§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2001201009232000
DOI 10.6846/TKU.2010.00563
論文名稱(中文) 應用於多重熱源之平板熱管熱傳分析
論文名稱(英文) Thermal Performance Analysis of Vapor Chamber Applying on Multiple Heat Sources
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系博士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 1
出版年 99
研究生(中文) 余駿生
研究生(英文) Chun-Sheng Yu
學號 892340067
學位類別 博士
語言別 英文
第二語言別
口試日期 2009-12-25
論文頁數 132頁
口試委員 指導教授 - 康尚文(swkang@mail.tku.edu.tw)
委員 - 陳炳輝(phchen@ntu.edu.tw)
委員 - 陳增源(tychen@mail.tku.edu.tw)
委員 - 楊建裕(cyyang@ncu.edu.tw)
委員 - 楊龍杰(ljyang@mail.tku.edu.tw)
關鍵字(中) 平板熱管
多重熱源
擴散熱阻
關鍵字(英) Vapor Chamber
Multiple Heat Sources
Spreading Thermal Resistance
第三語言關鍵字
學科別分類
中文摘要
本論文研究目的為計算多熱源之等效面積與平板熱管尺寸對擴散熱阻的影響,比較理論解析與電腦數值模擬結果。主要動機為現今與擴散熱阻相關的文獻多以理論解析為主,主要以傳統金屬材料為探討方向,並以數值模擬與實驗之結果比對。面對現今系統散熱設計,隨著多熱源以及高發熱瓦數晶片在高階電子系統的應用,本文以推導等效熱源面積關係式,探討多熱源散熱模組在設計上所需考慮的參數,配合電腦數值模擬提出改善散熱模組散熱效能的最佳化設計方法,本論文中將設計參數代入無因次等效熱源面積關係式,並將之運用於多熱源熱傳遞的分析,藉由比較熱阻方程式、電腦模擬分析結果與實驗數據之差異,提出建立熱源發熱功率、熱源面積、平板熱管厚度及熱源相對位置之間熱傳導與熱對流熱阻的參數最佳設計區間,並參考Bi數作為瞭解小面積熱源的熱傳遞模式,以為應用平板熱管散熱模組最佳化設計之基礎。
   對於本研究所探討之多熱源平板熱管散熱模組最佳設計,配合多熱源散熱模組之實驗量測,熱源的最高溫度值誤差為3.3%,利用等效熱源關係式以電腦數值模擬的方法可以準確的預測多熱源在平板熱管散熱模組的熱傳機制。
英文摘要
The objective of this thesis is to compute the spreading thermal resistance of multiple heat sources on a vapor chamber module, as well as the surface temperatures and the heat flux distributions at the heating surface. The analytical correlations are expressed in a dimensionless with the governing parameters of the relative distance dimensions between heat sources and dimensionless heat sources size on heat spreader, including a vapor chamber and metal materials evaluation, subject to the influence of multiple heat sources. This study also presents vapor chamber temperature distribution on heat spreader contact surface, and it correlates to heat sources number and distance. Hence, spreading thermal resistance decreases with the increasing lateral length of vapor chamber. There is large difference between spreading and conductive thermal resistance as lateral length is disproportion to heat source heating area. Therefore, spreading thermal resistance is an important factor when design the thermal solution of a high density chipset power, and it caused high temperature in heat sources which embedded a thinner heatsink base, especially. Spreading thermal resistance is disproportion to heat spreader size, material conductivity, then conductive thermal resistance is not the only parameter for vapor chamber module design, it needs to consider the spreading resistance effect of a vapor chamber and multiple heat sources array, Bi number can be fairly understood by imagining the heat flow from small and hot heat sources suddenly immersed in a pool, to the surrounding fluid. Numerical simulation results of the integrated vapor chamber module are carried out with the mathematical model. The computed results are in good agreement with the experiments, and deliver a difference of 3.3% for the maximum heat source temperature rises, and it presents predictable thermal phenomena of a vapor chamber applying on multiple heat sources.
