淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1908201314571100
中文論文名稱 使用粒子群最佳化演算法尋找無線人體區域網路低特定吸收率路徑
英文論文名稱 Low-SAR Path Searching in Wireless Body Area Networks by Particle Swarm Optimization Algorithm
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 林承翰
研究生英文姓名 Cheng-Han Lin
學號 600470057
學位類別 碩士
語文別 中文
口試日期 2013-07-16
論文頁數 43頁
口試委員 指導教授-吳庭育
委員-李維聰
委員-許政穆
中文關鍵字 無線人體區域網路  特定吸收率 
英文關鍵字 WBAN  Specific Absorption Rate 
學科別分類 學科別應用科學電機及電子
中文摘要 近幾年來,隨著無線網路的普及與微型感測器製造技術的提昇,人們開始關注到各式各樣的生理資訊且相關的應用也愈來愈多元化。因此,隨時監控與取得生理訊號就顯得更加重要。電機電子工程師學會制定一種適合在人體運作的網路協定,即IEEE 802.15.6[9],又稱為無線人體區域網路。無線人體區域網路中的感測器節點被裝置在人體皮膚表面或嵌入至皮膚裡,當傳送端發送封包時,訊號會經由人體皮膚表面或皮膚內傳輸至接收端,而發送封包時所產生的電磁波輻射會對人體健康造成影響。特定吸收率(Specific Absorption Rate,SAR)是電磁波輻射對人體影響程度的重要指標,高的特定吸收率數值,表示人體吸收較多的電磁波輻射量,對人體健康造成的危害程度也愈大。
在單躍傳輸的情況下,封包傳送成功率普遍偏低,本論文希望在兩躍傳輸的情況下能夠擁有低的特定吸收率路徑以及高的封包傳送成功率。因此,本論文利用粒子群最佳化演算法尋找中繼節點合適的佈建位置,使得感測器節點透過此中繼節點轉傳封包到集中裝置這段路徑的特定吸收率較小。有別於藍芽使用大的功率運作,論文中以節點與節點之間的距離來調整節點的發送功率,讓節點以最小的功率即可完成封包傳輸。模擬結果顯示,本論文提出的方法能有效降低特定吸收率且對於封包的傳送成功率也有顯著提升。
英文摘要 In recent years, with the popularity of wireless networks and the enhancement of micro-sensor technology, people have paid more attention to physiological information and related applications also have become more diverse. Therefore, to monitor and obtain physiological signals becomes very important. IEEE 802.15.6, also known as wireless body area networks (WBAN), is a new network protocol developed by IEEE Standard Group for operation on, in or around human body. In WBANs, sensor nodes are deployed on the surface or embedded in the human skin. When the sender sends out packets, the signals will reach the receiver through human body or skin. Nevertheless, the step to send packets will generate electromagnetic radiation, which may affect human body negatively. The specific absorption rate (SAR) is an important index that measures the electromagnetic radiation absorbed by human body: the higher the level of SAR means the more harmful effects of the electromagnetic radiation on human body.
In the single-hop case, success rate of packet transmission from the sensor nodes to the hub is quite low. The aim of this paper is not only to search out a path of low SAR level, but also to achieve high success rate of packet transmission in the two-hop case with relay node. Hence, this paper uses Particle Swarm Optimization (PSO) algorithm to search out the optimal position of relay node placement so that the sender can send packets to the receiver through relay node via the path of low SAR level. Unlike Bluetooth that uses high power for system operation, our proposed method regulates the power of nodes according to the distances between nodes and therefore allows a node to complete the packet transmission with the minimum power. The simulation results show that our proposed method can effectively reduce the SAR level and increase success rate of packet transmission with relay node.
