§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1908201914234000
DOI 10.6846/TKU.2019.00579
論文名稱(中文) 功能性聚碳酸酯的製造與性質
論文名稱(英文) Manufacturing and properties of functional polycarbonate
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 張嘉宏
研究生(英文) Jia-Hong Zhang
學號 606350030
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2019-07-04
論文頁數 102頁
口試委員 指導教授 - 林清彬
委員 - 林清彬
委員 - 劉昭華
委員 - 張子欽
關鍵字(中) 聚碳酸酯
丙酮
石墨烯
接觸角
鉛筆硬度
關鍵字(英) Polycabonate
Acetone
Graphene
Contact Angle
Pencil Scratch Hardness
第三語言關鍵字
學科別分類
中文摘要
聚碳酸酯具有良好的耐衝擊、高可見光穿透率以及符合UL94 V2等級的耐燃性質,因此常被使用於室外的建材如遮雨棚或隔音牆等,但是聚碳酸酯長期在室外使用時,由於光氧老化易造成光學失透,髒汙易沾附在表面及不耐磨粒磨損等問題,因此降低其可靠度而限制使用,因此,本研究提出一種簡單及低成本的表面處理用以解決上述諸問題者。首先將聚碳酸酯板材分別浸泡於25℃濃度為0.125mg/ml的丙酮混合石墨烯的溶劑系統中,質傳時間60分鐘後,將聚碳酸酯從溶劑系統中取出及在25℃進行完全解吸,從XRD分析與光學顯微結構觀察可以知道丙酮質傳進入聚碳酸酯後產生球晶反應進而形成微奈米表粗,藉由石墨烯崁入已塑性化的表面可以降低表面能,水滴在表面的靜態接觸角可以從78°提升至145°,進而可以達到抗污的效果。藉由表面球晶的產生及石墨烯的磨潤效果,可以將表面的鉛筆硬度從3B等級提高至H等級,進而增加表面的抗磨粒磨損能力。本研究同時探討聚碳酸酯分別在丙酮及丙酮混合石墨烯溶劑系統的質傳行為,實驗結果發現兩者的擴散均屬於不正常的擴散且可以明顯看到擴散前緣隨質傳時間增加最後趨於飽和。在丙酮溶劑系統中,Case I與Case II的擴散速率均隨質傳溫度增加而增加,其ED與EV分別為29.51 KJ/mole與50.77 KJ/mole。在丙酮混合石墨烯溶劑系統中Case I與Case II的擴散速率不隨石墨烯濃度增加而改變。
英文摘要
Polycarbonate has good impact resistance, high visible light transmittance and high flame resistance of UL94 V2 grade, so it is often used in outdoor building materials such as canopy, soundproof walls, but polycarbonate is used outdoors for a long time. The optical transmittance due to photo-oxidation aging is lowered, and the surface is easily contaminated by dirt and abrasion, and the reliability is lowered thus the use is limited. Therefore, this study proposes a simple and low-cost surface treatment to solve the above various problems. First, the polycarbonate sheet was immersed in a solvent system of acetone mixed graphene at a temperature of 25 ° C and a concentration of 0.125 mg / ml. After the mass transfer time of 60 minutes, the polycarbonate was taken out from the solvent system at 25 ° C and desorbed completely. From the analysis of XRD and the observation of microstructure using optical microscopy, it can be known that spherulite is generated after the acetone is diffused into the polycarbonate, and then micro-nano scaled meter surface rough is formed. The surface energy of the plasticized polycarbonate is reduced due to the intrusion of graphene. The static contact angle of the water droplets on the treated surface can be raised from 78° to 145°, which can achieve the anti-fouling effect. Due to the generation of surface spherulites and the scratch resistance caused by graphene, the pencil hardness of the surface can be increased from 3B to H grade, thereby increasing the surface wear resistance of the abrasive particles. This study also studied the mass transfer behavior of polycarbonate in acetone and acetone mixed graphene solvent system, respectively. The experimental results show that the mass transport behavior of both is an anomalous diffusion and it can be clearly seen that the diffusion front increases with the time and finally becomes saturated. In the acetone solvent system, the diffusion rates of Case I and Case II diffusion increased with the increase of working temperature, and the ED and EV were 29.51 KJ/mole and 50.77 KJ/mole, respectively. The diffusion rate of Case I and Case II in the acetone mixed graphene solvent system does not change with the increase of graphene concentration.
