§ 瀏覽學位論文書目資料
系統識別號 U0002-1908201010473800
DOI 10.6846/TKU.2010.01293
論文名稱(中文) 第一部分:斑馬魚VHL基因在腎臟發育時的生物活性;第二部分:斑馬魚ATP2A家族在發育時的基因表現
論文名稱(英文) PART i :The biological fuction of zebrafish VHL during kidney development;PART ii : Development expression of zebrafish ATP2A family
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 生命科學研究所碩士班
系所名稱(英文) Graduate Institute of Life Sciences
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 賴彥佑
研究生(英文) Yen-Yu Lai
學號 697180296
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-19
論文頁數 97頁
口試委員 指導教授 - 陳曜鴻
委員 - 蔡振寧
委員 - 陳盛良
委員 - 周記源
委員 - 陳曜鴻
關鍵字(中) 斑馬魚
VHL
morpholino
腎臟發育
血管
關鍵字(英) Zebrafish
VHL
morpjolino
kidney development
vascular
第三語言關鍵字
學科別分類
中文摘要
論文提要內容:
第一部分:  
    VHL基因為罕見遺傳疾病馮希爾.林島氏症候群(von Hippel-Lindau syndrome)之致病基因,當其發生基因突變或缺失時將導致VHL disease的發生。VHL蛋白主要作用為藉由氧氣調控,降解已和氧氣結合之缺氧誘導因子(Hypoxia-Inducible Factor)1α、2α,故可因此調節缺氧誘導相關的種種作用機制。VHL蛋白又可與轉錄延伸因子 (Elongin)B-C、CUL2 蛋白組成VBC複合物,通過抑制RNA聚合酶II的活性直接抑制基因轉錄。VHL蛋白具有175個胺基酸,其第10至第164的胺基酸為具tumor suppress功能的domain。為瞭解斑馬魚VHL與其他脊椎動物之親緣關係,於是利用BlastN、Clustal W演算法與其他物種進行蛋白質序列比對,結果得到斑馬魚與熱帶爪蟾、雞、人類、狗、大鼠與小鼠等各物種的相似程度分別為 43%、40%、45%、45%、43%與45%。親緣關係上人類、犬科與小鼠的關係較為接近;而斑馬魚和雞、熱帶爪蟾較為接近。
  VHL disease的患者約76%會有腎臟損傷、囊腫的發生,而主要的機制尚未明朗,為了深入研究VHL如何對腎臟發育造成影響,我們選用斑馬魚作為材料,首先,我們利用野生種(wild type)、Tg(WTIb:EGFP)及Tg(gata-1:RFP)的斑馬魚以進行顯微注射VHL morpholino antisense oligonucleotide(VHL_MO)的方式阻斷VHL的轉譯,進而使內生性VHL蛋白的量下降,配合α6F抗體染色與螢光顯微鏡進行觀察,可觀察得到腎絲球有變形、囊腫等情形發生,腎小管角度發生異常且顯得較鬆散,也常有腎臟發育延遲之情形發生。故可證實當VHL蛋白的量下降時,會對於腎臟造成傷害甚至囊腫。接著,蒐集未接受及已接受VHL-MO注射之各時期的斑馬魚胚胎,進行Fli-1的原位雜交實驗。Fli-1主要表現於血管內皮細胞,可用於觀察血管新生的情形。實驗結果發現,當胚胎接受VHL-MO注射後,不論各個時期其Fli-1的表現均明顯高於未注射VHL-MO之胚胎(WT)。爲更加明確了解訊號表現的差異程度與內部情形,接著將搭配ZO-1、DAPI染色法、鹼性磷酸酶染色法(alkaline phosphatase stain)以及冷凍組織切片處理技術。觀察結果發現,接受VHL_MO注射後之胚胎內部血管新生確實更強烈,且有血管過度生長亂長的情形,腎贓細胞也很完整而無破裂等情形發生。這些實驗結果顯示接受VHL_MO注射後的胚胎,其血管新生更旺盛,發生血管新生的區域也更多,可能因此促使腎臟不正常發育而造成囊腫或變形。
第二部分:
  ATP2A family在生物體內的主要功能為產生各種SERCA Ca2+-ATPases用以水解ATP並調控Ca2+的流動。ATP2A1會產生一種SERCA Ca2+-ATPases,可水解ATP並調控Ca2+由胞質流向肌肉漿質網內並刺激肌肉的收縮。ATP2A2a會產生另一種SERCA Ca Ca2+-ATPases,主要可刺激心肌收縮並調節心肌將Ca2+的泵出泵入。
