§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1907201617325200
DOI 10.6846/TKU.2016.00575
論文名稱(中文) 套管型薄膜二氧化碳吸收系統的解析解與實驗之研究
論文名稱(英文) Conjugated Mass Transfer in Membrane Gas Absorption through a Concentric Circular Gas-Liquid Contactor
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 劉勁斖
研究生(英文) Jing-Wei Liou
學號 603400069
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-06-14
論文頁數 104頁
口試委員 指導教授 - 何啟東
委員 - 涂志偉
委員 - 陳俊成
關鍵字(中) 套管型薄膜模組
薄膜氣體吸收
共軛格拉茲問題
乙醇胺
關鍵字(英) Gas absorption
Concentric Circular
Membrane contactor
Conjugated Graetz problem
第三語言關鍵字
學科別分類
中文摘要
本研究主要是探討以套管型模組應用在薄膜氣體吸收系統之解析解與實驗之驗證。針對套管型薄膜模組的部份,建立其速度分佈式及邊界條件。而在薄膜氣體吸收系統中,氣體溶質於氣、液兩相內之質傳屬於共軛格拉茲問題,利用正交性質展開法建立二維濃度分佈式,並配合分離變數法及級數展開可求得系統之解析解,且利用乙醇胺之化性,建構二氧化碳/乙醇胺之薄膜吸收系統,針對套管型模組系統之實驗操作,並建構數學理論的研究,也進一步推導出氣體溶質在氣-液薄膜接觸器內,於氣、液兩相中之平均濃度、質傳係數、吸收速率及吸收效率等物理量之數學表示式。
以本文所建構之理論為基礎,改變氣、液兩相之進料流量與混合氣體進料的濃度,對二氧化碳之化學吸收作廣泛的討論,並且配合實驗分析結果印證理論分析之準確性,研究之主要價值在於無需經過冗長費時的實驗即可求得整個吸收系統之質傳係數及氣體溶質的二維濃度分佈式,進一步可討論各種變因對吸收效率的影響。
英文摘要
The device performance of the membrane gas absorption system was investigated theoretically and experimentally in the present study. A mathematical formulation for a membrane gas absorption system was developed in a concentric circular gas–liquid membrane contactor that independently regulates gas and liquid flow streams. Chemical absorption of carbon dioxide by amine was carried out and illustrated to validate the theoretical predictions. The analytical solutions of mathematical formulations for such a conjugated Graetz problem were solved using the orthogonal expansion technique extended in power series. The absorption efficiency was calculated with the absorbent flow rate, gas feed flow rate and carbon dioxide concentration in the gas feed as parameters. The theoretical predictions show that the effect of the initial carbon dioxide concentration in the gas feed on the absorption efficiency is more significant. The influences of operating and design parameters on the absorption efficiency and total absorption rate are also discussed.
第三語言摘要
論文目次
中文摘要                                                   I
英文摘要                                                  II
目錄                                                     III
圖目錄                                                    VI
表目錄                                                    IX
符號說明                                                   X
第一章緒論                                                 1
1-1 引言                                                   1
1-2 薄膜氣體吸收                                           2
1-3 醇胺的種類                                             4
1-4 研究動機與方向                                         5
第二章 文獻回顧                                            7
2-1 文獻回顧                                               7
2-2 格拉茲問題                                             9
第三章套管型順流式氣-液薄膜接觸器                           11
3-1 基本理論                                              11
3-2 平均濃度與質傳係數                                     18
3-3 吸收速率與吸收效率                                     19
3-4 計算範例、結果與討論                                   19
第四章套管型逆流式氣-液薄膜接觸器                           31
4-1 基本理論                                              31
4-2 平均濃度與質傳係數                                     37
4-3 吸收速率與吸收效率                                     38
4-4 計算範例、結果與討論                                   39
第五章實驗分析                                             48
