淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-1908201400410000
中文論文名稱 幾丁聚醣/聚己內酯中空纖維管的製備、性質與引導許旺細胞生長之研究
英文論文名稱 Preparation and properties of chitosan/polycaprolactone hollow fiber and its guidance on the proliferation of Schwann cells
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 連威
研究生英文姓名 Wei Lien
學號 601400582
學位類別 碩士
語文別 中文
口試日期 2014-07-24
論文頁數 101頁
口試委員 指導教授-董崇民
委員-鄭廖平
委員-李亦淇
中文關鍵字 聚己內酯  幾丁聚醣  中空纖維管薄膜  成孔劑 
英文關鍵字 Polycaprolactone  chitosan  hollow fiber membrane  Pore former 
學科別分類
中文摘要   本研究主要探討利用乾噴溼紡法製備PCL中空纖維管薄膜,以界面活性劑Tween20作為成孔劑,使用異丙醇水溶液作為軟性沉澱槽,同時探討芯液與沉澱液中異丙醇濃度對薄膜結構的影響,並於內表面塗佈幾丁聚醣,探討添加幾丁聚醣對許旺細胞增生之影響。藉由SEM、DSC、ATR、拉力測試、接觸角量測及酵素分解測試等來分析中空纖維管薄膜的結構與性質;最後利用SEM、MTT與LDH分析,比較各薄膜對許旺細胞培養之優劣性。
  以不同異丙醇水溶液濃度的芯液與沉澱液來製備中空纖維管薄膜時,由SEM圖觀測到薄膜的結構隨著芯液的軟性程度越高,內表面孔洞逐漸增加,芯液異丙醇濃度達到15 %(v/v)時,薄膜內表面有較為明顯的孔隙出現,孔徑為10至15um;當沉澱液軟性程度越高,內表面孔徑提升得越明顯,更甚者會形成網狀結構孔洞。而在ATR的分析中,得知幾丁聚醣於塗佈程序下確實會在內表面沉積。DSC的檢測則發現,塗佈幾丁聚醣薄膜會有異質成核現象,造成冷結晶溫度的上升。拉力測試則顯示機械性質與整體薄膜巨孔結構含量有關,塗佈幾丁聚醣於表面可提升薄膜斷裂拉伸應力,但幾丁聚醣填入薄膜內部時將快速降低整體機械性質。細胞增生與死亡率顯示,緻密皮層結構能提供良好的初期細胞表面貼附,內層塗佈幾丁聚醣下對細胞成長有一定程度的提升。以Pseudomonas cepacia Lipase作為分解酵素可於第5至6天下將薄膜分解完全。
英文摘要   Poly(-caprolactone) hollow fiber was prepared by wet spinning method for the guidance on the proliferation of Schwann cells. The PCL was dissolved in DMAc as solvent incorporated with tween20 as a pore former to modify the structure and the isopropanol solution was used as a soft coagulant. The morphology of the membrane could be affected by increasing the concentration of IPA solution of the bore liquid and the coagulant bath. The PCL hollow fiber was coated with chitosan solution to improve the proliferation of Schwann cells. Scanning electron microscope (SEM), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared-Attenuated total reflection (FTIR-ATR), tensile mechanical properties, contact angle and enzyme degradation were used to characterize the structure and properties of membrane. On the other hand, the effect of proliferation of Schwann cells was analyzed by SEM, MTT assay and LDH assay.
  The effects of IPA solution concentration in coagulant and bore liquids on the morphologies were studied by SEM. The results showed that pore size of the inner surface increased when the bore liquid become more and more soft. When we used the 15 %(v/v) IPA solution as the bore liquid, the pore size is about 10 to 15 um. The pore size and porosity of the inner surface increased to net structure when IPA concentration of the the coagulation was increased. The results of Fourier Transform Infrared-Attenuated total reflection (FTIR-ATR) showed that chitosan solution could directly coated on the inner surface of hollow fiber. The tensile mechanical properties were dependant on the macrovoid structure. The tensile break strength of membranes whose inner surface was treated with chitosan solution was higher; however, the break stength was lowered when the chitosan diffused inside the membrane. The results of Schwann cell culture showed that the hollow fiber treated with chitosan had better cell adhesion behavior than the untreated one. The results of enzyme degradation using the Pseudomonas cepacia Lipase could completely degrade hollow fiber in 5 to 6 days.