第三語言摘要
論文目次
第一章導論........1
1.1前言........1
1.2文獻回顧........3
1.2.1有機溶劑於高分子材料的質傳........3
1.2.2高分子中質傳的分類........4
1.2.3影響溶劑對熱塑性高分子擴散的因素........5
1.2.7潤濕機制簡述........10
1.2.7.1Young’s equation........10
1.2.7.2Wenzel’s Model[20]........11
1.2.7.3Cassie–Baxter Model[21][22]........12
1.2.8溶劑對熱塑性高分子表面疏水處理的研究........13
1.2.8.1使用潛溶劑製備超疏水聚丙烯薄膜........13
1.2.8.2二元維度微奈米結構超疏水聚碳酸酯的製備........13
1.2.8.3溶劑誘發結晶製備超疏水聚碳酸酯........14
1.2.8.4溶劑誘導相變化製備超疏水聚碳酸酯表面........15
1.3研究動機........15
第二章實驗設計........22
2.1實驗材料........22
2.2實驗設備........22
2.3實驗步驟........24
2.3.1材料準備........24
2.3.2丙酮系統在聚碳酸酯的質傳........24
2.3.3顯微結構與質傳界面的觀察........24
2.3.4接觸角量測........25
2.3.5鉛筆硬度測試........25
2.4表面含石墨烯之聚碳酸酯表面性質測試........26
2.4.1表面含石墨烯之聚碳酸酯製備........26
第三章結果與討論........28
3.1聚碳酸酯在丙酮溶劑系統........28
3.1.1聚碳酸酯在丙酮中的質傳分析........28
3.1.2擴散前緣(Diffusion Front)........41
3.1.3XRD 分析........47
3.1.4接觸角分析........50
3.2聚碳酸酯在丙酮/石墨烯溶劑系統........58
3.2.1聚碳酸酯在丙酮/石墨烯的質傳分析........58
3.2.2擴散前緣(Diffusion Front)........67
3.2.3XRD 分析........72
3.2.4接觸角分析........75
3.3聚碳酸酯在丙酮與丙酮/石墨烯系統質傳行為及性質比較........81
3.3.1質傳系統的比較........81
3.3.2擴散前緣(Diffusion Front)分析的比較........84
3.3.3XRD 分析的比較........88
3.3.4接觸角分析........90
3.3.5表面硬度測試分析........92
第四章結論........94
參考文獻96


圖目錄
圖1-1(a)赫蕉(b)倪藤(c)玉蘭(d)歐洲山毛櫸(e)蓮(f)芋(g)甘藍(h)Mutisia decurrens的SEM照片;其中(a~d)為表面平滑之葉片,(e~h)是表面粗糙之葉片 [1]........17
圖 1-2(a)Young’s equation;(b)Wenzel state; (c)Cassie–Baxter state;(d)前傾角、後傾角和滑動角........18
圖 1-3[24]在室溫下澆注PC分別在不同濕度下揮發的SEM照片(a)20%(b)50%(c)75%(d)為(c)的側視照(e)為(c)放大照(f)天然荷葉上的突起結構(g)過飽和溼度........19
圖1- 4 [25](a)將水噴霧在溶脹的PC表面(b)將溶脹的PC泡入水中(c)將溶脹的PC泡入甲醇(d)在溼度70%的環境揮發丙酮........20
圖 1-5[26]在多個長度尺度上經受不同丙酮處理時間的聚碳酸酯表面的SEM圖像,在1分鐘和2分鐘的樣品(a,e,i,b和f)中,表面明顯的不完全被球晶覆蓋,而在約5分鐘的處理時間開始出現具有分層球晶聚集體和完整表面覆蓋(c ,g,k和o)........21
圖 3-1在質傳溫度35℃與質傳時間60秒下,聚碳酸酯表面產生球晶的OM形態........30
圖3-2在質傳溫度25℃與不同質傳時間(a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面產生球晶的OM形態........33
圖3-3在質傳溫度35℃與不同質傳時間(a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面產生球晶的OM形態........34
圖3-4在質傳溫度40℃與不同質傳時間(a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面產生球晶的OM形態........35
圖3-5在質傳溫度45℃與不同質傳時間(a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面產生球晶的OM形態........36
圖3-6不同質傳溫度丙酮溶劑吸收量與質傳時間的關係圖........38
圖3-7丙酮之質傳系統(a) D值與1/T關係圖(b) V值與1/T關係圖........39
圖3-8聚碳酸酯吸收丙酮溶劑分子再給予完全解析後的剖面示意圖........43
圖3-9質傳溫度25℃,丙酮溶劑系統與不同質傳時間下,聚碳酸酯剖斷面的形態........44
圖3-10質傳溫度35℃,丙酮溶劑系統與不同質傳時間下,聚碳酸酯剖斷面的形態........44
圖3-11質傳溫度40℃,丙酮溶劑系統與不同質傳時間下,聚碳酸酯剖斷面的形態........45
圖3-12質傳溫度45℃,丙酮溶劑系統與不同質傳時間下,聚碳酸酯剖斷面的形態........45
圖3-13聚碳酸酯在25℃-45℃丙酮溶劑質傳溫度,擴散前緣與不同質傳時間的關係圖........46
圖3-14在質傳溫度25℃與不同質傳時間下,聚碳酸酯產生球晶的XRD........48
