淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1908201313215500
中文論文名稱 平板型多效直接接觸式薄膜蒸餾系統之理論與實驗研究
英文論文名稱 Theoretical and experimental studies of the multi-effect direct contact membrane distillation with fins attached in flow channels
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 蔡鎮皓
研究生英文姓名 Cheng-Hao Tsai
學號 699400643
學位類別 碩士
語文別 中文
口試日期 2013-07-22
論文頁數 124頁
口試委員 指導教授-何啟東
委員-張煖
委員-程學恆
中文關鍵字 薄膜蒸餾  透膜通量  擾流增益因子  溫度極化 
英文關鍵字 membrane distillation  trans-membrane flux increment  eddy promoter  temperature polarization 
學科別分類
中文摘要 薄膜蒸餾海水淡化用來製造純水提供民生及工業使用,因其優點特色為具有裝置簡潔、低成本、可模組化、高介面面積等,為近來廣受重視的一種技術。然而,薄膜蒸餾因主流區與薄膜表面溫度存在所謂的溫度極化現象,對於系統產能有相當顯著的影響,此現象越明顯則產能相對低落。
本研究針對薄膜蒸餾之主要設備進行效率改善的研究,目的為:(1)將系統改善為多效式操作以增加薄膜接觸面積進而增加產量;(2)於薄膜兩側增加碳纖維板之設計來增加流速以及擾流增益因子(Eddy promoter),以求有效改善系統內部的溫度極化現象進而提升系統產能,並歸納出一經驗公式,描述此型式的擾流增益進因子對於通道內部熱對流效應的影響;(3)藉由一維數學模型針對薄膜蒸餾設備的熱量與質量傳送機制進行研究,配合實驗分析以驗證經驗公式與數學模型的正確性,並探討設計參數及操作條件對於薄膜蒸餾系統之流體溫度分佈、溫度極化現象、純水透膜通量增加百分率與水力損耗提升百分率的影響。
研究結果顯示,平板型多效直接接觸式薄膜蒸餾系統之理論值與實驗值的相對誤差總平均為7.11 %,而本研究設定新型擾流增益因子能夠有效的提升系統透膜通量,最高可達到單位面積的21 %的增益。本研究以操作在多通道與低體積流率之設備為主,除了有效利用通道內熱側流體以降低操作成本外,經由改善後的設計可提升設備效能並得到增加透膜通量總產量的效果。
英文摘要 A new design of direct contact membrane distillation (DCMD) using the multi-effect DCMD device for enhancement of heat transfer was proposed for increasing the pure water productivity in saline water desalination. It can be performed at middle temperature operation (about 45 °C to 60 °C) of hot inlet stream associated with a constant temperature of cold stream inlet. The double-flow device of DCMD is the basic and reference designs for constructing the multi-effect DCMD device. The existence of temperature gradient in a DCMD means that the membrane surface temperatures always contrast with bulk temperatures which called temperature polarization, may cause a considerable heat loss. Attempts to reduce the effect of temperature polarization were made implementing turbulence promoters to improve the flow characteristic. Experimental study has demonstrated its feasibility, and a considerable performance enhancement was obtained for the experimental system. The purposes of this study are (1) to develop the multi-effect DCMD in order to increase pure water productivity; (2) to develop the heat transfer correlation for the carbon fiber on both side of the membrane in both channels (3) to develop a one-dimensional mathematical model, propose a general numerical method for solving this model to predict pure water productivity and study the effect of temperature distributions and polarization on the pure water productivity improvement of the membrane distillation systems. The correlation is expressed as eddy promoter and can be used for predicting the heat transfer coefficient for attaching fins in flow channels. The results show that the agreement of the theoretical predictions with the experimental results is fairly good. The new design of eddy promoter can effectively enhance the mass flux, among the operating conditions set in this study, up to 21% of the gain.