論文目次 目錄
摘要 I
英文摘要 II
目錄 IV
圖目錄 VIII
表目錄 XIV
第1章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
第2章 文獻回顧 3
2-1 生物可分解高分子 (Biodegradable polymer) 3
2-1-1 依照製造程序分類生物可分解高分子 3
2-1-2 依照官能基分類生物可分解高分子 4
2-1-3 生物可分解性高分子材料應用 6
2-1-4 可分解生醫材料[12] 6
2-2 聚己內酯 (Poly(-caprolactone),PCL) 9
2-2-1 聚己內酯的製備 9
2-2-2 聚己內酯的性質與特性 10
2-3 幾丁質與幾丁聚醣 12
2-3-1 來源及結構 12
2-3-2 幾丁質與幾丁聚醣的製備 14
2-3-3 物化性與應用 15
2-4 高分子掺合物 16
2-4-1 掺合方法 16
2-4-2 掺合物之相容性 18
2-4-2-1 聚己內酯摻合物 19
2-4-2-2 幾丁聚醣摻合物 20
2-5 神經細胞 (Nerve cell) 21
2-5-1 周圍神經修復 (Peripheral Nervous System) 21
2-5-2 聚己內酯應用於神經修復 23
2-6 生物可分解高分子降解機制 24
第3章 實驗方法 28
3-1 實驗藥品 28
3-2 實驗儀器 34
3-3 實驗步驟流程 38
3-3-1 聚己內酯中空纖維管製備 39
3-3-2 製備內層塗佈幾丁聚醣之聚己內酯中空纖維管 41
3-3-3 場發射掃描式電子顯微鏡 (Field Emission Scanning electron microscope) 42
3-3-4 薄膜拉伸強度 (Tensile mechanical properties) 42
3-3-5 熱性質(Thermal properties) 43
3-3-6 孔隙影像分析(Porosity analysis) 43
3-3-7 接觸角量測(Contact angle) 43
3-3-8 全反射式紅外線光譜儀分析(FTIR-ATR) 43
3-3-9 細胞培養(Cell culture) 44
3-3-9-1 配製DMEM/F12細胞培養液 44
3-3-9-2 配製PBS緩衝溶液 44
3-3-9-3 解凍許旺氏細胞(Schwann cell) 44
3-3-9-4 許旺氏細胞繼代 45
3-3-9-5 細胞計算 45
3-3-9-6 清洗PCL中空纖維管薄膜 45
3-3-9-7 細胞培養 46
3-3-9-8 場發射掃描式電子顯微鏡細胞觀測 46
3-3-9-9 配製MTT溶液 46
3-3-9-10 MTT assay 46
3-3-9-11 LDH assay 47
3-3-10 酵素分解測試 48
3-3-10-1 配置Pseudomonas cepacia Lipase stock溶液 48
3-3-10-2 分解培養基置備 48
3-3-10-3 PCL中空纖維管薄膜分解空白測試 49
3-3-10-4 PCL中空纖維管薄膜酵素分解測試 49
3-3-11 實驗薄膜編號 49
第4章 結果與討論 51
4-1 PCL中空纖維管薄膜製備 51
4-1-1 沉澱槽與芯液的影響 51
4-1-2 PCL中空纖維管表面形態 53
4-1-2-1 添加成孔劑的影響 53
4-1-2-2 芯液中異丙醇含量的影響 53
4-1-2-3 沉澱液影響 59
4-2 內層塗佈幾丁聚醣的PCL中空纖維管薄膜 63
4-2-1 幾丁聚醣塗佈化學結構鑑定 63
4-2-2 幾丁聚醣塗佈對形態結構的影響 67
4-3 PCL中空纖維管拉力性質測試 71
4-4 PCL中空纖維管熱性質分析 72
4-5 薄膜親疏水性量測與孔洞量測分析 77
4-6 細胞相容性測試 80
4-7 細胞存活率測試 82
4-8 細胞形態觀測 84
4-9 酵素分解測試 88
第5章 結論 93
第6章 參考文獻 95

圖目錄
圖 2 1 聚酯類高分子家族[10] 4
圖 2 2 生物可分解高分子分解的機制[9] 5
圖 2 3 聚乙烯醇(PVA)分解的機制[11] 5
圖 2 4 PCL結構式 9
圖 2 5 己內酯結構式 9
圖 2 6 2-亞甲基-1,3-二氧烷結構式 9
圖 2 7 PCL所製備成的結構(a)(b) 奈米微球、(c)(d) 奈米纖維、(e)(f) 發泡結構、(g)(h)(i)針織紡織品、(j)(k)(l)(m)(n)(o)選擇性雷射燒結支架、(p)(q)(r)(s)(t)(u)熔融沉積支架[22-27] 10
圖 2 8 纖維素、幾丁質、幾丁聚醣之化學結構 13
圖 2 9 不同排列方式的幾丁質 14
圖 2 10 DSC熱分析Tg與合物成份間相容性關係圖 19
圖 2 11 常見的周邊神經修復的主要方法 [2] 22
圖 2 12 可分解高分子分解模式(a)表面侵蝕、(b)總體降解、(c)自我催化下的總體降解[13] 25
圖 3 1 噴紡法製備毛細管薄膜之裝置示意圖[56] 40
圖 3 2 PCL中空纖維管塗佈幾丁聚醣實驗示意圖 41
圖 3 3 拉力試驗樣品示意圖 42
圖 3 4 LDH反應式[63] 47
圖 4 1 以水作為芯液,且以25 %異丙醇水溶液作為沉澱槽,高分子擠出流速和芯液流速為1:2條件下所成型之PCL中空纖維管薄膜(MO)之SEM影像圖(a)、(b)外表面;(c)、(d)內表面;(e)、(f)截面。 55
圖 4 2 不同芯液下,利用25 % (v/v)異丙醇水溶液沉澱槽,高分子擠出流速和芯液流速為2:1下之PCL中空纖維管薄膜外表面SEM圖,芯液為: (a)、(b)為M025,水;(c)、(d)為M1025,10 % (v/v)異丙醇水溶液;(e)、(f)為M1525,15 % (v/v)異丙醇水溶液;(g)、(h)為M2525,25 % (v/v)異丙醇水溶液。 56
圖 4 3 不同芯液下,利用25 % (v/v)異丙醇水溶液沉澱槽,高分子擠出流速和芯液流速為2:1下之PCL中空纖維管薄膜內表面SEM圖,芯液: (a)、(b)為M025,水;(c)、(d)為M1025,10 % (v/v)異丙醇水溶液;(e)、(f)為M1525,15 % (v/v)異丙醇水溶液;(g)、(h)為M2525,25 % (v/v)異丙醇水溶液。 57
圖 4 4不同芯液下,利用25 % (v/v)異丙醇水溶液沉澱槽成型,高分子擠出流速和芯液流速為2:1條件下之PCL中空纖維管薄膜截面SEM影像圖,(a)為M025,水;(b)為M1025,10 % (v/v)異丙醇水溶液;(c)為M1525,15 % (v/v)異丙醇水溶液;(d)為M2525,25 % (v/v)異丙醇水溶液。 58
圖 4 5 不同芯液下,利用50 % (v/v)異丙醇水溶液沉澱槽成型,高分子擠出流速和芯液流速為2:1條件下之PCL中空纖維管薄膜外表面SEM影像圖,芯液為: (a)、(b)為M1050,10 % (v/v)異丙醇水溶液;(c)、(d)為M1550,15 % (v/v)異丙醇水溶液;(e)、(f)為M2550,25 % (v/v)異丙醇水溶液。 60