第三語言摘要
論文目次
Table of Content
Title Page	 II
Signature page     III
Acknowledgements	 IV
Abstract (Chinese)  V
Abstract (English) VII
Table of Content	 IX
List of Figure	 XII
List of Table      XVIII
Nomenclature       XX
Chapter 1 Introduction 1
1.1  Motivation for research 3
1.2  Literature review 5
Chapter 2  Multiple heat sources in electronics cooling	13
2.1  Heat generating in electronics and present applications 13
2.2  Current cooling technologies 15
2.3  Roadmap for cooling in high power electronics 17
2.4  Manufacture processes of vapor chamber 19
2.4.1  Heat transport limitations 21
2.4.2  Vapor chamber dynamics 22
2.4.3  The working fluid 24
2.4.4  The wick structure 26
Chapter 3  Formula and solution 29
3.1  Spreading thermal resistance 30
3.2  Base thickness design of a vapor chamber	33
3.3  Fins	 35
3.3.1  Fin design parameters 36
3.3.2  Suggestions of fin design 40
3.4  Biot number 40
3.5  Temperature equation 41
3.6  General equation of multiple heat sources 45
3.6.1  Multiple heat sources in circular array 48
3.6.2  Multiple heat sources in matrix array	51
Chapter 4  Experiment 56
4.1  Experimental setup and calibration 56
4.2  Experiment results of dual resources (natural convection) 59
4.3  Thermal resistance measurement for VC performance validation (liquid cooling)	64
4.3.1  Test conditions 64
4.3.2  Test equipment of liquid cooling 64
4.3.3  Thermocouple locations 65
4.3.4  Definition of thermal resistance 66
4.3.5  Test data 66
4.3.4  Definition of thermal resistance 66
4.4  Thermal resistance measurement (wind tunnel) 67
4.5  Experiment setup of quad heat sources (LED natural cooling)	71
Chapter 5  Numerical ayalysis 77
5.1  Overview of thermal modeling in electronics cooling	77
5.2  Simulation setup 79
5.3  Modeling 80
5.4  Fin optimization by simulation	82
5.5  Numerical analysis referred to experimental data 84
5.6  Vapor chamber application on multiple heat sources cooling 91
5.7  Contour plot of response surface optimization 95
5.8  Error correction 99
5.9  Uncertainty analysis 100
Chapter 6  Conclusion and future work 103
6.1  Conclusion 103
6.1.1  Design an optimal geometry heat spreader for multiple heat sources cooling 104
6.1.2  Analysis thermal phenomena of multiple heat sources heat spreading on a vapor chamber 104
6.2  Future work 106
References 107
Appendix I    Introduction of linear regrssion method	115
Appendix II   Thermocouple calibration 120
Appendix III  Thermal conductivity of material property	121
Appendix IV  Vapor chamber orientation test data 122
Appendix V   Reliabilitytest of a vapor chamber 125
Publication list 132

List of Figures
Fig.1.1   Experiment result of thermal resistance and air volume flow	3
Fig.1.2   Heat dissipation path of a chipset package	4
Fig.1.3   The design range by using a vapor chamber to a metal heatsink.	5
Fig.1.4   Illustration of heat flux spreading in base	6
Fig.1.5   Dimensionless geometry variation to heat source temperature	6
Fig.1.6   Temperature map of source plane for heatsink	7
Fig.1.7   Thermal resistance difference by spreader sizes	8
Fig.1.8   Surface temperature distribution at copper base plate thickness of 5mm	9
Fig.1.9   Maximum temperature location at aluminum heatsink base	10
Fig.1.10  Correlation factor to heat source location	10
Fig.1.11  Quad heat sources dimension definition	11
Fig.1.12  Equivalent heat source and thermal resistance with heat source size	12
Fig.1.13  Equivalent heat source and thermal resistance with heat source location	12
Fig.2.1   Chipset array on a print circuit board	14
Fig.2.2   LED array for lighting applications	14
Fig.2.3   Different shapes of vapor chambers	15
Fig.2.4   System on chip power consumption trends	17
Fig.2.5   Vapor chamber configuration	20
Fig.2.6   Vapor chamber manufacture processes	20
Fig.2.7   General working behavior of a vapor chamber	21
Fig.2.8   An operating cycle diagram of a vapor chamber	23
