§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1908201410541200
DOI 10.6846/TKU.2014.00738
論文名稱(中文) 銦錫氧化物奈米片條透明導電塗膜製程改善
論文名稱(英文) Process improvement of ITO nanostrips transparent conductive coatings
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 張家瑋
研究生(英文) Chia-Wei Chang
學號 601400806
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-07-17
論文頁數 57頁
口試委員 指導教授 - 張朝欽
委員 - 張正良
委員 - 黃逢璽
關鍵字(中) 銦錫氧化物
共沉澱法
複合塗膜
紫外光硬化
片電阻
關鍵字(英) indium-tin oxide
co-precipitation
composite coating
UV-curing
sheet resistance
第三語言關鍵字
學科別分類
中文摘要
本研究利用共沉澱法在室溫下製備銦錫氧化物奈米片條,經由高溫煆燒轉變成銦錫氧化物奈米片條。形成的銦錫氧化物粉體分散在丙醇中,加入壓克力黏合劑、界面活性劑和起始劑配置塗佈液,以刮刀塗佈在玻璃基板上,並經過紫外光或熱硬化後,真空烘烤可得ITO透明導電塗膜。在此研究中探討銦/錫比、煆燒條件、刮膜液成分、水解縮合時間、和刮膜方式對製作的塗膜片電阻和可見光平均穿透率的影響,在最佳條件下可得片電阻199 Ω/sq和穿透率92%的透明導電塗膜。放置在空氣中塗膜片電阻會慢慢升高,是因為空氣中水氣進入塗膜所造成。
英文摘要
Indium-tin hydroxide (ITH) nanostips were prepared by co-precipitation at room temperature and converted into indium-tin oxide (ITO) nanostrips after high-temperature calcination. The formed ITO powder was dispersed in 1-propanol and mixed with acrylic binder, surfactant, and initiator to get coating pastes. The coating pastes were coated on glass substrates by using a doctor-blade, and the resultant coatings were UV or thermal cured. The effects of the indium/tin ratio, calcination condition, coating paste composition, hydrolysis/condensation time, and coating method on sheet resistance and visible transmittance of the formed coatings were studied. In the extreme case, a coating with thickness of 1.5 μm sheet resistance of 199 Ω/sq and average visible transmittance of 92% could be prepared. The sheet resistance was increased in air environment because of entered moisture into the coating.
第三語言摘要
論文目次
目錄
中文摘要 I
英文摘要 II
本文目錄 III
表目錄 IV
圖目錄 V
第一章 序論 1
第二章 文獻回顧 4
2-1銦錫氧化物製備 4
2-2銦錫氧化物塗膜 8 
第三章 實驗部分 15
3-1實驗藥品 15
3-2實驗步驟 19
3-3實驗設備及儀器 22
第四章 結果與討論 26
4-1銦錫氧化物奈米片條的製作 26
4-2塗液組成研究 32
4-3刮膜條件研究 36
4-4熱起始硬化製備銦錫氧化物複合塗膜 43
4-5複合塗膜片電阻變化 45
第五章 結論 48
參考文獻 50
附錄A 55

 
表目錄
表2-1不同條件製備的ITO奈米粒子導電率 5
表2-2製作塗膜溫度200度以下製備ITO導電塗膜文獻整理 12
表4-1不同銦/錫比例的配置克數 27
表4-2不同銦/錫莫爾比製作的ITO粉體顏色及其複合塗膜性質 27
表4-3不同煆燒氣體環境下及其複合塗膜性質 30
表4-4不同煆燒溫度製作的ITO塗膜性質 30
表4-5不同MSMA、TODA比例製備的ITO塗膜性質 33
表4-6不同光起始劑製作的ITO塗膜性質 34
表4-7固定比例不同溶劑的ITO複合薄膜光電性質 35
表4-8不同放置時間製備的ITO塗膜性質 36
表4-9不同固含量的ITO塗膜性質 38
表4-10不同曝光能量製備的ITO塗膜性質 39
表4-11不同曝光次數製備的ITO塗膜性質 39
表4-12不同刮刀間隙的ITO複合薄膜光電性質 40
表4-13不同基板的ITO複合導電膜光電性質 41
表4-14旋轉塗佈法製備的ITO薄膜性質 42
表4-15不同溶劑製備ITO的塗膜性質 43
表4-16不同BPO起始劑含量製備的ITO塗膜的性質 44
表4-17不同固含量製備ITO塗膜的性質 44
表4-18不同製備條件下,放置空氣中塗膜的片電阻變化(Ω/sq)46
表A-1經由XRD圖計算不同銦/錫比的晶粒大小 55
 
圖目錄
圖1-1ITO穿透吸收和反射光譜圖 1
圖2-1結構因NH3的影響往[100]方向生長 6
圖2-2不同PVP比例下合成ITO奈米粒子的示意圖 6
圖2-3聚異丁烯丁二酰亞胺調整ITH奈米粒子長成柱狀示意圖 6