圖 4 6不同芯液下,利用50 % (v/v)異丙醇水溶液沉澱槽成型,高分子擠出流速和芯液流速為2:1條件下之PCL中空纖維管薄膜內表面SEM影像圖,芯液為: (a)、(b)為M1050,10 % (v/v)異丙醇水溶液;(c)、(d)為M1550,15 % (v/v)異丙醇水溶液;(e)、(f)為M2550,25 % (v/v)異丙醇水溶液。 61
圖 4 7 不同芯液下,利用50 % (v/v)異丙醇水溶液沉澱槽成型,高分子擠出流速和芯液流速為2:1條件下之PCL中空纖維管薄膜截面SEM圖,芯液:(a)為M1050,10 % (v/v)異丙醇水溶液;(b)為M1550,15 % (v/v)異丙醇水溶液;(c)為M2550,25 % (v/v)異丙醇水溶液。 62
圖 4 8 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜ATR-FTIR圖譜,芯液為:(a) MO,水;(b)M1525,15 % (v/v)異丙醇水溶液;(c) MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;(d) MC152502,15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;(e)MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 64
圖 4 9 浸泡0.01 M PBS緩衝溶液1周的幾丁聚醣內層塗佈PCL中空纖維管薄膜ATR-FTIR圖譜,芯液為:(a)MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;(b)MC152502,15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;(c) MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 65
圖 4 10 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜外表面SEM圖,芯液為: (a)(b) MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;(c)(d) MC152502, 15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;(e)(f) MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 68
圖 4 11 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜內表面SEM圖,芯液為: (a)(b) MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;(c)(d) MC152502, 15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;(e)(f) MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 69
圖 4 12不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜截面SEM圖,芯液為: (a)(b) MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;(c)(d) MC152502,15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;(e)(f) MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 70
圖 4 13 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜一次升溫圖,芯液: (a)為MO,水;(b)為M1525,15 % (v/v)異丙醇水溶液;(c) MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;(d) MC152502,15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;(e)MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 73
圖 4 14 25 % (v/v)異丙醇水溶液沉澱槽製備出之PCL中空纖維管薄膜二次升溫圖,芯液為:MO,水;M1525,15 % (v/v)異丙醇水溶液;MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;MC152502,15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 75
圖 4 15 25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜冷卻曲線圖,芯液為:MO,水;M1525,15 % (v/v)異丙醇水溶液;MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;MC152502,15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 76
圖 4 16 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜接觸角結果圖,芯液:(a) MO,水之外表面;(b) M1525, 15 % (v/v)異丙醇水溶液之外表面;(c) MOC,水,塗佈1 % (v/v)幾丁聚醣溶液之外表面;(d) MC152502, 15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液之外表面;(e) MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液之外表面;(f) MO,水之內表面;(g) MOC,水,塗佈1 % (v/v)幾丁聚醣溶液之內表面。 79
圖 4 17 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜與TCPS的MTT圖,芯液:MO,水;M1525, 15 % (v/v)異丙醇水溶液; MOC,水,塗佈1 % (v/v)幾丁聚醣溶液; MC152502, 15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液; MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液; MO,水; MOC,水,塗佈1 % (v/v)幾丁聚醣溶液。 81