Fig.2.9   Flow chart of a vapor chamber operating phenomena	24
Fig.2.10  Microscope picture of sintered particles	27
Fig.2.11  Sintered wick structure of a vapor chamber	28
Fig.3.1   Schematic diagram of the square base spreader	29
Fig.3.2   Heat source with temperature distribution on a heatsink	31
Fig.3.3   Temperature profiles at the surface of aluminum extrusion	32
Fig.3.4   Temperature profiles at the surface of extrusion with vapor chamber	32
Fig.3.5   Thermal resistance network	33
Fig.3.6   Block resistance with base thickness of the fin attached spreader	34
Fig.3.7   Heat spreader thermal resistance with base thickness	35
Fig.3.8   Fin types by various manufacture processes	36
Fig.3.9   Sketch of fin parameters	37
Fig.3.10  Heat spreader with dual heat sources	42
Fig.3.11  Heat sources locations on heat spreader	42
Fig.3.12  Thermal resistance network of dual heat sources	43
Fig.3.13  Top surface temperature distribution of dual heat sources by Muzychka et al.'s solution	44
Fig.3.14  Top surface temperature distribution of dual heat sources by Yun Ho Kim a, et al.’s solution	44
Fig.3.15  Thermal spreading resistances vs. heat flux	45
Fig.3.16  Flow chart of multiple heat sources design target	46
Fig.3.17  Calculate multiple heat sources from equivalent heat source	47
Fig.3.18  Methodology of multiple heat sources to an equivalent heat source	48
Fig.3.19  Description of multiple heat sources in circular array	49
Fig.3.20  Dimensionless size of a single equivalent heat source	51
Fig.3.21  Multiple heat sources in matrix array	52
Fig.3.22  Zoom in the multiple heat sources in matrix array	52
Fig.3.23  Temperature distribution of matrix array heat sources on heat spreader	54
Fig.3.24  Correlation of equivalent heat source with dimensionless heat source size of heat spreaders	55
Fig.4.1   Thermocouple measured locations	56
Fig.4.2   Experiment equipment description	58
Fig.4.3   Sketch of test piece measured points	58
Fig.4.4   Vapor chamber structure embedded on a heatsink base	59
Fig.4.5   Application of vapor chamber (Lower spreading resistance)	61
Fig.4.6   Aluminum heatsink (Higher spreading resistance)	61
Fig.4.7   Temperature difference comparison of various ambient	62
Fig.4.8   Temperature description of different fin efficiency	63
Fig.4.9   Thermal resistance comparison of various ambient	63
Fig.4.10  Test platform of liquid cooling	64
Fig.4.11  Test piece description	65
Fig.4.12  Thermocouple location on vapor chamber	65
Fig.4.13  Cooling surface area of vapor chamber	65 
Fig.4.14  IR Picture for surface temperature difference comparison	67
Fig.4.15  Air flow direction of test piece	68
Fig.4.16  Wind tunnel for providing system flow and impedance	68
Fig.4.17  Thermal test platform with wind tunnel	69
Fig.4.18  Comparison thermal resistance with vapor chamber and blocked by input power	69
Fig.4.19  Test procedures from heat sources distance 20mm to 50mm	71
Fig.4.20  Test methodology and equipment (natural convection with fin)	72
Fig.4.21  Natural convection chamber	72
Fig.4.22  Reliability of a cool white LED luminous flux efficiency	73
Fig.4.23  Correlation concept of multiple heat sources and equivalent heat source	74
Fig.4.24  Temperature measured point of equivalent heat source	75
Fig.4.25  Test configuration of an equivalent heat source	76
Fig.5.1   Finite difference method for system modeling	78
Fig.5.2   Simulation processes flow chart	80
Fig.5.3   Finite element location design range by minimizing Tjuncton temperature of dual heat sources	82
Fig.5.4   Configuration of a vapor chamber embedded on plat fin heatsink	82
Fig.5.5   Sggested fan-less thermal solution for 4W	83
Fig.5.6   Suggested fan-less thermal solution for 7W	83
Fig.5.7   Design range of fin number 50~60	84
Fig.5.8   Conductivity comparison with vapor chamber and copper plate by increasing input power	86