圖2-4MSMA在ITO塗膜製作時的工作機制圖:(a)MSMA將ITO粒子減少距離;(b)MSMA和ITO水解縮合反應 13
圖3-1ITO粉體製備流程圖 21
圖3-2ITO複合塗膜製作流程圖 21
圖4-1不同銦/錫比製備的ITO塗膜UV-vis圖 28
圖4-2不同的煆燒溫度製作的ITO條片的TEM圖;(a) 500 度;(b) 600 度; (c) 700 度 31
圖4-3不同煆燒溫度ITO的XRD圖 31
圖4-4不同刮膜液組成製備ITO塗膜性質表:(a) TODA/MSMA=2 (b) TODA=0.04 g (c) TODA=0.05 g 33
圖4-5不同光起始劑含量製備ITO塗膜 UV-vis圖 34
圖4-6不同溶劑刮膜液製備ITO塗膜UV-vis圖 35
圖4-7鉛筆硬度測試(HB)光學顯微鏡觀測不同放置時間製備的塗膜:(a)放置0天;(b)放置3天 37
圖4-8水解反應3天 煆燒溫度600 度 MSMA/TODA/ITO比例為0.5/0.4/1所製作的塗膜SEM圖:(a)表面;(b)截面 37
圖4-9不同固含量製備ITO塗膜片電阻穿透率圖 38
圖4-10不同間隙刮刀製備ITO塗膜UV-vis圖 40
圖4-11旋轉塗佈法SEM截面圖:(a)旋轉中心部分;(b)周圍部分 42
圖4-12不同製備條件下,塗膜放置空氣中片電阻隨著不同時間改變上升圖 47
圖4-13PSS在氮氣環境下TGA圖 47
圖A-1不同銦/錫比例不同沉澱時間ITH的SEM圖:(a)沉澱3小時銦/錫比9/1.5,(b) 沉澱3天銦/錫比9/1.5,(c) 沉澱3小時銦/錫比9/1,(d) 沉澱3天銦/錫比9/1,(e) 沉澱3小時銦/錫比9/0.5,(f) 沉澱3天銦/錫比9/0.5 56
圖A-2不同銦/錫比沉澱3天ITH的XRD圖 57
圖A-3不同銦/錫比沉澱3天ITH的FT-IR圖 57
參考文獻
[1]I. Hamberg, C. G. Granqvist, Transparent and infrared-reflecting indium-tin-oxide films: quantitative modeling of the optical properties, Applied Optics 24, 12-18 (1985)
[2]洪文進、許登貴、萬明安、郭書瑋、蘇昭瑾,「ITO透明導電薄膜:從發展與應用到製備與分析」,中國化學會季刊 63,409~418頁,2005年
[3]T. B. Elliot, N. R. Aghamalyan, Trends in Semiconductor Research, Nova Science Publishers, Inc. (2005)
[4]R. B. Tahr, T. Ban, Y. Ohya, Y. Takahashi, Tin doped indium oxide thin films: electrical properties, Journal of Applied Physics 83, 2631-2645 (1998)
[5]N. Yamada, Y. Shigesato, I. Yasui, H. Li, Y. Ujihira, K. Nomura, Estimation of chemical states and carrier density of Sn-doped In2O3 (ITO) by Mossbauer spectrometry, Hyperfine Interactions 112, 213-216 (1998)
[6]S. Tang, J. Yao, J. Chen, J. Luo, Preparation of indium tin oxide (ITO) with a single-phase structure, Journal of Materials Processing Technology 137, 82-85 (2003) 
[7]N. Pramanik, S. Das, P. Biswas, The effect of Sn(IV) on transformation of co-precipitated hydrated In(III) and Sn(IV) hydroxides to indium tin oxide (ITO) powder, Materials Letters 56, 671-679 (2002)
[8]B. Kim, S. Kim, J. Lee, J. Kim, Effect of phase transformation on the densification of coprecipitated nanocrystalline indium tin oxide powders, Journal of the American Ceramic Society 85, 2083-8088 (2008)
[9]M. Alam, D. Cameron, Optical and electrical properties of transparent conductive ITO thin films deposited by sol gel process, Thin Solid Films 377, 455-459 (2000)
[10]P. Biswas, A. De, N. Pramnik, P. Chakraborty, K. Ortner, V. Hock, S. Korder, Effects of tin on IR reflectivity, thermal emissivity, Hall mobility and plasma wavelength of (sol gel) indium tin oxide films on glass, Materials Letters 57, 2326-2332 (2003)
[11]R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, V. Viswanathan, S. Park, I. Aksay, Y. Lin, Y. Wang, J. Liu, Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points, Journal of the American Chemical Society 133, 2541-2547 (2011)