論文目次 中文摘要Ⅰ
英文摘要Ⅱ
目錄Ⅲ
圖目錄Ⅵ
表目錄Ⅹ
第一章 緒論1
1-1 引言1
1-2 薄膜蒸餾系統簡介3
1-3 研究動機與方向6
第二章 文獻回顧9
2-1 直接接觸式薄膜蒸餾9
2-2 擾流增益因子12
第三章 理論分析15
3-1 直接接觸式薄膜蒸餾之熱量、質量傳送機制分析15
3-1-1 直接接觸式薄膜蒸餾質傳機制之理論分析16
3-1-2 直接接觸式薄膜蒸餾熱傳機制之理論分析18
3-2 新型擾流增益因子納賽數經驗公式之建立24
3-3 多效式平板型直接接觸式薄膜蒸餾系統一維理論模型之建立28
3-3-1 多效式平板型薄膜蒸餾系統一維理論模型29
3-3-2 理論數據取得與計算分析流程-朗吉庫塔數值解析方法33
3-3-3 實驗數據之取得與分析計算流程37
3-4 系統水力損耗43
3-5 數學模擬參數之設定45
第四章 實驗分析48
4-1 多效式平板型直接接觸式薄膜蒸餾系統 48
4-2 實驗步驟57
第五章 結果與討論58
5-1 新型擾流增益因子之納賽數經驗公式迴歸分析58
5-2多效式平板型直接接觸式薄膜蒸餾系統63
5-2-1 系統操作變因對於透膜通量之影響63
5-2-2 溫度分佈與溫度極化現象63
5-3添加擾流增益因子之多效式平板型直接接觸式薄膜蒸餾系統77
5-3-1 擾流增益因子對於透膜通量之影響77
5-3-2 溫度分佈與溫度極化現象78
5-4 模組設計參數於透膜通量與水力損耗之影響98
5-4-1 透膜通量增益程度與水力損耗提升程度98
5-4-2 透膜通量與水力損耗提升程度之比較 100
第六章 結論105
6-1 新型擾流增益因子之納賽數經驗公式105
6-2 多效式平板型直接接觸式薄膜蒸餾系統 106
6-3 添加擾流增益因子之多效式平板型直接接觸式薄膜蒸餾系統106
6-4 模組設計參數於透膜通量與水力損耗之影響107
符號說明108
參考文獻113
附錄 經驗公式迴歸數據119
圖1-1-1 海水淡化成本3
圖1-2-1 薄膜蒸餾之操作型態5
圖1-2-2 薄膜蒸餾之模組型式6
圖1-3-1 研究架構圖8
圖3-1-1 薄膜蒸餾系統熱量及質量傳送機制示意圖16
圖3-1-2 熱量傳送之阻力串聯模式18
圖3-1-3 質量傳送之阻力串聯模式21
圖3-1-4 溫度極化示意圖23
圖3-2-1 溫度極化現象改善示意圖25
圖3-3-1 順流操作之多效式平板型直接接觸式薄膜蒸餾系統示意圖30
圖3-3-2 逆流操作之多效式平板型直接接觸式薄膜蒸餾系統示意圖32
圖3-3-3朗吉庫塔法求解順流型式聯立方程組之計算示意圖36
圖3-3-4朗吉庫塔法求解逆流型式聯立方程組之計算示意圖36
圖3-3-5不同操作流態之溫度分佈示意圖37
圖3-3-6熱對流係數運算流程圖40
圖3-3-7順流多效式平板型薄膜蒸餾系統運算流程圖41
圖3-3-8逆流多效式平板型薄膜蒸餾系統運算流程圖42
圖4-1-1順流多效式平板型直接接觸式薄膜蒸餾系統簡圖49
圖4-1-2逆流多效式平板型直接接觸式薄膜蒸餾系統簡圖50
圖4-1-3 多效式平板型直接接觸式薄膜蒸餾系統實驗設備圖50
圖4-1-4溢流桶實際圖51
圖4-1-5尼龍纖維支撐層示意圖54
圖4-1-6碳纖維板規格圖54
圖4-1-7 多效式平板型直接接觸式薄膜蒸餾模組分解圖56
圖5-1-1 通道流體速度與通道截面積關係圖61
圖5-1-2 納賽數理論值與實驗值比較圖62
圖5-2-1 順流操作下且熱側流體為純水時,不同操作參數對於透膜通量之影響66
圖5-2-2 順流操作下且熱側流體為鹽水時,不同操作參數對於透膜通量之影響67
圖5-2-3 逆流操作下且熱側流體為純水時,不同操作參數對於透膜通量之影響68
圖5-2-4 逆流操作下且熱側流體為鹽水時,不同操作參數對於透膜通量之影響69
圖5-2-5 順流狀態下且熱側流體為鹽水時,不同體積流率於主流區域與薄膜表面溫度分佈之影響72
圖5-2-6 逆流狀態下且熱側流體為鹽水時,不同體積流率於主流區域與薄膜表面溫度分佈之影響73
圖5-2-7 順流狀態下且熱側流體為鹽水時,不同操作參數於溫度極化係數之影響74
圖5-2-8 逆流狀態下且熱側流體為鹽水時,不同操作參數於溫度極化係數之影響75
圖5-3-1 順流操作下且熱側流體為純水時,裝載寬度2mm碳纖維板支撐條,不同操作參數對於透膜通量之關係圖80
圖5-3-2 順流操作下且熱側流體為鹽水時,裝載寬度2mm碳纖維板支撐條,不同操作參數對於透膜通量之關係圖81