  為瞭解斑馬魚ATP2A family與其他脊椎動物之親緣關係,於是利用BlastN、Clustal W演算法與其他物種進行蛋白質序列比對。.在ATP2A1的方面,斑馬魚之ATP2A1胺基酸序列與非洲爪蟾、雞、人類、狗、大鼠與小鼠等各物種的相似程度分別為87%、88%、87%、87%、87%與87%。親緣關係上人類、犬科與小鼠的關係較為接近;而斑馬魚和雞、非洲爪蟾較為接近。在ATP2A2a的方面,斑馬魚ATP2A2a之胺基酸序列與非洲爪蟾、雞、人類、狗、大鼠與小鼠等各物種的相似程度同樣分別為87%、88%、87%、87%、87%與87%。親緣關係上人類、犬科與小鼠的關係較為接近;而斑馬魚和雞、非洲爪蟾較為接近。由於兩者在各物種間皆有高達87%以上的序列相似性,顯示出ATP2A family在各個物種間具有相當高度的重要性與保守性。
  接著,為了瞭解ATP2A family在斑馬魚mRNA層次上的表現,於是利用斑馬魚的ATP2A1、ATP2A2a mRNA探針進行胚胎原位雜交實驗(whole-mount in situ hybridyzation)實驗,藉此以觀察ATP2A family之時空分佈,並偵測各時期斑馬魚胚胎中ATP2A family mRNA的表現。在ATP2A1方面,於1cell就有看到訊號出現,6小時時期形成胚盾(shield)時訊號充滿胚盾,12小時時期訊號充滿魚體全身,18小時時期訊號表現在18-somite上;於受精後24小時時期及31小時時期訊號表現在身體肌肉細胞上;48小時時期以後訊號表現在眼睛附近部分肌肉、下顎肌肉與身體軀幹肌肉細胞上;經由冷凍切片觀察,第3、4天可明顯看到除臉部、下顎與軀幹肌肉細胞外,在腸道內也有訊號的表現;受精5天至7天訊號表現則開始逐漸下降。
  在ATP2A2a方面,一樣於1cell就有看到訊號出現;受精後6小時、12小時與18小時時期魚體兩側接近卵黃的中胚層區域有訊號產生,且18小時時期在心臟前趨細胞(cardiac precursors )有明顯之訊號;在受精後24、31及48小時時期訊號表現在心臟與身體軀幹的肌肉細胞上,48小時時期下顎肌肉亦有訊號表現;在受精後3天至6天時期訊號表現在眼睛周圍、心臟和下顎部分肌肉上,身體肌肉上的訊號開始少了很多,只剩靠近頭部的部分訊號比較強烈。
英文摘要
Abstract:
PART i :
von Hippel-Lindau Disease is a rare condition associated with familial cancers. It is due to a mutation of the VHL tumour suppressor gene at chromosome site 11q13, 3p26-p25. VHL can degrade hypoxia-inducible factors (HIF1a, HIF2a) in the presence of oxygen, thus regulating a lot of hypoxia responsive genes indirectly. pVHL forms a complex with elongins B and C, Cullin2, Rbx1, thus regulating RNA polymerase II and inactivating transcription. After sequence comparison, we found that the zebrafish VHL polypeptide shares sequence identities of 43%, 40%, 45%, 45%, 43% and 45% with the reported VHL of Xenopus, chicken, human, dog, , mouse and mice, respectively. Renal cell carcinoma is the leading cause of death in patients with von Hippel-Lindau disease, with a prevalence as high as 76% reported in one autopsy series. Here, we used zebrafish as an animal model to study it's roles during early kideny developmental stage. Using morpholino knockdown approach, Our data showed that knock VHL down led to defect of pronephric duct, pronephric tubule and glomerulus. We also find that angiogenesis becoming more strongly after morpholino knockdown. Taken together, we concluded that VHL is required for zebrafish kidney and vascular development.