[12]C. Udawatte, K. Yanagisawa, Fabrication of low-porosity indium tin oxide ceramics in air from hydrothermally prepared powder, Journal of the American Chemical Society 84, 251-253 (2001)
[13]Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang , Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes, Crystal Growth & Design 5, 147-150 (2005)
[14]J. Ba, D. Rohlfing, A. Feldhoff, T. Brezesinski, I. Djerdj, M. Wark, M. Niederberger, Nonaqueous synthesis of uniform indium tin oxide nanocrystalsand their electrical conductivity in dependence of the tin oxide concentration, Chemistry of Materials 18, 2848-2854 (2006)
[15]王彥智,「銦錫氧化物奈米片條高穿透導電塗膜」,碩士論文,淡江大學化學工程與材料工程學系,2012年
[16]K. Kim, S. Park, Preparation and property control of nano-sized indium tin oxide particle, Materials Cheistry and Physics 86, 210-221 (2004).
[17]S. Li, X. Qiao, J. Chen, H. Wang, F. Jia, X. Lin, Effects of temperature on indium tin oxide particles synthesized by co-precipitation., Jounal of Crystal Growth 289, 151-156 (2006)
[18]R. Pan, S. Qiang, K. Liew, Y. Zhao, J. Zhu, Effect of stailizer on synthesis of indium tin oxide nano particles, Powder Technology 189, 126-129 (2009)
[19]R. Pan, Y. Wu, L. Li, H. Zheng, Synthesis of indium tin oxide nanorods by a facile process with ethylene glycol as solvent, Materials Science and Engineering: B 175, 70-74 (2010)
[20]S. Liu, W. Ding, W. Chai, Preparation and characterization of highly dispersed and crystallised ITO nanoparticles, Materials Letters 65, 1272-1275 (2011)
[21]V. Senthilkumar, Karuppanan Senthil, P. Vickraman, Microstructural, electrical and optical properties of indium tin oxide (ITO) nanoparticles synthesized by co-precipitation method, Materials Research Bulletin 47, 1051-1056 (2012)
[22]Y. Djaoued, V. Phong, S. Badilescu, P. Ashrit, F. Girouard, V. Truong, Sol-gel-prepared ITO films for electrochromic systems, Thin Solid Films 293, 108-112 (1997)
[23]S. Kim, S. Choi, C. Park, H. Jin, Transparent conductive ITO thin films through the sol gel process using metal salts, Thin Solid Films 347, 155-160 (1999)
[24]	M. Alam, D. Cameron, Optical and electrical properties of transparent conductive ITO thin films deposited by sol gel process, Thin Solid Films 377-378, 455-459 (2000)
[25]Y. Sawada, C. Kobayashi, S. Seki, H. Funakubo, Highly-conducting indium–tin-oxide transparent films fabricated by spray CVD using ethanol solution of indium chloride and tin chloride, Thin Solid Films 409, 46-50 (2002)
[26]E. Hammarberg, A. Schwab, C. Feldmann, Microwave-assisted synthesis of indium tin oxide nanocrystals in polyol media and transparent, conductive layers thereof, Thin Solid Films 516, 7437-7442 (2008)