圖3-15在質傳溫度35℃與不同質傳時間下,聚碳酸酯產生球晶的XRD........48
圖3-16在質傳溫度40℃與不同質傳時間下,聚碳酸酯產生球晶的XRD........49
圖3-17在質傳溫度45℃與不同質傳時間下,聚碳酸酯產生球晶的XRD........49
圖3-18在質傳溫度25℃與不同質傳時間(a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面水滴接觸角........50
圖3-19在質傳溫度35℃與不同質傳時間(a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面水滴接觸角........51
圖3-20在質傳溫度40℃與不同質傳時間(a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面水滴接觸角........52
圖3-21在質傳溫度45℃與不同質傳時間(a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面水滴接觸角........53
圖3-22在25℃-45℃質傳溫度下,聚碳酸酯吸收丙酮潛溶劑後再給予完全解析的水滴接觸角與質傳時間關係........57
圖3-23在丙酮/石墨烯溶劑,質傳溫度25℃與(a)質傳時間1分鐘(b)質傳時間3分鐘下,聚碳酸酯表面產生球晶的OM形態........59
圖3-24在質傳溫度25℃,1.0 mg/ml石墨烯/丙酮與不同質傳時間(a).1min;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面產生球晶的OM形態........61
圖3-25在質傳溫度25℃,0.5mg/ml石墨烯/丙酮與不同質傳時間(a).1min;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面產生球晶的OM形態........62
圖3-26在質傳溫度25℃,0.25 mg/ml石墨烯/丙酮與不同質傳時間(a).1min;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面產生球晶的OM形態........63
圖3-27在質傳溫度25℃,0.125 mg/ml石墨烯/丙酮與不同質傳時間(a).1min;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面產生球晶的OM形態........64
圖3-28質傳溫度25℃不同濃度的丙酮/石墨烯溶劑吸收量與質傳時間的關係圖........66
圖3-29在質傳溫度25℃,1.0 mg/ml石墨烯/丙酮與不同質傳時間........68
下,聚碳酸酯剖斷面的形態........68
圖3-30在質傳溫度25℃,0.5 mg/ml石墨烯/丙酮與不同質傳時間下,聚碳酸酯剖斷面的形態........68
圖3-31在質傳溫度25℃,0.25 mg/ml石墨烯/丙酮與不同質傳時間下,聚碳酸酯剖斷面的形態........69
圖3-32在質傳溫度25℃,0.125 mg/ml石墨烯/丙酮與不同質傳時間下,聚碳酸酯剖斷面的形態........69
圖3-33在25℃質傳溫度及不同濃度丙酮/石墨烯,擴散前緣與不同質傳時間的關係圖........71
圖3-34在溫度25℃丙酮/石墨烯濃度為1 mg/ml與不同質傳時間下,聚碳酸酯產生球晶的XRD........73
圖3-35在溫度25℃丙酮/石墨烯濃度為0.5 mg/ml與不同質傳時間下,聚碳酸酯產生球晶的XRD........73
圖3-36在溫度25℃丙酮/石墨烯濃度為0.25 mg/ml與不同質傳時間下,聚碳酸酯產生球晶的XRD........74
圖3-37在溫度25℃丙酮/石墨烯濃度為0.125 mg/ml與不同質傳時間下,聚碳酸酯產生球晶的XRD........74
圖3-38在質傳溫度25℃與1mg/ml丙酮/石墨烯在不同質傳時間 (a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面水滴接觸角照片........76
圖3-39在質傳溫度25℃與0.5mg/ml丙酮/石墨烯在不同質傳時間 (a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面水滴接觸角照片........77
圖3-40在質傳溫度25℃與0.25mg/ml丙酮/石墨烯在不同質傳時間 (a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面水滴接觸角照片........78
圖3-41在質傳溫度25℃與0.125mg/ml丙酮/石墨烯在不同質傳時間 (a).1min ;(b).3min;(c).5min;(d).10min;(e).30min;(f).60min下,聚碳酸酯表面水滴接觸角照片........79
圖3-42在溫度25℃與不同濃度丙酮/石墨烯在不同質傳時間給予完全解析的水滴接觸角與質傳時間關係........80
圖3-43 聚碳酸酯分別在(a)丙酮系統與(b)丙酮/石墨烯系統中吸收量與質傳時間的關係圖........83
圖3-44 聚碳酸酯於丙酮溶劑系統質傳溫度(a)25℃(b)35℃(c)40℃(d)45℃,與不同質傳時間下的剖斷面形態........85
圖3-45 聚碳酸酯於丙酮/石墨烯溶劑系統質傳溫度25℃濃度(a)1 mg/ml (b)0.5 mg/ml (c)0.25 mg/ml (d)0.125 mg/ml,與不同質傳時間下的剖斷面形態........86
圖3-46聚碳酸酯在(a)質傳溫度25℃~45℃丙酮溶劑系統 (b)質傳溫度25℃及不同濃度丙酮/石墨烯系統,擴散前緣與不同質傳時間的關係圖........87