Fig.5.8   Contour plot of temperature distribution with heat source on a spreader corner	86
Fig.5.9   Material conductivity to thermal resistance by multiple heat sources	87
Fig.5.10  Heat sources temperature by varying power input of multiple heat sources number	87
Fig.5.11  Percentage of spreading thermal resistance on the total thermal resistance by different heat spreader materials	88
Fig.5.12  Dimensionless spreading thermal resistance varies with the distance (h=100)	89
Fig.5.13  Spreading thermal resistance of heat spreaders by multiple heat sources and dimensionless heat source pitch	90
Fig.5.14  Experiment data comparison with numerical result	91
Fig.5.15  Thermal resistance of various dimensionless heat source size and distance (h=100 W/m2C)	92
Fig.5.16  Total thermal resistance vs. convection coefficient (m/l= 0.167)	92
Fig.5.17  Heat conduction inside the body is much faster than the heat conduction away from its surface (m/l= 0.167)	93
Fig.5.18  Thermal resistance compare with Bi number by dimensionless distance (m/l= 0.167)	94
Fig.5.19  Optimal design domain calculated by spreading resistance and dimensionless heat source area	95
Fig.5.20  Optimal response surface temperature of a vapor chamber (d/l=0.25)	96
Fig.5.21  Optimal response surface temperature of a vapor chamber (d/l=0.4)	97
Fig.5.22  Surface temperature distribution along lateral length of a vapor chamber (Thickness = 3.5mm, h>500 W/m2K)	98
Fig.5.23  Optimal design domain with base thickness and convection coefficient of a vapor chamber	 98
Fig.6.1   Concept of advanced vapor chamber heatsink design	106

List of Tables
Table 2.1  Maximum power dissipation of 0.98W/mm2 for a single chip by 2013	18
Table 2.2  Thermal spec of system performance requirement	19
Table 2.3  Properties of considered liquids	25
Table 3.1  Base thickness design range by different materials	35
Table 3.2  Correlation factor of equivalent heat source in circular array.	50
Table 3.3  Correlation factor of equivalent heat source in matrix array	53
Table 4.1  T-type thermocouple calibration data	57
Table 4.2  Temperature differences on various fin orientation and contact wall materials	60
Table 4.3  Experiment data of vapor chamber by liquid cooling	64
Table 4.4  Test data of thermal resistance by liquid cooling	66
Table 4.5  Experiment data of vapor chamber heatsink (wind tunnel)	67
Table 4.6  Thermal resistance measured data of vapor chamber	70
Table 4.7  Vapor chamber application on LED cooling (natural convection)	71
Table 4.8  Cree cool white LED thermal spec and reliability	73
Table 4.9  DOE Energy Star strategy for solid-state lighting general illumination products establishes a transitional approach	73
Table 4.10  Experimental scenarios of quad heat sources thermal test data	 74
Table 4.11  Test data of equivalent heat source	76
Table 5.1   Material properties of simulation models setup	85
Table 5.2   Simulation data of vapor chamber	91
Table 5.3   Experimental error and calculated uncertainty data	102
參考文獻
[1]	Y. S. Chen, K. H. Chien, T. S. Hung, C. C. Wang, Y. M. Ferng, B. S. Pei, “Numerical simulation of a heat sink embedded with vapor chamber and calculation of effective thermal conductivity of a vapor chamber”, Applied Thermal Engineering 20(13) (2009) 2655-2664.
[2]	A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, Washington DC, 1995.
[3]	HTTP://www.AMD.com.
[4]	HTTP://www.thermacore-europe.com/vapour-chamber
[5]	D. P. Kennedy, “Spreading resistance in cylindrical semiconducton devices”, Journal of Applied Physics 31 (1960) 1490-1497.
[6]	R. F. David, “Computerized thermal analysis of hybrid circuits”, IEEE Transactions Parts, Hybrids 13(3) (1977) 283-290.
[7]	G. N. Ellison, “A review of a thermal analysis computer program for microelectronic devices, thermal management concepts in microelectronic packaging”, ISHM Technical Monograph Series   (1984) 6984-003.