    

PART ii:
ATP2A family genes encode all kinds of the SERCA Ca2+-ATPases, which are intracellular pumps located in the sarcoplasmic or endoplasmic reticula of muscle cells. Those enzymes catalyze the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen, and is involved in muscular excitation and contraction. We used zebrafish as an animal model to study their roles during early developmental stage. After sequence comparison, we found that the zebrafish ATP2A1(ATP2A2a) polypeptide shares sequence identities of 87%(87%), 88%(88%), 87%(87%), 87%(87%), 87%(87%) and 87%(87%) with the reported ATP2A1 (ATP2A2a) of Xenopus, chicken, human, dog, , mouse and mice, respectively. Whole mount in situ hybridization experiments showed that ATP2A1 was first detected at 1cell embryos, and was expressed filled the entire animal pole of 6 hours post-fertilization (hpf) and 12hpf embryos. At the later stage, ATP2A1 was expressed at 18-somite of 18hpf, and was expressed at trunk muscle cells of 24hpf and 31hpf embryos. ATP2A1 was expressed at eye muscle cells, jaw muscle cells, and trunk muscle cells after 48hpf embryos. We also found that ATP2A1 was expressed at Intestinal after 72hpf embryos. Whole mount in situ hybridization experiments also showed that ATP2A2a was first detected at 1cell embryos, and was expressed at  mesoderm on both sides of the embryo of 6hpf, 12hpf and 18hpf embryos and was expressed at cardiac precursors of 18hpf embryos. At the later stage, ATP2A2a was expressed at cardiac muscle cells and trunk muscle cells of 24hpf, 31hpf and 48hpf. ATP2A1 was expressed at eye muscle cells, jaw muscle cells, cardiac muscle cells and trunk muscle cells after 72hpf, but the Signal in the trunk muscle cells becomed more weak.
第三語言摘要
論文目次
目錄
中文摘要-----------------------------------------I
英文摘要-----------------------------------------Ⅲ
目錄---------------------------------------------Ⅴ
圖表目錄-----------------------------------------Ⅹ

第一部分:第一章 前言------------------------------1
1-1. 馮希伯-林島氏症(von Hippel-Lindau disease, VHL)的發現與命名
----------------------------------------------------------1
1-2. 馮希伯-林島氏症臨床病徵-------------------------------2
1-3. VHL在脊椎動物上的所表現的位置------------------------3
1-4. VHL在脊椎動物上的所扮演的角色與功能------------------4
1-5. 研究目的----------------------------------------------7
第二章. 材料與方法--------------------------------9
2-1. 野生種斑馬魚(AB strain)及基因轉殖斑馬魚Tg(WT1b:GFP)、Tg(GATA-1:RFP)的飼養及胚胎收集----------------------------9
2-2. 所使用之引子(Primer)-----------------------------------9
2-3. RNA的萃取-------------------------------------------10
2-4. 反轉錄酶,聚合酶鏈反應(Reverse transcriptase, polymerase chain reaction;RT-PCR)進行Zebrafish VHL之基因選殖----------------11
2-5. 大腸桿菌轉型法---------------------------------------12
2-6. 小量質體DNA的萃取-----------------------------12
2-7. 探針(Riboprobe)的合成---------------------------------14
2-8. 原位雜交法(whole,mount in situ hybridyzation)-------------15
2-9. 免疫抗體螢光染色法(whole,mount immunostaining)---------17
2-10. 顯微注射實驗----------------------------------------18
2-11. 鹼性磷酸酶染色法-----------------------------------22