[27]S. Hong, J. Kim, J. Han, Improvement of electrical properties of printed ITO thin films by heat-treatment conditions, Current Applied Physics 11, S202-S205 (2011)
[28]L. Kőrosi, S. Papp, I. Dekany, Preparation of transparent conductive indium tin oxide thin films from nano crystalline indium tin hydroxide by dip-coating method, Thin Solid Films 519, 3113-3118 (2011)
[29]N. Al-Dahoudi, H. Bisht, C. Gobbert, T. Krajewski, M. Aegerter, Transparent conducting, anti-static and anti-glare coating on plastic substrates, Thin Solid Films 392, 299-304 (2001)
[30]M. Jeon, M. Kang, Synthesis and characterization of indium-tin-oxide particles prepared using sol–gel and solvothermal methods and their conductivities after fixation on polyethyleneterephthalate films, Materials Letters 62, 676-682 (2008)
[31]A. Reindl, M. Mahajeri, J. Hanft, W. Peukert, The influence of dispersing and stabilizing of indium tin oxide nanoparticles upon the characteristic properties of thin films, ThinSolid Films 517, 1624-1629 (2009)
[32]S. Heusing, P. W. deOliveira, E. Kraker, A. Haase, C. Palfinger, M. Veith, Wet chemical deposited ITO coating on flexible substrates for organic photodiodes, Thin Solid Films 518, 1164-1169 (2009)
[33]T. Koniger, H. Munstedt, Influence of polyvinylpyrrolidone on properties of flexible electrically conducting indium tin oxide nanoparticle coatings, Journal of Materials Science 44, 2736-2742 (2009)
[34]I. Maksimenko, M. Gross, T. Koniger, H. Munstedt, P. J. Wellmann, Conductivity and adhesion enhancement in low-temperature processed indium tin oxide/polymer nanocomposites, Thin Solid Films 518, 2190-2915 (2010) 
[35]I. Maksimenko, P. J. Wellmann, Low-temperature processing of transparent conductive indium tin oxide nanocomposites using polyvinyl derivatives, Thin Solid Films 520, 1341-1347 (2011).
[36]Y. Cho, G. Yi, J. Hong, S. Jang, S. Yang, Colloidal indium tin oxide nanoparticles for transparent and conductive films, Thin Solid Films 515, 1864-1871 (2006)
[37]H. Zhou, H. Wang, X. Tian, K. Zheng, Z. Wu, X. Ding, X. Ye, Preparation of UV-curable transparent poly(urethane acrylate) nanocomposites with excellent UV/IR shielding properties, Composites Science and Technology 94, 105-110 (2014)
[38]C. Rhodes, Materials science and sensing applications of surface plasmon resonance in conducting metal oxides, ProQuest, Inc. (2007)
[39]Z. Chen, H. Dinh, E. Miller, Photoelectrochemical water splitting : standards, experimental methods, and protocols, Springer New York Publishers, Inc. (2013)
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信