eng. 2006; 128:688-696.
14. Feigl K, Tanner FX, Edwards BJm Collier JR. A numerical study of the measurement of elongational viscosity of polymeric fluids in a semihyperbolically converging die. J. Non-Newtonian Fluid Mech. 2003; 115:191-215.
15. Figlio RS, and Mueller TJ. On the hemolytic and thrombogenic potential of occluder prosthetic heart valves from in-vitro measurements. J.Biomech. 1981;103:83-90.
16. Garon A and Farinas MI. Fast three-dimensional numerical hemolysis approximation. Artif Organs 2004; 28(11): 1016-1025.
17. Ge L, Leo HL, Sotiropoulos F, and Yoganathan AP. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng. Trans. ASME 2005; 127(5):782-797.
18. Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int J Artif Organs 1990; 13:300–6.
19. Goubergrits L and Affeld K. Numerical estimation of blood damage in artificial organs. Artif Organs 2004; 28(5):499-507.
20. Goubergrits L, Osman J, Affeld K , and Kertzscher U. First experience with an FDA critical path initiative: CFD and hemolysis. The International Journal of Artificial Organs 2009; 32(7):398.
21. Gregoriades N, Clay J, Ma N, Koelling K, Chalmers JJ. Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. Biotechnol Bioeng 2000; 69(2):171-182.
22. Grigioni M, Caprari P, Tarzia A, and D'Avenio G. Prosthetic heart valves' mechanical loading of red blood cells in patients with hereditary membrane defects. J. Biomech. 2005 38(8): 1557-1565.
23. Grigioni M, Daniele C, Morbiducci U, D’Avenio G, Benedetto GD, and Barbaro V. The Power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif Organs 2004; 28(5):467-475.
24. Gu L and Smith WA. Evaluation of computational models for hemolysis estimation. ASAIO J. 2005; 202-207.
25. Hariharan P, Giarra M, Reddy V, et al. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. ASME J. Biomech. Eng. 2011; 133/ 041002-1-13.
26. Herbertson LH, Lu Q, Malinauskas A. A single-pass orifice system to assess red blood cell fragility. ASAIO J. 2010; 56(2):86.
27. Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology 1980; 17:17–24
28. James DF, Chandler GM, Armour SJ. A converging channel rheometer for the measurement of extensional viscosity. J. Non-Newtonian Fluid Mech. 1990; 35:421-43.
29. James DF. Flow in a converging channel at moderate Reynolds numbers. AIChE J. 1991; 37(1):59-64.
30. Kawahito K, Nose’ Y. Hemolysis in different centrifugal pumps. Artif. Organs 1997; 21:323-6.
31. Keshaviah P. Hemolysis in the accelerated flow region of an abrupt contraction. Doctoral Dissertation, University of Minnesota, 1974.
32. Lee SS, Yim Y, Ahn KH, Lee SJ. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed Microdevices 2009; 11:1021-7.
33. Luckras H, Woods M, Large SR. And hemolysis goes on: ventricular assist device in combination with veno-venous hemofiltration. Ann. Thorac. Surg. 2002; 73:546-8.
34. Mitoh A, Yano T, Sekine K et al. Computational fluid dynamics analysis of an intra-cardiac axial flow pump. Artif Organs 2003; 27(1):34-40.
35. Park HJ, Kim D, Lee KJ, Mitsoulis E. Numerical simulation in the converging channel flow of the fluid M1 using an integral constitutive equation. J. Non-Newtonian Fluid Mech. 1994; 52:69-89.
36. Polaschegg HD Red blood cell damage from extracorporeal circulation in hemodialysis. Semin. Dial. 2009; 22:524-31.
37. Raisky F, Gauthier C, Marchal A, Blum D. Haemolyzed sample responsibility of short catheters. Ann. Biol. Clin. Paris 1994; 52:523-7.
38. Song X, Throckmorton AL, Wood HG et al. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs 2003; 27(10):938-941.
39. Stewart S, Day S, Burgreen GW et al. Preliminary results of FDA’s “critical path” project to validate computational fluid dynamic methods used in medical device evaluation. ASAIO J. 2009; 55(2): 173.
40. Stewart S, Paterson EG, Burgreen GW et al., Turblence modeling as a source of error in FDA’s “critical path” interlaboratory computational study of flow in a nozzle model, ASAIO J. 2010; 56(2): 82.
41. Tran-Son-Tay R, Nash GB, Meiselman HJ. Effects of dextran and membrane shear rate on red cell membrane viscosity. Biorheology 1985; 22:335-40.
42. Tsuji A, Tanabe M, Onishi K, et al. Intravascular hemolysis in aortic stenosis. Intern. Med. 2004;43:935-8.
43. Wurzinger LJ, Opitz R, Eckstein H. Mechanical bloodtrauma. An overview. Angeiologie 1986; 38:81–97.
44. Yano T, Sekine K, Mitoh A et al. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs 2003; 27(10): 920-925.
45. Zhao R, Antaki JF, Naik T, Bachman TN, Kameneva MV, Wu ZJ. Microscopic investigation of erythrocyte deformation dynamics. Biorheology 2006; 43:747-65.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-01-21公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-01-21起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信