2-12. PI/YO-PRO-1聯合染色-------------------------------23
2-13. 紅血球染色法(red blood cells stain, RBC stain) ----------23
2-14. 冷凍切片及樣品製備----------------------------------23
2-15. 各物種序列比對--------------------------------------24

第三章. 結果--------------------------------------------25
3-1. 斑馬魚與其他脊椎動物VHL之胺基酸序列比較與演化關係
---------------------------------------------------------25
3-2. 藉由胚胎原位雜交法(whole-mount in situ hybridization)來瞭解斑馬魚VHL在時間與空間上的分佈-----------------------------26
3-3. 以注射VHL的morpholino antisense oligonucleotide(VHL_MO)來knock down 後所產生之VHL表現形態-----------------------26
3-4. 注射不同濃度之VHL morpholino的存活率及腎臟變異的比例---------------------------------------------------------27
3-5. 以VHL mRNA進行補救實驗----------------------------28
3-6. 以Fli-1的RNA探針(riboprobe)對注射過VHL_MO 6.0ng的斑馬魚胚胎進行原位雜交實驗(whole-mount in situ hybridization)------29
3-7. 觀察VHL_MO morphant之胚胎其腎臟細胞的情形與其周遭血管的狀況---------------------------------------------------30
3-8. 觀察VHL_MO morphant之胚胎其腎臟細胞是否有細胞壞死(necrosis)或細胞凋亡(apoptosis)之情形------------------------31
3-9. 以紅血球染色法(red blood cells stain, RBC stain )觀察注射VHL_MO之胚胎是否有紅血球堆積之情形發生-----------------32
3-10. 觀察注射VHL_MO之胚胎其血液流動與腎臟過濾之情形---32
第四章. 討論------------------------------------------33
4-1.脊椎動物VHL之表現時期與表現位置具有高度保守性----33
4-2. 抑制脊椎動物VHL對於胚胎腎臟發育所造成的缺失與影響---------------------------------------------------------334-3. 抑制脊椎動物VHL對於腎臟周圍血管增生的影響----------36
4-4. 抑制脊椎動物VHL對於血液黏稠度的影響----------------37
第五章. 前言-----------------------------------------39
5-1. 鈣離子對於生物體的生理功能---------------------------39
5-2. 人類中肌漿膜鈣離子三磷酸腺苷酶的種類與表現位置-------39
5-3. 肌漿膜鈣離子三磷酸腺苷酶所引發的相關病變-------------40
5-4. 斑馬魚作為模式物種的優勢-------------------------41
5-5.研究目的----------------------------------------------41
第六章. 材料與方法------------------------------------43
6-1. 野生種斑馬魚wild type的飼養及胚胎收集-----------------43
6-2. 所使用之引子(Primer)----------------------------------43
6-3. 小量質體DNA的萃取----------------------------------43
6-4. 大腸桿菌轉型法---------------------------------------46
6-5. 探針(Riboprobe)的合成---------------------------------46
6-6. 原位雜交法(whole,mount in situ hybridyzation)-------------47
6-7. 冷凍切片及樣品製備----------------------------------49
6-8. 各物種序列比對----------------------------------50
第七章. 結果--------------------------------------------51
7-1. 斑馬魚與其他脊椎動物ATP2A family其胺基酸序列比較與演化關係-----------------------------------------------------51
7-2. 藉由胚胎原位雜交法(whole-mount in situ hybridization)來瞭解斑馬魚ATP2A family在時間與空間上的分佈---------------------52
第八章. 討論--------------------------------------------55
8-1. 脊椎動物ATP2A family之胺基酸序列與分子結構具有高度保守性-------------------------------------------------------55
8-2. 脊椎動物ATP2A family的表現位置的差異-----------------55
參考文獻-------------------------------------------------57
圖表-----------------------------------------------------63
附錄-----------------------------------------------------93












圖表目錄
Fig.1 斑馬魚與其他脊椎動物的VHL胺基酸序列比對與演化樹分析圖---------------------------------------------------------64
Fig.2 藉由胚胎原位雜交實驗觀察VHL之mRNA在斑馬魚胚胎的時空分佈---------------------------------------------------66
Fig. 3 VHL_MO之序列與作用位置示意圖---------------------67
