§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1907201715370200
DOI 10.6846/TKU.2017.00666
論文名稱(中文) 二維離散小波轉換之低記憶體VLSI架構設計
論文名稱(英文) Memory-Efficient VLSI Architecture of 2-D Discrete Wavelet Transform
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 賴柏廷
研究生(英文) Po-Ting Lai
學號 604470319
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-06-06
論文頁數 59頁
口試委員 指導教授 - 陳巽璋(chern@mail.ee.nsysu.edu.tw)
共同指導教授 - 夏至賢(chhsia625@gmail.com)
委員 - 陳巽璋(chern@mail.ee.nsysu.edu.tw)
委員 - 夏至賢(chhsia625@gmail.com)
委員 - 江正雄(chiang@ee.tku.edu.tw)
關鍵字(中) Daubechies濾波器
整數代數架構
低記憶體
低加法器
關鍵字(英) Algebraic integer encoding
Daubechies wavelets
low transpose memory
low adder
第三語言關鍵字
學科別分類
中文摘要
本文提出了一種套用在二維多階基於整數代數的Daub-4小波濾波器架構,它改善了原先的設計,除了能有的效降低濾波器對加法器的需求之外,甚至在二維運算中,節省了一個垂直方向的Daub-4濾波器架構。在這種基於整數代數的多階編碼架構中,有著無乘法器以及精準運算的優點。而為了更加改善濾波器對於硬體的需求,所以改變了資料讀取的順序,以降低轉至記憶體的大小,本文在Daub-4濾波器中,使用隔行運算的方式,能使轉至記憶體的大小從N×N縮小到10,其中N是處理中影像的長跟寬度。最後使用Xilinx Zedboard測試開發版,實現經過改良的一階跟多階二維Daub-4超大積體電路架構,並使用各種不同的圖像進行測試。
英文摘要
This paper proposes a novel architecture for algebraic integer (AI) based multi encoding of 2-D Daubechies-4 wavelet filters. This architecture improves on previous designs, which can significantly reduce the requirement of the adders. Moreover, it also reduces one of 1-D Daubechies-4 wavelet filters in algebraic integer (AI) block. The multi encoded AI framework allows a multiplication-free and computationally accurate architecture. In order to reduce the transpose memory (TM), the 2-D Daubechies-4 wavelet filters will operates follow by Interlaced Read Scan Algorithm (IRSA). The size of the transpose memory (TM) block can be reduced from N×N to 2N as well as increase speed to calculate final value output. The 2-D Daubechies-4 single and multi-level VLSI architectures are implemented on a Xilinx Virtex-6 xc7z020-1clg484 field programmable gate array (FPGA) device. The designs were tested with different gray image size of 512×512 .
第三語言摘要
論文目次
目錄
中文摘要....................................................Ⅰ
英文摘要....................................................Ⅱ
目錄........................................................Ⅲ
圖目錄......................................................Ⅴ
表目錄......................................................Ⅶ
第一章	簡介..................................................1
第二章	離散小波轉換原理......................................4
第三章	離散小波轉換應用......................................9
第四章	基於整數代數的Daub-4跟-6濾波器.......................13
4.1數學背景..............................................13
4.2二維濾波器............................................15
4.3基於整數代數的Daub-4跟-6離散小波轉換架構...............17
	4.3.1  Daub-4跟-6整數代數濾波器架構.....................20
	4.3.2組合塊A、B、C跟D架構..........................22
	4.3.3最後重組階段.....................................27
第五章	提出的改良Daub-4跟-6濾波器...........................29
	5.1基於整數代數的濾波器架構..............................29
	5.2二維濾波器架構........................................30
第六章	隔行讀取算法.........................................35
	6.1常規讀取算法..........................................35
	6.2隔行讀取算法..........................................37
	6.3轉至記憶體............................................41
第七章	二維設計與測試結果...................................46
	7.1加法器數量............................................46
	7.2記憶體需求............................................48
7.3硬體資源比較.........................................49
	7.4影像測試..............................................50
	7.5	Daub-6濾波器..........................................51
第八章	結論.................................................55
參考文獻....................................................56





圖目錄
圖2.1、小波展開函數之頻率響應圖..............................5
圖2.2、一階二階離散小波轉換架構..............................7