圖5-3-3 逆流操作下且熱側流體為純水時,裝載寬度2mm碳纖維板支撐條,不同操作參數對於透膜通量之關係圖82
圖5-3-4 逆流操作下且熱側流體為鹽水時,裝載寬度2mm碳纖維板支撐條,不同操作參數對於透膜通量之關係圖83
圖5-3-5 順流操作下且熱側流體為純水時,裝載寬度3mm碳纖維板支撐條,不同操作參數對於透膜通量之關係圖84
圖5-3-6 順流操作下且熱側流體為鹽水時,裝載寬度3mm碳纖維板支撐條,不同操作參數對於透膜通量之關係圖85
圖5-3-7 逆流操作下且熱側流體為純水時,裝載寬度3mm碳纖維板支撐條,不同操作參數對於透膜通量之關係圖86
圖5-3-8 逆流操作下且熱側流體為鹽水時,裝載寬度3mm碳纖維板支撐條,不同操作參數對於透膜通量之關係圖87
圖5-3-9 順流操作下且熱側流體為鹽水時,不同碳纖維板支撐條寬度與操作參數對於透膜通量之關係圖88
圖5-3-10 逆流操作下且熱側流體為鹽水時,不同碳纖維板支撐條寬度與操作參數對於透膜通量之關係圖89
圖5-3-11 順流狀態下且熱側流體為鹽水時,不同碳纖維板支撐條寬度於主流區域與薄膜表面溫度分佈之影響94
圖5-3-12 逆流狀態下且熱側流體為鹽水時,不同碳纖維板支撐條寬度於主流區域與薄膜表面溫度分佈之影響95
圖5-3-13 順流狀態下且熱側流體為鹽水時,不同碳纖維板支撐條寬度與操作參數於溫度極化係數之影響96
圖5-3-14 逆流狀態下且熱側流體為鹽水時,不同碳纖維板支撐條寬度與操作參數於溫度極化係數之影響97
表1-2-1 不同操作型態之薄膜蒸餾應用領域6
表3-2-1經驗式參數表 26
表3-5-1 模組相關參數45
表3-5-2 疏水性薄膜(聚四氟乙烯+聚丙烯複合膜)相關參數45
表3-5-3 流體相關參數46
表3-5-4 流體相關參數式47
表4-1-1 PTFE/PP複合膜之薄膜性質55
表5-1-1 納賽數經驗公式所需實驗數據之操作變因表58
表5-2-1 順流操作下多效式平板型直接接觸式薄膜蒸餾系統70
表5-2-2 逆流操作下多效式平板型直接接觸式薄膜蒸餾系統71
表5-2-3不同操作流向於平均溫度極化係數之影響比較表76
表5-3-1 順流純水操作下多效式平板型直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表90
表5-3-2 順流鹽水操作下多效式平板型直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表91
表5-3-3 逆流純水操作下多效式平板型直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表92
表5-3-4 逆流鹽水操作下多效式平板型直接接觸式薄膜蒸餾系統,實驗值與理論值之相對誤差比較表93
表5-4-1 順流純水操作下多效式平板型直接接觸式薄膜蒸餾系統,不同碳纖維板支撐條寬度之理論透膜通量增益比例表101
表5-4-2 逆流純水操作下多效式平板型直接接觸式薄膜蒸餾系統,不同碳纖維板支撐條寬度之理論透膜通量增益比例表101
表5-4-3 順流鹽水操作下多效式平板型直接接觸式薄膜蒸餾系統,不同碳纖維板支撐條寬度之理論透膜通量增益比例表102
表5-4-4 逆流鹽水操作下多效式平板型直接接觸式薄膜蒸餾系統,不同碳纖維板支撐條寬度之理論透膜通量增益比例表102
表5-4-5 不同碳纖維板支撐條寬度之水力損耗提升程度比較表103
表5-4-6 順流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力損耗提升程度比值表104
表5-4-7 逆流鹽水操作下,不同模組設計參數之理論透膜通量增益程度與水力損耗提升程度比值表104
表A-1 經驗公式迴歸分析所需數據表(系統於逆流純水操作使用尼龍線當支撐層下之實驗數據)119
表A-2 經驗公式迴歸分析所需數據表(系統於逆流鹽水操作使用尼龍線當支撐層下之實驗數據)120
表A-3 經驗公式迴歸分析所需數據表(系統於逆流純水操作使用碳纖維板支撐條寬度2mm下之實驗數據)121
表A-4 經驗公式迴歸分析所需數據表(系統於逆流純鹽水操作使用碳纖維板支撐條寬度2mm下之實驗數據)122
表A-5 經驗公式迴歸分析所需數據表(系統於逆流純水操作使用碳纖維板支撐條寬度3mm下之實驗數據)123