圖3-47聚碳酸酯於(a)丙酮系統不同溫度 (b)丙酮/石墨烯不同濃度,不同質傳時間下,聚碳酸酯產生球晶的XRD........89
圖3-48在溫度25℃與不同濃度丙酮/石墨烯在不同質傳時間給予完全解析的水滴接觸角與質傳時間關係........91

 
表目錄
表2-1不同石墨烯/丙酮濃度及質傳時間的關係........27
表3-1不同質傳溫度的D,v及 Ed與Ev........40
表3-2不同質傳溫度的D,v及........66
表3-3聚碳酸酯於丙酮溶劑系統中不同質傳溫度與丙酮/石墨烯系統不同石墨烯濃度的擴散係數(D)、擴散速率(V)。........82
表3-4聚碳酸酯於丙酮系統在不同溫度及質傳時間的鉛筆硬度測試結果........93
表3-5聚碳酸酯於丙酮/石墨烯系統在溫度25℃,不同濃度及質傳時間的鉛筆硬度測試結果........93
參考文獻
[1]	Barthlott, Wilhelm, and Christoph Neinhuis. "Purity of the sacred lotus, or escape from contamination in biological surfaces." Planta 202.1 (1997): 1-8.
[2]	Silberberg, A. "The role of matrix mechanical stress in swelling equilibrium and transport through networks." Macromolecules13.3 (1980): 742-748.
[3]	Fujita, H, Crank, J., and Park, G. S., "Diffusion in polymer," Crank, J(1968) PP. 75-105.
[4]	Hopfenberg, H. B., and V. Stannett. "The diffusion and sorption of gases and vapours in glassy polymers." The physics of glassy polymers. Springer, Dordrecht, 1973. 504-547.
[5]	Crank, John. The mathematics of diffusion. Oxford university press, 1979.
[6]	Alfrey Jr, Turner, E. F. Gurnee, and W. G. Lloyd. "Diffusion in glassy polymers." Journal of Polymer Science Part C: Polymer Symposia. Vol. 12. No. 1. New York: Wiley Subscription Services, Inc., A Wiley Company, 1966.
[7]	Hopfenberg, H. B., and H. L. Frisch. "Transport of organic micromolecules in amorphous polymers." Journal of Polymer Science Part B: Polymer Letters 7.6 (1969): 405-409.
[8]	Enscore, D. J., H. B. Hopfenberg, and V. T. Stannett. "Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres." Polymer 18.8 (1977): 793-800.
[9]	Long, F. A., and R. J. Kokes. "Diffusion of Benzene and Methylene Chloride Vapors into Polystyrene1, 2." Journal of the American Chemical Society 75.9 (1953): 2232-2237.
[10]	Fu, Thomas Z., and Christopher J. Durning. "Numerical simulation of Case II transport." AIChE journal 39.6 (1993): 1030-1044.
[11]	Frisch, H. L. "Sorption and transport in glassy polymers–a review." Polymer Engineering & Science 20.1 (1980): 2-13.
[12]	Sarti, Giulio C. "Solvent osmotic stresses and the prediction of Case II transport kinetics." Polymer 20.7 (1979): 827-832.
[13]	Berens, A. R., and H. B. Hopfenberg. "Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters." Polymer 19.5 (1978): 489-496.
[14]	Wang, T. T., T. K. Kwei, and H. L. Frisch. "Diffusion in glassy polymers. III." Journal of Polymer Science Part A‐2: Polymer Physics 7.12 (1969): 2019-2028.
[15]	Kwei, T. K., and H. M. Zupko. "Diffusion in glassy polymers. I." Journal of Polymer Science Part A‐2: Polymer Physics 7.5 (1969): 867-877.