圖3.1、傳統信號分析時的時間與頻率關係.......................10
圖3.2、Mallat(Dyadic)分析時的時間與頻率關係.....................10
圖3.3、一階二維的分析示意圖.................................12
圖3.4、三階二維的分析示意圖.................................12
圖4.1、四階二維的Daub-4濾波器架構...........................19
圖4.2、四階二維的Daub-6濾波器架構...........................20
圖4.3、Daub-4整數代數濾波器架構..............................21
圖4.4、Daub-6整數代數濾波器架構..............................22
圖4.5、濾波器架構以及組合塊A...............................23
圖4.6、組合塊B.............................................24
圖4.7、濾波器架構以及組合塊C...............................25
圖4.8、組合塊D.............................................26
圖5.1、改良的Daub-4整數代數濾波器架構.......................29
圖5.2、改良的Daub-6整數代數濾波器架構.......................30
圖5.3、二維濾波器運算架構...................................31
圖5.4、改良的二維濾波器運算架構.............................32
圖5.5、二維濾波器運算架構...................................33
圖5.6、改良的二維濾波器運算架構.............................34
圖6.1、傳統的二維離散小波轉換架構...........................36
圖6.2、通常讀取算法的Daub-4濾波器..........................37
圖6.3、隔行讀取算法的Daub-4濾波器..........................40
圖6.4、轉至記憶體的儲存方式.................................42
圖7.1、經由改良過架構的Daub-4濾波器所測試的影像結果,(a)原始影像,(b)一階、(c)二階、(d)三階影像圖...............................50









表目錄
表4.1、DAUB-4濾波器分析......................................17
表7.1、改良以及原先架構的DAUB-4加法器比較...................47
表7.2、隔行跟通常讀取算法的轉至記憶體比較結果...............49
表7.3、一階二維的濾波器架構硬體資源比較.....................50
表7.4、改良以及原先架構的DAUB-6加法器比較..................52
表7.5、隔行跟通常讀取算法的轉至記憶體比較結果...............53
表7.6、一階二維的濾波器架構硬體資源比較.....................54
參考文獻
[1] M. Vetterli and C. Herley, “Wavelets and filter banks: theory and design,” IEEE Trans. Signal Process., vol. 40, no. 9, pp. 2207-2232, 1992.
[2] C.-H. Hsia, J.-M. Guo, and J.-S. Chiang, “Improved Low-Complexity Algorithm for 2-D Integer Lifting-Based Discrete Wavelet Transform Using Symmetric Mask-Based Scheme Chiang, ” IEEE Trans.Circuits Syst. Video Technol., vol. 19, no.8, pp. 1202 – 1208, 2009.
[3] M. Rabbani and R. Joshi, “An overview of the JPEG 2000 still image compression standard,” Signal Process. Image Communi., vol. 17, no. 1, pp. 3–48, 2002.
[4] K. A.Wahid, V. S. Dimitrov, G. A. Jullien, and W. Badawy, “An analysis of Daubechies discrete wavelet transform based on algebraic integer encoding scheme,” in Proc. IEEE Digital Computat. Video, pp. 27–34, 2002.
[5] J. P. Andrew, P. O. Ogunbona, and F. J. Paoloni, “Comparison of “wavelet” filters and subband analysis structures for still image compression,” in Proc. IEEE Int. Acoustics, Speech, Signal Process., vol. 5, pp. V589–V592, 1994.
[6] B. K. Mohanty, A. Mahajan, and P. K. Meher, “Area and power efficient architecture for high-throughput implementation of lifting 2-D DWT,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 7, pp. 434–438, 2012.
[7] M. A. Islam and K. A. Wahid, “Area- and power-efficient design of Daubechies wave-let transforms using folded AIQ mapping,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 9, pp. 716–720, 2010.
[8] K. Wahid, S.-B. Ko, and D. Teng, “Efficient hardware implementation of an image compressor for wireless capsule endoscopy applications,” in Proc. IEEE Int. Joint Conf. Neural Networks, pp. 2761–2765, 2008.
[9] K. A. Wahid, V. S. Dimitrov, G. A. Jullien, and W. Badawy, “An algebraic integer based encoding scheme for implementing Daubechies discrete wavelet transforms,” in Proc. Asilomar Conf. Signals, Syst. Comp., vol. 1, pp. 967–971, 2002.
[10] S. K. Madishetty and A. Madanayake, and R. J. Cintra “VLSI Architectures for 4-Tap and 6-Tap 2-D Daubechies Wavelet Filters Using Algebraic Integers,” IEEE Trans. Circuits Syst. I, Regular , vol. 60, no. 6, pp. 1455–1468, 2012.