圖 4 18不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜與TCPS的LDH圖,芯液:MO,水;M1525, 15 % (v/v)異丙醇水溶液; MOC,水,塗佈1 % (v/v)幾丁聚醣溶液; MC152502, 15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液; MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液; MO,水; MOC,水,塗佈1 % (v/v)幾丁聚醣溶液。 83
圖 4 19 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜內表面細胞培養第一天SEM圖,芯液: (a)為MO,水;(b)為M1525,15 % (v/v)異丙醇水溶液;(c) MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;(d) MC152502,15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;(e)MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 85
圖 4 20不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜內表面細胞培養第三天SEM圖,芯液: (a)為MO,水;(b)為M1525,15 % (v/v)異丙醇水溶液;(c) MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;(d) MC152502,15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;(e)MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 86
圖 4 21 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜內表面細胞培養第五天SEM圖,芯液: (a)為MO,水;(b)為M1525,15 % (v/v)異丙醇水溶液;(c) MOC,水,塗佈1 % (v/v)幾丁聚醣溶液;(d) MC152502,15 % (v/v)異丙醇水溶液,塗佈0.2 % (v/v)幾丁聚醣溶液;(e)MC15251,15 % (v/v)異丙醇水溶液,塗佈1 % (v/v)幾丁聚醣溶液。 87
圖 4 22芯液為水,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜MO在不同時間下之酵素分解外觀(a) 12 小時、(b) 24小時、(c) 36小時、(d) 2天、(e) 3天、(f) 4天、(g) 5天、(h) 6天。 89
圖 4 23芯液為水,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜,並於內表面塗佈1 % (v/v)幾丁聚醣溶液MOC在不同時間下之酵素分解外觀(a) 12 小時、(b) 24小時、(c) 36小時、(d) 2天、(e) 3天、(f) 4天、(g) 5天、(h) 6天。 90
圖 4 24 芯液為15 % (v/v)異丙醇水溶液,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜,並於內表面塗佈1 % (v/v)幾丁聚醣溶液MC15251在不同時間下之酵素分解外觀(a) 12 小時、(b) 24小時、(c) 36小時、(d) 2天、(e) 3天、(f) 4天、(g) 5天、(h) 6天。 91
圖 4 25 PCL中空纖維管於PBS緩衝溶液分解之重量損失百分比與時間關係圖 92
圖 4 26 PCL中空纖維管於酵素分解液中分解之重量損失百分比與時間關係圖 92

表目錄
表 2 1 生物可分解塑膠於生活中的應用[12] 6
表 2 2 已應用於生醫材料上的生物可分解塑膠[14] 8
表 2 3 PCL的溶劑相容性(a) 可溶、(b) 部分溶、(c) 不溶[28] 11
表 2 4 掺合方法優缺點比較 18
表 2 5微生物及其所對應可分解材料[52] 27
表 3 1 PCL中空纖維管薄膜製備條件與樣品代號 50
表 4 1 PCL中空纖維管薄膜之成形條件表 52
表 4 2 聚己內酯與幾丁聚醣紅外線光譜吸收峰表[50] 66
表 4 3 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜斷裂強度與斷裂伸長率。 72
表 4 4 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜在一次升溫下的熔點、熱焓和結晶度。 74
表 4 5 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜二次升溫熔點、結晶溫度、熱焓和結晶度。 77
表 4 6 不同塗佈條件下,於25 % (v/v)異丙醇水溶液沉澱槽成型製備出之PCL中空纖維管薄膜表面孔徑、孔隙度及內外表面接觸角。 78
參考文獻 [1] C.E. Schmidt, J.B. Leach, Neural tissue engineering: strategies for repair and regeneration, Annual Review of Biomedical Engineering, 5(1), 293-347, 2003.
[2] V. Maquet, D. Martin, B. Malgrange, R. Franzen, J. Schoenen, G. Moonen, R. Jerome, Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds, Journal of Biomedical Materials Research, 52(4), 639-51, 2000.
[3] D. Dyondi, V. Chandra, R.R. Bhonde, R. Banerjee, Development and char-acterization of dual growth factor loaded in situ gelling biopolymeric system fortissue engineering applications. Journal of Biomaterials and Tissue Engineering, 2(9), 67–75. 2012.
[4] S.K. Nandi, B. Kundu, D. Basu, Protein growth factors loaded highly porouschitosan scaffold: A comparison of bone healing properties. Materials Science &Engineering C, 33(3), 1267–1275, 2013.