[16]	Wang, Tsuey T., and T. K. Kwei. "Diffusion in glassy polymers. Reexamination of vapor sorption data." Macromolecules 6.6 (1973): 919-921.
[17]	Harmon, Julie P., Sanboh Lee, and J. C. M. Li. "Methanol transport in PMMA: The effect of mechanical deformation." Journal of Polymer Science Part A: Polymer Chemistry 25.12 (1987): 3215-3229.
[18]	Harmon, Julie P., Sanboh Lee, and J. C. M. Li. "Anisotropic methanol transport in PMMA after mechanical deformation." Polymer 29.7 (1988): 1221-1226.
[19]	Young, Thomas. "III. An essay on the cohesion of fluids." Philosophical transactions of the royal society of London 95 (1805): 65-87.
[20]	Wenzel, Robert N. "Resistance of solid surfaces to wetting by water." Industrial & Engineering Chemistry 28.8 (1936): 988-994.
[21]	Cassie, A. B. D., and S. Baxter. "Wettability of porous surfaces." Transactions of the Faraday society 40 (1944): 546-551.
[22]	Cassie, A. B. D. "Contact angles." Discussions of the Faraday society 3 (1948): 11-16.
[23]	Erbil, H. Yıldırım, et al. "Transformation of a simple plastic into a superhydrophobic surface." Science 299.5611 (2003): 1377-1380.
[24]	Zhao, N., Xu, J., Xie, Q., Weng, L., Guo, X., Zhang, X., & Shi, L. (2005). Fabrication of Biomimetic Superhydrophobic Coating with a Micro‐Nano‐Binary Structure. Macromolecular rapid communications, 26(13), 1075-1080.
[25]	Zhao, Ning, et al. "A Lotus‐Leaf‐Like Superhydrophobic Surface Prepared by Solvent‐Induced Crystallization." Chemphyschem: a European journal of chemical physics and physical chemistry 7.4 (2006): 824-827.
[26]	Cui, Y., Paxson, A. T., Smyth, K. M., & Varanasi, K. K. (2012). Hierarchical polymeric textures via solvent-induced phase transformation: a single-step production of large-area superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 394, 8-13.
[27]	Debier, Didier, Alain M. Jonas, and Roger Legras. "Blends of polycarbonate and acrylic polymers: Crystallization of polycarbonate." Journal of Polymer Science Part B: Polymer Physics 36.12 (1998): 2197-2210.
[28]	Harron, H. R., Pritchard, R. G., Cope, B. C., & Goddard, D. T. (1996). An atomic force microscope (AFM) and tapping mode AFM study of the solvent‐induced crystallization of polycarbonate thin films. Journal of Polymer Science Part B: Polymer Physics, 34(1), 173-180.
[29]	Sohn, Seungman. Crystallization behavior of Bisphenol-A polycarbonate: Effects of crystallization time, temperature, and molar mass. Diss. Virginia Tech, 2000.
[30]	L. Mandelkern, “Crystallization of Polymers”, 1964, Ch. 8, McGraw Hill, New York.
[31]	Turska, E., and W. Benecki. "Studies of liquid‐induced crystallization of bisphenol a polycarbonate." Journal of Applied Polymer Science 23.12 (1979): 3489-3500.
[32]	Hsiao, Y. C., Harmon, J. P., Chuang, Y. F., Chiang, D., & Lee, S. (2018). Acetone absorption in UV‐irradiated polycarbonate. Polymer Engineering & Science, 58(7), 1174-1183.
[33]	Wu, Terhou, Sanboh Lee, and Wen-Chang Chen. "Acetone absorption in irradiated polycarbonate." Macromolecules 28.17 (1995): 5751-5757.
[34]	Peterlin, A. "Diffusion in a glassy polymer with discontinuous swelling. II. Concentration distribution of diffusant as function of time." Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 124.1 (1969): 136-142.
[35]	Crank, J. "Diffusion in media with variable properties. Part III.—Diffusion coefficients which vary discontinuously with concentration." Transactions of the Faraday Society 47 (1951): 450-461.
[36]	Thomas, N. L., and A. H. Windle. "Diffusion mechanics of the system PMMA-methanol." Polymer 22.5 (1981): 627-639.
[37]	Hopfenberg, H. B., “Permeability of plastic films and coatings,” Plenum Press, New York (1974).
[38]	Sohn, S., A. Alizadeh, and H. Marand. "On the multiple melting behavior of bisphenol-A polycarbonate." Polymer 41.25 (2000): 8879-8886.
[39]	 T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Langmuir 12 (1996) 2125-2127.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信