[8]	A. Faghri, M. Buchko, “Experimental and numerical analysis of low temperature heat pipes with multiple heat sources”, ASME Journal of Heat Transfer 113 (1991) 728-734.
[9]	V. W. Antonetti, M. M. Yovanovich, “Enhancement of thermal contact conductance by metallic coatings: theory and experiment”, ASME Journal of Heat Transfer 107 (1985) 513-519.
[10]	K. J. Negus, M. M. Yovanovich and J.V. Beck, “On the non-dimensionalization of constriction resistance for semi-infinite heat flux tubes”, Transactions of ASME (1989) 111 804-807.
[11]	M. M. Yovanovich, J. R. Culham, and P. Teertstra, “Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, 21 (1998) 168-176.
[12]	M. M. Yovanovich, Y. S. Muzychka, and J. R. Culham,  “Spreading resistance of isoflux rectangles and strips on compound flux channel”, Journal of Thermophysics and Heat Transfer 13 (1999) 495-500.
[13]	M. M. Yovanovich, “Thermal resistances of circular source on finite circular cylinder with side and end cooling”, ASME Journal of Electronic Packing 125 (2003) 169-177.
[14]	T. T. Lam, W. D. Fischer, and P. S. Cabral, “Analysis of thermal resistance of orthotropic materials used for heat spreaders”, Journal of Thermophysics and Heat Transfer 18 (2) (2004) 203-208.
[15]	T. Ohbu, K. Kodani, N. Tada, T. Matsumoto, K. Kijima, S. Saito, “Study of power module package structures”, Integrated Power Packaging, 2000. IWIPP 2000. International Workshop on (2000) 46-50.
[16]	J. W. Welch, T. T. Lam, W. K. Yeung, “Optimal sizing of rectangular isotropic thermal spreaders”, Advances in Electronic Packaging (1999) 883-889.
[17]	S. Song, S. Lee, and V. Au, “Closed-form equation for thermal constriction/spreading resistances with variable resistance boundary condition”, Proceedings of the 1994 IEPS Conference (1994), Atlanta, Georgia, 111-121.
[18]	Y. H. Kim, S. Y. Kim, G. H. Rhee, “Evaluation of spreading thermal resistance for heat generating multi-electronic components”, Thermal and Thermomechanical Phenomena in Electronics Systems, ITHERM June 2 (2006), San Diego, CA, 264.
[19]	Y. S. Muzychka, Culham, and M. M. Yovanovich, “Thermal spreading resistance of eccentric heat sources on rectangular flux channels”, ASME Journal of Electronic Packing 125 (2003) 178-185.
[20]	Y. S. Muzychka, M. M. Yovanovich, and J. R. Culham, “Influence of geometry and edge cooling on thermal spreading resistance”, Journal of Thermophysics and Heat Transfer (2006) 247-255.
[21]	P. Teertstra, M. M. Yovanovich, and J. R. Culham, “Analytical forced convection modeling of plate fin heat sinks, Advances in Electronics Cooling”, Journal of Electronics Manufacturing 10(4) (2002) 253-261.
[22]	S. P. Gurrum, S. K. Suman, Y. K. Joshi, “Thermal issues in next-generation integrated circuits”, IEEE Transactions on device and materials reliability 4(4) (2004) 709-714.
[23]	Y. T. Chen, W. C. Wei, S. W. Kang and C. S. Yu, “Effect of Nanofluid on Flat Heat Pipe Thermal Performance”, Semiconductor Thermal Measurement and Management Symposium, Semi-Therm Twenty-fourth Annual IEEE, 16-20 March (2008)16-19.
[24]	M. J. M. Krane, “Constriction resistance in rectangular bodies”, ASME, Journal of Electronic Packing 113 (1991) 392-396.
[25]	Heat Pipes: Heat Super Conductors, Advanced Thermal Solutions Inc., Qpedia, 2007.
[26]	Y. S. Chen, K. H. Chien, T. C. Hung, B. S. Pei, and C. C. Wang, “Effect of heat spreading on the performance of heat sink via vapor chamber”, Proceedings of the 13th International Heat Transfer Conference, Sydney Australia (2006) 13-18.