Fig. 4注射不同濃度之VHL morpholino的腎臟變異情形----------68
Fig. 5以30pg及50pg之VHL mRNA與VHL_MO一同注射以進行補救實驗---------------------------------------------------69
Fig.6 Fli-1在野生種(WT)與注射過VHL_MO 6.0ng的斑馬魚胚胎之訊號表現情形-----------------------------------------------70
Fig.7 利用內生性Tg (wt1b:GFP)螢光與α-6F抗體染色搭配DAPI細胞核染色法與鹼性磷酸酶染色法(alkaline phosphatase stain, AP stain)來觀察VHL_MOmorphant之胚胎其腎臟細胞的情形與其周遭血管的狀況-----------------------------------------------------71
Fig. 8利用內生性Tg (wt1b:GFP)螢光搭配DAPI細胞核染色法與Zonula occludens-1(ZO1)抗體染色來觀察VHL_MOmorphant之受精後72小時胚胎其腎臟細胞的情形-------------------------------73
FIig. 9 利用PI/YO-PRO-1染色法觀察注射VHL_MO 6.0ng之斑馬魚胚胎是否會引發細胞壞死(necrosis)或細胞凋亡(apoptosis)之情形--75
Fig. 10 利用紅血球染色法(red blood cells stain, RBC stain )觀察注射VHL_MO之胚胎是否有紅血球堆積之情形發生-----------------77
Fig. 11 利用TG(WT1b:EGFP)與TG(GATA-1:RFP)雜交之胚胎注射VHL_MO後,觀察其72hpf時期血液循環與腎臟過濾之情形-----78
Fig. 12 斑馬魚與其他脊椎動物的ATP2a1胺基酸序列比對與演化樹分析圖---------------------------------------------------79
Fig. 13 斑馬魚與其他脊椎動物的ATP2a2a胺基酸序列比對與演化樹分析圖---------------------------------------------------82
Fig. 14 ATP2A1 mRNA在各個時期的表現情形-----------------85
Fig.15 ATP2A2a mRNA在各個時期的表現情形-----------------87
Table.1 斑馬魚與其他脊椎動物VHL胺基酸序列的相似---------89
Table.2 注射不同濃度VHL_MO與VHL mRNA的存活率與表現率
---------------------------------------------------------90
Table.3 斑馬魚與其他脊椎動物ATP2a1胺基酸序列的相似性-----91
Table.4 斑馬魚與其他脊椎動物ATP2a2a胺基酸序列的相似性----92
參考文獻
參考文獻

[1]OMIM, "Von Hippel-Lindau Syndrome". Online Mendelian Inheritance in Man.
[2]F. Panas and A. Remy, "Anatomie pathologique de l'oeil.". Delahaye, Paris (1879):88-98.
[3]E. Collins, "Intra-ocular growths (two cases, brother and sister, with peculiar vascular new growth, probably retinal, affecting both eyes).". Trans Ophthalmol Soc U K 14 (1894):141-149.
[4]E. Von Hippel, "Uber eine sehr seltene Erkrankung der Netzhaut". Graefe's Arch. Ophthalmol 59 (1904):83-106.
[5]A. Lindau, "Cysts in cerebellum: structure, pathogenesis, and relations to angiomatosis of retina". Pathol Microbiol Scand Suppl 1 (1926):1-128.
[6]C. Davison, S. Brock and C.G. Cyke, "Retinal and central nervous hemangioblastomatosis with visceral changes (von Hippel-Lindau's disease)". Bull Neurol Inst New York 5 (1936):72-93.
[7]B.R. Seizinger, et al., "Von Hippel–Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma". Nature 336 (1988):268-269.
[8]F. Latif, et al., "Identification of the von Hippel-Lindau disease tumor suppressor gene ". Science 260 (1993):1317-1320.
[9]T. Shuin, I. Yamasaki and k. Tamura, "Von Hippel-Lindau disease: molecular pathological basis, clinical criteria, genetic testing, clinical features of tumors and treatment.". Jpn J Clin Oncol 36 (2006):337-343.
[10]L. Lianjie, et al., "Hypoxia-Inducible Factor Linked to Differential Kidney Cancer Risk Seen with Type 2A and Type 2B VHL Mutations". Molecular and Cellular Biology 27 (2007):5387-5392.
[11]I. Maddock, A. Moran and E. Maher, "A genetic register for von Hippel-Lindau disease". J Med Genet 33 (1996):120-127.
[12]A. Gulani and M. Bartiss, "von Hippel-Lindau Disease". eMedicine (Ophthalmology) (2006).