[11] K. A. Wahid, V. S. Dimitrov, and G. A. Jullien, “Error-free arithmetic for discrete wavelet transforms using algebraic integers,” in Proc. IEEE Symp. Computer Arithmetic, pp. 238–244, 2003.
[12] R. Baghaie and V. Dimitrov, “Systolic implementation of real-valued discrete trans-forms via algebraic integer quantization,” Comput. Math. Appl., vol. 41, pp. 1403–1416, 2001.
[13] C. Diou, L. Torres, and M. Robert, “An embedded core for the 2-D wavelet transform,” in Proc. IEEE Emerg. Technol. Factory Automat., vol. 2, pp. 179–186, 2001.
[14] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architecture for lifting-based forward and inverse wavelet transform,” IEEE Trans. Signal Process., vol. 50, no. 4, pp. 966–977, 2002.
[15] P.-Y. Chen, “VLSI implementation for one-dimensional multilevel lifting-based wavelet transform,” IEEE Trans. Comput., vol. 53, no. 4,pp. 386–398, Apr. 2004.
[16] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Analysis and VLSI architecture for 1-D and 2-D discrete wavelet transform,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1575–1586, Apr. 2005.
[17] M. Vishwanath, R. M. Owens, and M. J. Irwin, “VLSI architecture for the discrete wavelet transform,” IEEE Trans. Circuits Syst. II, vol. 42, no. 5, pp. 305–316, 1995.
[18] C.-H. Hsia, J.-S. Chiang, and J.-M. Guo, “Memory-Efficient Hardware Architecture of 2-D Dual-Mode Lifting-Based Discrete Wavelet Transform,” IEEE Trans. Circuits Syst. Video Tech. vol.23, no.4. pp. 671–683, 2013. 
[19] S. K. Madishetty, A. Madanayake, R. J. Cintra, and V. S. Dimitrov, “Precise VLSI Architecture for AI Based 1-D/2-D Daub-6 Wavelet Filter Banks With Low Adder-Count,” IEEE Trans. Circuits Syst. I, Regular , vol. 61, no. 7, pp. 1984–1993, 2014.
[20] S. Todkar, P. V. S. Shastry, “Flipping based high performance pipelined VLSI archi-tecture for 2-D discrete wavelet transform,” ICATCCT, pp. 832-836, 2015.
[21] C. Xiong, J. Tian, J. Liu, “Efficient Architectures for Two-Dimensional Discrete Wavelet Transform Using Lifting Scheme,” IEEE Trans. Image Processing. I, vol. 16, no. 3, pp. 607–614, 2007.
[22] A. D. Darji, K. Shashikanth, and S. N. Merchant, “Flipping-based high speed VLSI architecture for 2-D lifting DWT,” IEEE Trans. Circuits Syst. pp. 193–196, 2014. 
[23] Mithun R, G. Hegde, “High Performance VLSI Architecture for 2-D DWT U sing Lifting Scheme,” VLSI-SATA. pp. 1–5, 2015.
[24] S.K. Madishetty, A. Madanayake, and R. J. Cintra, “Precise VLSI Architecture for AI Based 1-D/ 2-D Daub-6 Wavelet Filter Banks With Low Adder-Count,” IEEE Trans. Cir-cuits Syst. Regular. vol.61, no.7. pp. 1984–1993, 2014.
[25] B.-F. Wu, C.-F. Lin, “A High-Performance and Memory-Efficient Pipeline Architec-ture for the 5/3 and 9/7 Discrete Wavelet Transform of JPEG2000 Codec,” IEEE Trans. Circuits Syst. Video Tech. vol.15, no.12. pp. 1615–1628, 2005. 
[26] B. K. Mohanty, A. Mahajan, and P. K. Meher, “Area- and Power-Efficient Architec-ture for High-Throughput Implementationof Lifting 2-DDWT,” IEEE Trans. Circuits Syst. II, Express Briefs. vol.59, no.7. pp. 434–438, 2012. 
[27] A. Darji, S. Agrawal, and A. Oza, “Dual-Scan Parallel Flipping Architecture for a Lifting-Based 2-D Discrete Wavelet Transform,” IEEE Trans. Circuits Syst. II, Express Briefs.vol.61, no.6. pp. 433–437, 2014.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信