[27]	S. Song, S. Lee, and V. Au, “Constriction/spreading resistance model for electronic packaging”, Proceedings of the 4th ASME/JSME thermal Engineering Joint Conference (1995) 199-206.
[28]	B. V. Borgmeyer, and H. B. Ma, “Heat spreading analysis of a heat sink base embedded with a heat pipe”, Proceedings of IPACK2005, ASME InterPACK ’05 (2005) 1-4.
[29]	Z. J. Zuo, and A. Faghri, “A network thermodynamic analysis of the heat pipe”, International Journal of Heat Mass Transfer (41) 1998 1473-1484.
[30]	G. E. McCreery, “Liquid flow and vapor formation phenomena in a flat heat pipe”, Journal of Heat Transfer Engineering 15 (1994) 33-41.
[31]	K. Azar, R. S. McLeod, R. E. Garon, “Narrow channel heat sink for cooling of high powered electronic components”, Proceedings of the 8th Annual IEEE Semi-therm Symposium (1992) 12-19.
[32]	Y. S. Chen, K. H. Chien, C. C. Wang, T. C. Hung and B. S. Pei,, “Investigations of the thermal spreading effects of rectangular conduction plates and vapor chamber”, Transaction of ASME, Journal of Electronic Packaging 129 (3) (2006) 348-355.
[33]	N. Zhu, and K. Vafai, “Vapor and liquid flow in an asymmetrical flat plate heat pipe: a three-dimensional analytical and numerical investigation”, International Journal of Heat Mass Transfer 41 (1998) 159-174.
[34]	K. J. Negus, M. M. Yovanovich, “Constriction resistance of circular flux tubes with mixed boundary conditions by linear superposition of neumann solutions”, ASME Paper 84-HT-84, ASME 22nd Heat Transfer Conference, Aug. 6-8 (1984.), Niagara Falls, NY, 1-6.
[35]	W. Qin, C. Y. Liu, “Liquid flow in the anisotropic wick structure of a flat heat plate heat pipe under block heating condition”, Applied Thermal Engineering 17 (1997) 339-349.
[36]	S. W. Kang, S. H. Tsai, M. H. Ko, “ Metallic micro heat pipe heat spreader fabrication”, Applied Thermal Engineering 24 (2004) 299-309.
[37]	DeWitt, Lavine. Bergman, Fundamentals of heat and mass transfer (6th edition). John Wiley & Sons. pp. 260-261, 2007.
[38]	C. S. Yu, W. C. Wei, S.W. Kang, “Investigation of micro porosity sintered wick in vapor chamber for fan less design”, Thermal Investigation of ICs and Systems, 2007. IEEE THERMINIC 2007. 13th International Workshop on, Sept. 17-19 (2007) Budapest 88-91.
[39]	D. Copeland, “Optimization of parallel plate heat sinks for forced convection”, Sixteenth IEEEE SEMI-THERMTM Symposium (2000) San Jose, CA, USA, 266-272.
[40]	W. Elenbaas, “Heat dissipation of parallel plates by free convection”, Physica 9(1) (1948) 1-28.
[41]	N. Zhu, K. Vafai and W. Wang, “Analysis of asymmetric disk-shaped and flat plate heat pipes”, ASME Journal of Heat Transfer 117 (1995) 209-218.
[42]	R. Boukhanouf, A. Haddad, M. T. North, C. Buffone, “Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera”, Applied Thermal Engineering 26(17-18) (2006) 2148-2156.
[43]	V. Unnikrishnan, G. V. Suresh and M. Y. Jayathi, “Transport in flat heat pipes at high heat fluxes from multiple discrete sources”, Journal of Heat Transfer 126 (2004) 347-354.
[44]	Y. Wang and K. Vafai, “Transient characterization of flat plate heat pipes during startup and shutdown operations”, International Journal of Heat Mass Transfer 43 (2000) 2641-2655.
[45]	S. A. Said, B. A. Akash, “Experimental performance of a heat pipe”, International Communication of Heat and Mass Transfer 26 (1999) 679-684.
[46]	D. Khrustalev, A. Faghri, “Thermal characteristics of conventional and flat miniature axially grooved heat pipes”, Journal of Heat Transfer 117 (2005) 1048-1054.