[5] H. Zhang, X.L. Jia, F.X. Han, J. Zhao, Y.H. Zhao, Y.B. Fan, X.Y. Yuan, Dual-deliveryof VEGF and PDGF by double-layered electrospun membranes for blood vesselregeneration. Biomaterials, 34(9), 2202–2212, 2013
[6] 劉義峋, Studies on Comppatibility and Biodegradailiry of PHB/PLA Blend, 2011.
[7] S. Ebnesajjad, Handbook of Biopolymers and Biodegradable Plastics, Elsevier, Oxford, 2013.
[8] R. J. Mueller, Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling. Process Biochemistry, 41(10), 2124-2128, 2006
[9] P. Rizzarelli, S. Carroccio, Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Analytica Chimica Acta, 808(15), 18-43, 2014
[10] W. Masaji, K. Fusako, Numerical simulation for enzymatic degradation of poly(vinyl alcohol). Polymer Degradation and Stability, 81(3), 393-399, 2003
[11] 張永承, Composite film of poly-caprolactone/ chitosan nanoparticles, 2010
[12] 程國忠, 蔡慧鳳, A Study of Biomedical Materials Applied to Artificial Intervertebral Disk, 2012
[13] M.A. Woodruff, D.W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century, Progress in Polymer Science, 35(10), 1217-1256, 2010
[14] F.J. Van Natt, J.W. Hill, W.H. Carothers, Studies of polymerization and ring formation. XXIII. ε-Caprolactone and its polymers, Journal of the American Chemical Society, 56(2), 455-457, 1934
[15] M. Chasi, R. Langer, editors, Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, Inc., New York, 1990, 71-120
[16] Q. Cai, J. Be, S. Wang, Synthesis and degradation of a tri-component copolymer derived from glycolide, L-lactide, and ε-caprolactone, Journal of Biomaterials Science, Polymer Edition, 11(3), 273-88, 2000
[17] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Progress in Polymer Science, 32(8-9), 87-133, 2007
[18] P. Gunatillake, R. Mayadunne, R. Adhikari, Recent developments in biodegradable synthetic polymers, Biotechnology Annual Review, 12(30), 301-47, 2006
[19] R. Chandra, R. Rustgi, Biodegradable polymers, Progress in Polymer Science, 23(7), 1273-335, 1998
[20] K. Lee, D. Kaplan, Tissue engineering I. Advances in biochemical engineering/biotechnology, Berlin: Springer Verlag Review Series, 106, 2006
[21] A. Luciani, V. Coccoli, S. Orsi, L. Ambrosio, P.A. Netti, PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles, Biomaterials, 29(36), 4800–7, 2008
[22] K.H. Lee., H.Y. Kim, M.S. Khil, Y.M. Ra, D.R. Lee, Characterization of nano-structured poly(epsilon-caprolactone) nonwoven mats via electrospinning, Polymer, 44(4), 1287–94, 2003
[23] C. Marrazzo, E. D. Maio, S. Iannace, Conventional and nanometric nucleating agents in poly(epsilon-caprolactone) foaming: crystals vs. bubbles nucleation, Polymer Engineering & Science, 48(2), 336–44, 2008
[24] H. Huang, S. Oizumi, N. Kojima, T. Niino, Y. Sakai, Avidin–biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network, Biomaterials, 28(26), 3815–23, 2007
[25] I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications, Biomaterials, 23(4), 1169–85, 2002
[26] M.I. van Lieshout, Tissue engineered aortic valves based on a knitted scaffold. PhD dissertation. Eindhoven: Technische Universiteit Eindhoven, 2005, 1-93.