[13]M.B. Frederieke, et al., "Proteomic profiling of von Hippel–Lindau syndrome and multiple endocrine neoplasia type 2 pheochromocytomas reveals different expression of chromogranin B". Endocrine-Related Cancer 14 (2007):463-471.
[14]P.M. Kessler, et al., "Expression of the Von Hippel-Lindau tumor suppressor gene, VHL, in human fetal kidney and during mouse embryogenesis.". Molecular medicine 1 (1995):457-466.
[15]M. Frances, et al., "Expression of the von Hippel-Lindau disease tumour suppressor gene during human embryogenesis". Human Molecular Genetics 5 (1996):639-645.
[16]K. Foster, et al., " Molecular Genetic Analysis of the Von Hippel-Lindau Disease (VHL) Tumour Suppressor Gene in Gonadal Tumours". European Journal of Cancer 31 (1995):2393-2395.
[17]O. Iliopoulos, A. Kibel and S. Gray, "Tumour suppression by the human von Hippel-Lindau gene product". Nat Med 1 (1995):822-826.
[18]A. Schoenfeld, E. Davidowitz and R. Burk, "A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor". Proc Natl Acad Sci U S A 95 (1998):8817-8822.
[19]O. Iliopoulos, M. Ohh and W.J. Kaelin, "pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation". Proc Natl Acad Sci U S A 95 (1998):11661-11666.
[20]S. Lee, et al., "Nuclear/cytoplasmic localization of the von Hippel-Lindau tumor suppressor gene product is determined by cell density". Proc Natl Acad Sci U S A 93 (1996):1770-1775.
[21]S. Lee, et al., "Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein". Mol Cell Biol 19 (1999):1486-1497.
[22]M. Ohh, "Ubiquitin pathway in VHL cancer syndrome". Neoplasia 8 (2006):623-629.
[23]J.H. Min, "Structure of an HIF-1a -pVHL complex: Hydroxyproline recognition in signaling". Science 296 (2002):1886-1889.
[24]J. Robert, B. Rimma and R. Danny, "Elongation by RNA polymerase II: the short and long of it". Genes & Dev. 18 (2004):2437-2468.
[25]V. Haase, "The VHL/HIF oxygen-sensing pathway and its relevance to kidney cancer". Kidney Int 69 (2006):1302-1307.
[26]S. Salceda and J. Caro, "Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes.". Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. 272 (1997):22642-22647.
[27]G. Wang, et al., "Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension". Proc Natl Acad Sci USA 92 (1995).
[28]M. Ema, et al., "A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development.". Proc Natl Acad Sci USA 94 (1997):4273-4278.
[29]M.A. Maynard and M. Ohh, "The role of hypoxia-inducible factors in cancer". Cell. Mol. Life Sci. 64 (2007):2170-2180.
[30]Q. Ke and M. Costa, "Hypoxia-inducible factor-1 (HIF-1). ". Mol. Pharmacol. 70 (2006):1469-1480.
[31]K. Morii, R. Tanaka and K. Washiyama, "Expression of vascular endothelial growth factor in capillary hemangioblastoma". Biochem Biophys Res Commun 194 (1993):749-755.
[32]M. Wiesener and K. Eckardt, "Erythropoietin, tumours and the von Hippel-Lindau gene: Towards identification of mechanisms and dysfunction of oxygen sensing". Nephrol Dial Transplant 17 (2002):356-359.
[33]J. Pan, et al., "Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis ". Mol Cancer 3 (2006):56-70.
[34]P. Staller, et al., "Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL ". Nature 425 (2003):307-311.
[35]R. Bindra, et al., "VHL-mediated hypoxia regulation of cyclin D1 in renal carcinoma cells". Cancer Res 62 (2002).
[36]M. Zatyka, et al., "Identification of cyclin D1 and other novel targets for the von Hippel-Lindau tumor suppressor gene by expression array analysis and investigation of cyclin D1 genotype as a modifier in von Hippel-Lindau disease". Cancer Res 62 (2002):3803-3811.
[37]A. Hergovich, et al., "Regulation of microtubule stability by the von Hippel–Lindau tumour suppressor protein pVHL.". Nat. Cell Biol. 5 (2003):64-70.
[38]S.M. Nauli and J. Zhou, "Polycystins and mechanosensation in renal and nodal cilia.". BioEssays 26 (2004):844-856.