論文目次 圖目錄 VI
表目錄 VIII
第一章 緒論 - 1 -
1.1 前言 - 1 -
1.2 動機與目的 - 1 -
1.3 論文架構 - 2 -
第二章 背景知識與相關研究 - 4 -
2.1無線人體區域網路(Wireless Body Area Networks) - 4 -
2.1.1 無線人體區域網路使用頻帶 - 5 -
2.1.2 無線人體區域網路之節點類型與網路拓樸 - 7 -
2.2 特定吸收率 - 11 -
2.3 粒子群最佳化(Particle Swarm Optimization) - 12 -
2.3.1 理論基礎 - 12 -
2.3.2 粒子群演算法之初始化 - 13 -
2.3.3 粒子群演算法之適應函數 - 14 -
2.3.4 粒子群演算法之搜尋過程 - 14 -
2.3.5 粒子群演算法之更新速度與位置 - 15 -
2.3.6 粒子群演算法流程 - 18 -
第三章 粒子群演算法尋找中繼節點佈建位置 - 21 -
3.1 問題描述 - 21 -
3.3 使用粒子群最佳化演算法求解 - 25 -
3.3.1 粒子編碼 - 26 -
3.3.2 適應函數 - 28 -
3.3.3 更新粒子速度與位置 - 30 -
第四章 模擬環境與模擬分析 - 32 -
4.1 模擬場景 - 32 -
4.2 模擬分析 - 36 -
第五章 結論與未來展望 - 40 -
參考文獻 - 41 -
圖目錄
圖 2.1 星狀網路示意圖 - 8 -
圖 2.2 單躍傳輸示意圖 - 9 -
圖 2.3 兩躍傳輸示意圖 - 9 -
圖 2.4 簡化中繼節點設計於兩躍傳輸示意圖 - 10 -
圖 2.5 粒子群演算法流程 - 20 -
圖 3.1 網路節點佈建示意圖 - 22 -
圖 3.2 封包傳送成功率 - 22 -
圖 3.3 各節點傳輸時的特定吸收率 - 23 -
圖 3.4 SAR對人體局部影響之權重分布圖 - 24 -
圖 3.5 R點在平面直角座標系中的表示方式 - 26 -
圖 3.6 R點在極座標系中的表示方式 - 26 -
圖 3.7 平面直角坐標系節點示意圖 - 30 -
圖 4.1 模擬場景圖 - 33 -
圖 4.2 情境(a)的特定吸收率 - 37 -
圖 4.3 情境(b)的特定吸收率 - 37 -
圖 4.4 情境(c)的特定吸收率 - 37 -
圖 4.5 情境(a)的封包傳送成功率 - 38 -
圖 4.6 情境(b)的封包傳送成功率 - 39 -
圖 4.7 情境(c)的封包傳送成功率 - 39 -

表目錄
表2.1 比較IEEE 802.15.6與IEEE802.15.4[1] - 4 -
表2.2 IEEE 802.15.6 Narrow Band Frequency Band[31] - 6 -
表2.3 IEEE 802.15.6 Ultra Wide Band Frequency Band[31] - 7 -
表4.1 粒子群最佳化演算法參數設定 - 34 -
表4.2 模擬參數設定 - 35 -



參考文獻 [1] Arif Onder ISIKMAN, Loris Cazalon, Feiquan Chen, and Peng Li, "Body Area Networks," Group 6 of the course SSY145 Wireless Networks.
[2] Honeine, P., Mourad, F., Kallas, M., Snoussi, H., Amoud, H. and Francis, C. "Wireless sensor networks in biomedical: Body area networks," Systems, Signal Processing and their Applications (WOSSPA), 2011 7th International Workshop on, 2011, pp. 388 - 391.
[3] W. Astrin, Huan-Bang Li, Ryuji KOHNO, "Standardization for Body Area Networks, " IEICE TRANS. COMMUN., 2009, vol.E92-B.
[4] E. Jovanov, et al., "A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation, "Journal of Neuro Engineering and Rehabilitation, 2005, pp.2-6.
[5] Ryuji Kohno, Kiyoshi Hamaguchi, Huan-Bang Li and Kenichi Takizawa, "R&D and Standardization of Body Area Network (BAN) for Medical Healthcare", Proceedings of the 2008 IEEE INTERNATIONAL CONFERENCE ON ULTRA-WIDEBAND (ICUWB2008), VOL. 3.
[6] Kyung Sup Kwak, Sana Ullah, Niamat Ullah, "An Overview of IEEE 802.15.6 Standard", 2011.
[7] S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S.Saleem, Z. Rahman and K.S. Kwak, "A Comprehensive Survey of Wireless Body Area Networks: On PHY, MAC, and Network Layers Solutions," Journal of Medical Systems, IN PRESS, DOI: 10.1007/s10916-010-9571-3.
[8] A. W. ASTRIN, H.-B. LI, and R. KOHNO, "standardization for body area networks," IEICE Transactions on Communications, vol. E92.B, no. 2, 2009, pp.366-372.
[9] Robert F. Heile, et al., "IEEE Standard for Local and metropolitan area networks-Part 15.6: Wireless Body Area Networks," IEEE Std 802.15.6-2012, 2012, pp. 1-271.
[10] Findlay, R.P. and Dimbylow, P.J., "SAR in children from exposure to wireless local area networks (WLAN)," Electromagnetic Compatibility (APEMC), 2012 Asia-Pacific Symposium on, 2012 , pp.733-736.