[27] C. Bordes, V. Freville, E. Ruffin, P. Marote, J.Y. Gauvrit, S.Briancon, P. Lanteri, Determination of poly(ε-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process, International Journal of Pharmaceutics, 383(1-2), 236-243, 2010
[28] R. A. A. Muzzarelli, Chitin. The Polysaccharides, 3, 417-450, 1985
[29] A. Mima, M. Miya, R. Iwamoto, S. Yoshikawa, Highly deacetylated chitosan and its properties, Journal of Applied Polymer Science, 28(6), 1909-1917, 1983
[30] C. Stefanescu, H.D. William, I.N. Ioan, Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydrate Polymers, 87(1), 435-443, 2012
[31] P.R. Austin, C.J. Brine, J.E. Castle, J.P. Zikakis, Chitin: new facets of research, Science, 212(4496), 749-53, 1981
[32] C. Chatelet, O. Damour, A. Domard, Influence of the degree of acetylation on some Biological properties of chitosan films. Biomaterials, 22(3), 261, 2001
[33] N.R. Sudarshan, D.G. Hoover, D. Knorr, Antibacterial action of chitosan, Food Biotechnol, 6(3), 257-272, 1992
[34] Tasi GJ, Su WH. (1999). Antibacterial activity of shrimp chitosan against Escherichia coli. J Food Prot, 62(3), 239-243
[35] X.F. Liu, Y.L. Guan, D.Z. Yang, Z. Li, K.D. Yao, Antibacterial Action of Chitosan and Carboxymethylated Chitosan. Journal of Applied Polymer Science, 79(7), 1324-1335, 2001
[36] F. Shahidi, J.K.V. Arachchi, Y.J. Jeon, Food applications of chitin and chitosans, Trends in Food Science & Technology, 10(2), 37-51, 1999
[37] M.N.V.R. Kumar, A review of chitin and chitosan application, Reactive and Functional Polymers, 46(1), 1-27, 2000
[38] C.C. Chen, J.Y. Chueh, H. Tseng, H.M. Huang, S.Y. Lee, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials, 24(7), 1167-1173, 2003
[39] H.T. Liao, C.S. Wu, Preparation and characterization of ternary blends composed of polylactide, poly(-caprolactone) and starch. Materials Science and Engineering A, 515(1-2), 207–214, 2009
[40] Y. Huang, S. Onyeri, M. Siewe, A. Moshfeghian, S.V. Madihally, In vitro characterization of chitosan–gelatin scaffolds for tissue engineering, Biomaterials, 26(36), 7616–7627, 2005
[41] A. Sarasam, S.V. Madihally, Characterization of chitosan–polycaprolactone blends for tissue engineering applications, Biomaterials, 26(27), 5500–5508, 2005
[42] R.V. Bellamkonda, Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy, Biomaterials, 27(19), 3515-3518, 2006
[43] C.A. Heath, G.E. Rutkowski, The development of bioartificial nerve grafts for peripheral nerve regeneration, Trends of Biotechnology, 16(4), 163-168, 1998
[44] V. Maquet, D. Martin, B. Malgrange, R. Franzen, J. Schoenen, G. Moonen, R. Jerome, Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds, Journal of Biomedical Materials Research, 52(4), 639-51, 2000
[45] I.V. Yannas, Synthesis of Tissues and Organs. ChemBioChem, 5(1), 26–39, 2004
[46] W.F.A. Dendunnen, J.M. Schakenraad, G.J. Zondervan, A.J. Pennings, B. Vanderlei, P.H. Robinson, A new PLLA PCL copolymer for nerve regeneration, Journal of Materials Science: Materials in Medicine, 4(5), 521-5, 1993