表A-6 經驗公式迴歸分析所需數據表(系統於逆流純鹽水操作使用碳纖維板支撐條寬度3mm下之實驗數據)124
參考文獻 1. 樓基中編著,水資源與環境保育SOS環保救地球,台北市,五南圖書出版股份有限公司,初版,2010。
2. Kalogirou SA. “Seawater desalination using renewable energy sources,” Prog. Energy Combust. Sci., 31, 242-281 (2005).
3. Meindersma GW, Guijt CM, de Haan AB. “Desalination and water recycling by air gap membrane distillation,” Desalination, 187, 291–301 (2006).
4. El-Bourawi MS, Ding Z, Ma R, Khayet MA. “A framework for better understanding membrane distillation separation process,” J. Membr. Sci., 285, 4–29 (2006).
5. Phattaranawik J., Jiraratananon R., Fane A.G. “Effect of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies,” J. Membr. Sci., 217, 193-206 (2003).
6. F. Banat, N. Jwaied, M. Rommel, J. Koschikowski, M. Wieghaus. Desalination by a "compact SMADES" autonomous solarpowered membrane distillation unit, Desalination, 217, 29–37 (2007).
7. M, Rommel, J. Koschikowski, M. Wieghaus., Solar driven desalination systems based on membrane distillation, NATO Security through Science Series C: Environmental Security, 247–257 (2007).
8. V. Calabro, E. Drioli, F. Matera, Membrane distillation in the textile wastewater treatment, Desalination, 83, 209–224 (1991).
9. J. L. Cartinella, T. Y. Cath, M. T. Flynn, G. C. Miller, K. W. Hunter, A. E. Childress, Removal of natural steroid hormones from wastewater using membrane contactor processes, Environ. Sci. Technol., 40, 7381–7386 (2006).
10. V. Calabro, B. L. Jiao, E. Drioli, Theoretical and experimental study on membrane distillation in the concentration of orange juice, Ind. Eng. Chem. Res., 33, 1803–1808 (1994).
11. P. Onsekizoglu, K. S. Bahceci, J. Acar, The use of factorial design for modeling membrane distillation, J. Membr. Sci., 349, 225–230 (2010).
12. M. Tomaszewska, M. Gryta, A. W. Morawski, Study on the concentration of acids by membrane distillation, J. Membr. Sci., 102, 113–122 (1995).