[47]	HTTP://www.CREE.com/products/led_docs.asp
[48]	HTTP://www.FLOTREND.com.tw
[49]	S. Sridhar, “Evaluation of thermal design tool for electronics- a three chip MCM as a case study”, Proceedings of Electronic Components and Technology Conference (1995) 876-878.
[50]	B. A. Cullimore, D. A. Johnson, and M. J. Welch, “Novel simulation techniques for design of air-cooled electronics”, Proceedings of IPACK’01 ASME International Electronic Packaging Technical Conference and Exhibition, 2 (2001) 647-652.
[51]	Y. Koito, H. Imura, M. Mochizuki, Y. Saito, and S. Torii, “Numerical analysis and experimental verification on thermal fluid phenomena in a vapor chamber”, Applied Thermal Engineering (26) (2006) 1669-1676.
[52]	S. Karmalkar, P. V. Mohan, H. P. Nair, and R. Yeluri, “Compact models of spreading resistances for electrical/thermal design of devices and ICs”, IEEE Transactions on Electron Devices 54(7) 2007 1734-1743.
[53]	R. L. Linton, , D. Agonafer, “Coarse & detailed CFD modeling of a finned heat sink”, Proceedings of 1994 Intersociety Conference on Thermal Phenomena in Electronic Systems (1994) 156-161.
[54]	W. S. Chang, Colwell, and T. Gene, “Mathematical modeling of the transient operating characteristic of a low-temperature heat pipe”, Numerical Heat Transfer 8 (1985) 169-186.
[55]	K. J. Negus and M. M. Yovanovich, “Application of the method of optimized images to steady three-dimensional conduction problems”, ASME Paper 84-WA/HT-110 (1984) 1-11.
[56]	K. Vafai, and W. Wang, “Analysis of flow and heat transfer characteristics of an asymmetrical flat plate heat pipe”, International Journal of Heat Mass Transfer 35 (1992) 2087-2099.
[57]	J. M. Tournier, M. S. El-Genk, “A heat pipe transient analysis model”, International Journal of Heat Mass Transfer 37 (1994) 753-762.
[58]	R. K. Shah, M. S. Bhatti, , “Laminar convective heat transfer in ducts”, in Handbook of Single Phase Convective Heat Transfer, Eds. S. Kakac, R.K. Shah, , and W. Aung, Wiley, New York, 1987.
[59]	K. C. Leong, C. Y. Liu, K. H. Sun, “Vapor pressure distribution of a flat plat heat pipe”, International Communications in Heat and Mass Transfer 23 (1996) 789-797.
[60]	DeWitt, L. Bergman, “Fundamentals of Heat and Mass Transfer”, 6th edition, John Wiley & Sons. pp. 260-261, 2007.
[61] 	Y. Wang, and K. Vafai, “An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe”, International Journal of Heat Mass Transfer 43 (2000) 2657-2668.
[62]	H. B. Ma, and G. P. Peterson, “The Influence of the Thermal Conductivity on the Heat Transfer Performance in a Heat Sink”, ASME, Journal of Electronic Packing 124 (2002) 1-6.
[63]	V. G. Rajesh, K. P. Ravindran, “Optimal Heat Pipe Design: A Nonlinear Programming Approach”, International Communication in Heat and Mass Transfer 24 (1997) 371-380. 
[64] 	Y. Xuan, Y. Hong and Q. Li, “Investigation on Transient Behavior of Flat Plate Heat Pipes”, Experimental Thermal and Fluid Science 28 (2004) 249-255.
[65] 	B. A. Cullimore, “Dealing with Uncertainties and Variations in Thermal Design”, Proceedings of IPACK’01 ASME International Electronic Packaging Technical Conference and Exhibition 2 (2001) 639-646.
[66] 	S. J. Kline, and F. A. McClintock, “Describing uncertainties in single sample experiments”, Mechanical Engineering 75 (1953) 3-8. 
[67] 	B. K. Tan, X. Y. Huang, T. N. Wong, and K. T. Ooi, “A study of Multiple Heat Sources on a Flat Plate Heat Pipe Using a Point Source Approach”, Int. Journal of Heat Mass Transfer 43 (2000) 3755-3764.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信