[47] Y.T. Kim, V.K. Haftel, S. Kumar, R.V. Bellamkonda, The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps, Biomaterials, 29(21), 3117–3127, 2008
[48] D.R. Nisbet, A.E. Rodda, M.K. Horne, J.S. Forsythe, D.I. Finkelstein, Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials, 30(27), 4573–80, 2009
[49] E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, J. Mey, Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/polyepsilon-caprolactone blend, Biomaterials, 28(19), 3012–25, 2007
[50] V. Chiono, G. Vozzi, M. D'Acunto, S. Brinzi, C. Domenici, F. Vozzi, A. Ahluwalia, N. Barbani, P. Giusti, G. Ciardelli, Characterisation of blends between poly(ε-caprolactone) and polysaccharides for tissue engineering applications, Materials Science and Engineering C, 29(7), 2174–2187, 2009
[51] H.J. Hueck, The Biodeterioration of Materials-An Appraisal. International Biodeterioration & Biodegradation, 48(1-4), 5-11, 2001
[52] A. A. Shah, F. Hasan, A. Hameed, S. Ahmed, Biological degradation of plastics: A comprehensive review, Biotechnology Advances, 26(3), 246-265, 2008
[53] F. Cappitelli, P. Principi, C. Sorlini, Biodeterioration of modern materials in contemporary collection : can biotechnology help?, Trends in Biotechnology, 24, 350-354(8), 2006
[54] S. Bonhommea, A. Cuerb, A. Delortb, J. Lemairea, M. Sancelmeb, G. Scott, Environmental biodegradation of polyethylene, Polymer Degradation and Stability, 81(3), 441-452, 2003
[55] C. Rubio, C. Ott, C. Amiel, Dupont-Moral I., J. Travert, L. Mariey, Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: A new approach to biocorrosion control, Journal of Microbiological Methods, 64(3), 287-296, 2006
[56] 陳勝昌, Preparation of porous membranes via non-solvent induced phase inversion method, 2013
[57] W.Z. Lang, Z.L. Xua, H. Yanga, W. Tong, Preparation and characterization of PVDF–PFSA blend hollow fiber UF membrane, Journal of Membrane Science, 288(1-2), 123-131, 2007
[58] M.G. Buonomenna, P. Macchi, M. Davoli, E. Drioli, Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions play in their morphology, crystalline structure and properties, European Polymer Journal, 43(4), 1557–1572, 2007
[59] D.M. Garcia Cruz, J.L. Gomez Ribelles, M. Salmeron Sanchez, Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85(2), 303-13, 2008
[60] L. Averous, L. Moro, P. Dole, C. Fringant, Properties of thermoplastic blends: Starch-polycaprolactone, Polymer, 41(11), 4157-4167, 2000
[61] Z. Cheng, S.H. Teoh, Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen, Biomaterials, 25(11), 1991–2001, 2004
[62] S.L. Ishaug-Riley, L.E. Okun, G. Prado, M.A. Applegate, A. Ratcliffe, Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films, Biomaterials, 20(23-24), 2245–2256, 1999
[63] D. Lobner, Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis?, Journal of Neuroscience Methods, 96(2), 147-152, 2000
[64] S Murphey, Melting Point Depression in Biodegradable Polyesters, 2011
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-08-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-08-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信