[11] Samiei, M.H.V. and Delisle, G.Y., "Analytical and experimental study of the EM/biological tissues interaction at 1900 MHz," Electromagnetic Compatibility, 2000. IEEE International Symposium on, 2000 , vol.2, pp. 705-710.
[12] "FCC OET BULLETIN 65 SUPPLEMENT C 01-01.", IEEE Std 1528-2003 and 1528a-2005, 2013. http://infam.antville.org/static/infam/files/google-glass-fcc-4-15-2013.pdf
[13] ICNIRP: “Guideline for limitting exposure to time-varying electric,magnetic, and electromagnetic fields (up to 300 GHz), ” Health Physics, 1998, vol. 74, pp. 494-522
[14] IEEE SCC28, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio-Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
[15] International Committee on Electromagnetic Safety, The Institute of Elec-trical and Electronics Engineers, Inc., 3 Park Avenue, New York, NY 10016-5997, USA: IEEE Standards Department, IEEE C95.1-1991.
[16] Eberhart, R.C. and Shi, Y., " Particle Swarm Optimization," IEEE International Conference On neural networks, vol 4. 1995, pp.1942-1948.
[17] Eberhart, R.C. and Shi, Y., "A modified particle swarm optimizer," Proceedings of IEEe International Conference On Evolutionary Computation, 1998, pp. 69-73.
[18] Eberhart, R.C. and Shi, Y., "Parmeter Selection in Particle Swarm Optimization," Lecture Notesin Computer Sceince Evolutionary Programming VII, 1998, 591-600.
[19] R P Findlay and P J Dimbylow. "Effects of posture on FDTD calculations of specific absorption rate in a voxel model of the human body," INSTITUTE OF PHYSICS PUBLISHING, Phys. Med. Biol. 50 2005, pp.3825-3835.
[20] Timmons, N.F. and Scanlon, W.G., " An adaptive energy efficient MAC protocol for the medical body area network," Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, 2009. Wireless VITAE 2009. 1st International Conference on, 2009 , pp. 587-593.
[21] Marinkovic, S.J., Popovici, E.M., Spagnol, C., Faul, S. and Marnane, W.P., "Energy-Efficient Low Duty Cycle MAC Protocol for Wireless Body Area Networks," Information Technology in Biomedicine, IEEE Transactions on , 2009 , pp. 604-609.
[22] Marinkovic, S., Spagnola C. and Popovici, E., "Energy-Efficient TDMA-Based MAC Protocol for Wireless Body Area Networks," Sensor Technologies and Applications, 2009. SENSORCOMM '09. Third International Conference on, 2012 , pp. 247-248.
[23] Ortiz, A.M., Ababneh, N., Timmons, N. and Morrison, J. "Adaptive routing for multihop IEEE 802.15.6 Wireless Body Area Networks, " Software, Telecommunications and Computer Networks, 2012 20th International Conference on, 2012 , pp.1-5.
[24] Sung-Yeon Kim, Jeong-Ahn Kwon, Jang-Won Lee, Chang Soon Park, Youngsoo Kim and Hyosun Hwang ,"Network lifetime improvement by relaying node re-selection in the IEEE 802.15.6 BAN," Ubiquitous and Future Networks (ICUFN), 2012 Fourth International Conference on, 2012 , pp. 247-248.
[25] Movassaghi, S., Abolhasan, M. and Lipman, J. "Energy Efficient Thermal and Power Aware (ETPA) Routing in Body Area Networks, " Personal Indoor and Mobile Radio Communications (PIMRC), 2012 IEEE 23rd International Symposium on, 2012 , pp. 1108 -1113.
[26] A. Motley and J. Keenan, "Personal communication radio coverage in buildings at 900 MHz and 1700 MHz", 9 Jun 1988.
[27] 張宜穎, "無線人體區域感測網路之中繼節點佈建方法", 國立清華大學資訊工程學系碩士論文, 2010年09月.
[28] 林志信, "無線人體區域網路中省電型兩躍傳輸協定之探討", 淡江大學電機工程學系博士論文, 2012年06月.
[29] 翁祥逸, "一種具有可調式QoS針對人體感測網路之機制", 國立中興大學資訊科學與工程學系碩士論文, 2011年07月.
[30] 王興正, "應用粒子群演算法於無人飛行載具結構系統之最佳化設計", 淡江大學航太工程學系碩士論文, 2011年06月.
[31] 蔡佳龍, "81th IEEE 802.15 2012醫療電子相關標準會議".
[32] 國家通訊傳播委員會, http://www.ncc.gov.tw/
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信