[39]M.S.a.B. Lutz, R.D., "Primary cilium formation requires von Hippel–Lindau gene function in renal-derived cells". Cancer Res. 66 (2006):6903-6907.
[40]M.A. Esteban, et al., "Formation of primary cilia in the renal epithelium is regulated by the von Hippel–Lindau tumor suppressor protein.". J. Am. Soc. Nephrol. 17 (2006):1801-1806.
[41]C.R. Thoma, et al., "pVHL and GSK3β are components of a primary cilium-maintenance signalling network". Nat. Cell Biol. 9 (2007):588-595.
[42]A. Hergovich, et al., "Priming-dependent phosphorylation and regulation of the tumor suppressor pVHL by glycogen synthase kinase 3". Mol. Cell. Biol. 26 (2006):5784-5796.
[43]E. Rooijen, et al., "Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia". Blood 113 (2009):6449-6460.
[44]E.B. Rankin, J.E. Tomaszewski and V.H. Haase, "Renal Cyst Development in Mice with Conditional Inactivation of the von Hippel-Lindau Tumor Suppressor". Cancer Res 66 (2006):2576.
[45]I.J. Frew, et al., "pVHL and PTEN tumour suppressor proteins cooperatively    suppress kidney cyst formation. ". The EMBO Journal (2008):1-11.
[46]I.A. Drummond, et al., "Early development of the zebrafish pronephros and analysis of mutations
affecting pronephric function". Development (1998):4655-4667.
[47]H. Igarashi, et al., "Vascular endothelial growth factor overexpression is correlated with von Hippel-Lindau tumor suppressor gene inactivation in patients with sporadic renal cell carcinoma". Cancer 95 (2002):47-53.
[48]A.L. Harris, "von Hippel-Lindau Syndrome: Target for Anti-Vascular Endothelial Growth Factor (VEGF) Receptor Therapy ". The Oncologist 5 (2000):32-36.
[49]M.J. Berridge, M.D. Bootman and P. Lipp, "Calcium - a life and death signal". Nature 395 (1998):645-648.
[50]C. Klee, et al., "Calcium as a Cellular Regulator". Oxford University Press, New York, (1999):3-27.
[51]K.D. Wu, et al., "Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts". AJP - Cell Physiology 269 (1995):C775-C784.
[52]A. Odermatt, et al., "Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease". NATURE GENETICS 14 (1996):191-194.
[53]Y. Pan, et al., "Targeted Disruption of the ATP2A1 Gene Encoding the Sarco(endo)plasmic Reticulum Ca2+ ATPase isoform 1 (SERCA1) Impairs Diaphragm Function and is Lethal in Neonatal
Mice*.". J Biol Chem 278 (2003):13367-13375.
[54]H. Hirata, et al., "accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1". Department 131 (2004):5457-5468.
[55]R. Sacchetto, et al., "A Defective SERCA1 Protein Is Responsible for Congenital Pseudomyotonia in Chianina Cattle". The American Journal of Pathology 174 (2009):565-573.
[56]C. Drögemülle, et al., "Identification of a missense mutation in the bovine ATP2A1 gene in congenital pseudomyotonia of Chianina cattle: An animal model of human Brody disease". Genomics 92 (2008):474-477.
[57]A. Sakuntabha, et al., "Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease". Nat Genet. 21 (1999).
[58]M. Seth, et al., "Sarco(endo)plasmic reticulum Ca2  ATPase (SERCA) gene silencing and remodeling of the Ca2  signaling mechanism in cardiac myocytes". Proc Natl Acad Sci USA 101 (2004):16683-16688.
[59]M. Arai, et al., "Alterations in sarcoplasmic reticulum gene expression in human heart failure: a possible mechanism for alterations in systolic and diastolic properties of the failing myocardium.". Circ Res. 72 (1993):463-469.
[60]L. Dode, et al., "Dissection of the Functional Differences between Sarco(endo)plasmic Reticulum Ca2+-ATPase (SERCA) 1 and 3 Isoforms by Steady-state and Transient Kinetic Analyses". The Journal of Biological Chemistry 277 (2002):45579-45591.
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信