13. M. Tomaszewska, M. Gryta, A. W. Morawski. Mass transfer of HCl and H2O across the hydrophobic membrane during membrane distillation, J. Membr. Sci., 166, 149–157 (2000).
14. K. Sakai, T. Muroi, K. Ozawa, S. Takesawa, M. Tamura, T. Nakane, Extraction of solute-free water from blood by membrane distillation, Trans. Am. Soc. Artif. Intern. Organs , 32, 397-400 (1986).
15. K. W. Lawson, D. R. Lloyd, Membrane distillation. J. Membr. Sci., 124, 1-25 (1997).
16. 17. M. Gryta, M. Tomaszewska, J. Grzechulska, A. W. Morawski, Membrane distillation of NaCl solution containing natural organic matter, J. Membr. Sci., 181, 279–287 (2001)
17. M. Khayet, J. I. Mengual, T. Matsuura, Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation, J. Membr. Sci., 252, 101–113 (2005).
18. F. A. Banat, F. A. Abu Al-Rub, R. Jumah, M. Al-Shannag, Modeling of desalination using tubular direct contact membrane distillation modules, Sep. sci. technol., 34, 2191-2206 (1999).
19. Bodell B.R. Silicone rubber vapor diffusion in saline water distillation, United States Patent Application Serial No. 285,32 (1963).
20. Weyl P.K. Recovery of demineralized water form saline waters, United States Patent 3,340,186 (1967).
21. Findley M.E. “Vaporization through porous membranes,” Ind. Eng. Chem. Process Des. Dev., 6, 226-230 (1967).
22. Drioli E., Wu Y. “Membrane distillation : An experimental study,” Desalination, 53, 339-346 (1985).
23. Schofield RW, Fane AG, Fell CJD. “Heat and mass transfer in membrane distillation,” J. Membr. Sci., 33, 299–313 (1987).
24. R. W. Schofield, A. G. Fane, C. J. D Fell, R. Macoun, “Factors affecting flux in membrane distillation,” Desalination, 77, 279–294 (1990).
25. Phattaranawik J, Jiraratananon R. “Direct contact membrane distillation:effect of mass transfer on heat transfer,” J. Membr. Sci., 188, 137-143 (2001).
26. Gryta M, Tomaszewska M, Morawski AW. “Membrane distillation with laminar flow,” Sep. Purif. Technol., 11, 93–101 (1997).
27. Martínez-Díez L, Vázquez-González MI. “Effects of polarization on mass transport through hydrophobic porous membranes,” Ind. Eng. Chem. Res., 37, 4128-4135 (1998).
28. Phattaranawik J, Jiraratananon R, Fane AG. “Heat transport and membrane distillation coefficients in direct contact membrane distillation,” J. Membr. Sci., 212, 177-193 (2003).
29. Khayet M, Godino MP, Mengual JI. “Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method,” Desalination, 157, 297-305 (2003).
30. Bui VA, Vu LTT, Nguyen MH. “Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules,” J. Membr. Sci., 353, 85-93 (2010).
31. Lawson KW, Lloyd DR. “Membrane distillation. II. Direct contact MD,” J. Membr. Sci., 120, 123-133 (1996).
32. Srisurichan S, Jiraratananon R, Fane AG. “Mass transfer mechanisms and transport resistances in direct contact membrane distillation process,” J. Membr. Sci., 277, 186-194 (2006).
33. Gryta M, Tomaszewska M. “Heat transport in the membrane distillation process.,” J. Membr. Sci., 144, 211-222 (1998).
34. Fernández-Pineda C, Izquierdo-Gil MA, García-Payo MC. “Gas permeation and direct contact membrane distillation experiments and their analysis using different models,” J. Membr. Sci., 198, 33-49 (2002).
35. Zhongwei D, Liying L, Runyu M. “Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation,” J. Membr. Sci., 215, 11-23 (2003).
36. Chen T.C., Ho C.D., Yeh H.M. “Theoretical modeling and experimental analysis of direct contact membrane distillation,” J. Mem. Sci., 330, 279-287 (2009).
37. Schofield R.W., Fane A.G., Fell C.J.D. “Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition,” J. Membr. Sci., 53, 159-171 (1990).
38. Schofield R.W., Fane A.G., Fell C.J.D. “Gas and vapour transport through microporous membranes. II. Membrane distillation,” J. Membr. Sci., 53, 173-185 (1990).
39. Da Costa A.R., Fane A.G., Fell C.J.D, Franken A.C.M. “Optimal channel spacer design for ultrafiltration,” J. Membr. Sci., 62, 275-291 (1991).
40. Da Costa A.R., Fane A.G., Wiley D.E. “Spacer characterization and pressure drop modeling in spacer-filled channels for ultrafiltration,” J. Membr. Sci., 87, 79-98 (1994).
41. Schwinge J., Wiley D.E., Fane A.G., Guenther R. “Characterization of a zigzag spacer for ultrafiltration,” J. Membr. Sci., 172, 19-31 (2000).
42. Martínez-Díez L, Vázquez-González MI, Florido-DõÂaz F.J. “Study of membrane distillation using channel spacers,” J. Membr. Sci., 144, 45-56 (1998).
43. Phattaranawik J, Jiraratananon R, Fane A.G., Halim C. “Mass flux enhancement using spacer filled channels in direct contact membrane distillation,” J. Membr. Sci., 187, 193-201 (2001).
44. Phattaranawik J, Jiraratananon R, Fane A.G. “Effects of net-type spacers on heat and mass transfer in direct contact membrane distillation and comparison with ultrafiltration studies,” J. Membr. Sci., 217, 193-206 (2003).
45. Kakac S., Shah R.K., Bergles A.E., Low Reynolds Number Flow Heat Exchangers, Hemisphere, Washington, DC, 1983.
46. Lawson K.W., Lloyd D.R. “Membrane distillation,” J. Membr. Sci., 124, 1-25 (1997).
47. Datta R., Dechapanichkul S, Kim J.S., Fang L.Y., Uehara H. “A generalized model for transport of gases in porous, non-porous, and leaky membranes. I. Application to single gases,” J. Membr. Sci., 75, 245-263 (1992).
48. Chen T.C., Ho C.D. “Immediate assisted solar direct contact membrane distillation in saline water desalination,” J. Membrane Sci., 358, 122-130 (2010).
49. Iversen S.B., Bhatia V.K., Dam-Jphasen K., Jonsson G. “Characterization of microporous membranes for use in membrane contactors,” J. Membr. Sci., 130, 205-217 (1997).
50. Sarti G.C., Gostoli C., Matulli S. “Low energy desalination processes using hydrophobic membranes,” Desalmation, 56, 277-286 (1985).
51. Saini R.P., Saini J.S. “Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element,” Int. J. Heat Mass Transf., 40, 973-986 (1997).
52. Welty JR, Wick CE, Wilson RE. Fundamentals of Momentum, Heat, and Mass Transfer, third ed. John Wiley & Sons, New York, 1984.
53. Satish G. Kandlikar, Derek Schmitt. “Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels,” PHYSICS OF FLUIDS, 17, 100606 (2005).
54. Bird R.B., Stewart W.E., Lightfoot E.N. Transport Phenomena, second ed., John Wiley & Sons, New York, 2007.
55. Ozbek H., Phillips S.L. “Thermal conductivity of aqueous sodium chloride solutions from 20 to 330°C,” J. Chem. Eng. Data, 25, 263-267 (1980).
56. Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer. fourth ed., New York: John Wiley & Sons Inc., 1996.
57. Chenlo F., Moreira R., Pereira G., Ampudia A. “Viscosities of aqueous solutions of sucrose and sodium chloride of interest in osmotic dehydration processes,” J. Food Eng., 54, 347-352 (2002).
58. Magalhães M.C.F., Königsberger E., May P.M., Hefter G. “Heat capacities of concentrated aqueous solutions of sodium sulfate, sodium carbonate, and sodium hydroxide at 25 °C,” J. Chem. Eng. Data, 47, 590-598 (2002).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-22公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-22起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信