5-1 套管型薄膜吸收系統                                     48
5-2 套管型薄膜吸收模組                                     53
5-3 實驗步驟                                              58
5-4 結果與討論                                            60
第六章結論                                                71
參考文獻                                                  72
附錄A 正交性質證明                                         79
附錄B 積分公式證明                                         84
B-1 套管型模組順流系統積分公式                             85
B-2 套管型模組逆流系統積分公式                             88
附錄C 展開係數求解過程                                     90
C-1 套管型模組順流展開系數                                 96
C-2 套管型模組逆流展開系數                                 99
附錄D 平均濃度                                           102
D-1 套管型模組順流系統平均濃度                            103
D-2 套管型模組逆流系統平均濃度                            104

圖目錄
圖 3.1 套管型順流式氣-液薄膜接觸器。                       22
圖3.2 套管型薄膜氣-液接觸氣內,氣體溶質於氣、液兩相中的無因次
濃度分佈求解流程圖                                        23
圖3.2(續)套管型薄膜氣-液接觸氣內,氣體溶質於氣、液兩相中的無因
次濃度分佈求解流程圖                                      24
圖3.3 套管型吸收模組順流式操作於接觸器於不同位置之濃度分佈。
( Gza = 101.98,Gzb = 13656.4)                           25
圖3.4 套管型吸收模組順流操作之平均謝塢數與液相平均流率關係。 26
圖3.5 套管型順流式吸收模組不同氣體濃度下,Gzb 與吸收效率之關
係。                                                      27
圖3.6 套管型吸收模組不同Gza 下,Gzb 與吸收效率之關係。       28
圖4.1 套管型順流式氣-液薄膜接觸器。                         41
圖4.2 套管型吸收模組逆流式操作於接觸器於不同位置之濃度分佈。
( Gza = 101.98,Gzb = 13656.4)                            42
圖4.3 套管型吸收模組之平均謝塢數與液相平均流率關係。         43
圖4.4 套管型吸收模組不同氣體濃度下,Gzb 與吸收效率之關係。   44
圖4.5 套管型吸收模組不同Gza 下,Gzb 與吸收效率之關係。       45
圖 5.1 順流套管型薄膜吸收系統簡圖。                         49
圖5.2 逆流套管型薄膜吸收系統簡圖。                          49
圖5.3 套管形薄膜吸收系統實驗設備圖。                        50
圖5.4 氣體質量控制器                                       51
圖5.5 恆溫槽設備(熱)                                       51
圖5.6 氣相層析儀 (GC)                                     52
圖5.7 套管型模組之內管(a)不銹鋼管(b)將薄膜固定於上          54
圖5.8 薄膜管實際圖                                         55
圖5.9(a)套管型模組管實際圖(b)包覆絕熱棉簡圖。               56
圖5.10 套管型模組順流系統中,理論與實驗之氣相平均濃度與液相流
率之關係。                                                62
圖5.11 套管型模組逆流系統中,理論與實驗之氣相平均濃度與液相流
率之關係。                                                63
圖5.12 套管型模組順流系統中,理論與實驗之二氧化碳吸收速率與液
相流率之關係。(Qa=5cm3/s)                                  64
圖5.13 套管型模組逆流系統中,理論與實驗之二氧化碳吸收速率與液
相流率之關係。(Qa=5cm3/s)                                  65
圖5.14 套管型模組順流系統中,理論與實驗之二氧化碳薄膜通量與液
相流率之關係。 (Qa=5cm3/s)                                 66
圖 5.15 套管型模組逆流系統中,理論與實驗之二氧化碳薄膜通量與液
相流率之關係。 (Qa=5cm3/s)                                 67
圖5.16 套管型模組順流系統中,理論與實驗之吸收效率與液相流率之
關係。 (Qa=5cm3/s)                                        68
圖5.17 套管型維模組逆流系統中,理論與實驗之吸收效率與液相流率
之關係。(Qa=5cm3/s)                                       69

表目錄
表 3.1 套管型順流式氣-液薄膜接觸器特徵值數目對無因次平均出口
濃度之比較。(n=500)                                       29
表3.2 套管型順流式氣-液薄膜接觸器特徵值數目對無因次平均出口
濃度之比較。(n=600)                                       30
表4.1 套管型逆流式氣-液薄膜接觸器特徵值數目對無因次平均出口
濃度之比較。(n=500)                                       46
表4.1 套管型逆流式氣-液薄膜接觸器特徵值數目對無因次平均出口
濃度之比較。(n=600)                                       47
表5.1 實驗值與理論值之平均誤差                             70
表5.2 液相及氣相雷諾數                                     70
參考文獻
1. J. Xiao, C. W. Li, M. H. Li, Kinetics of Absorption of Carbon Dioxide into Aqueous Solutions of 2-Amino-2-Methyl-Propanol+Monoethanol-
amine, Chem. Eng. Sci, 55 (2000) 161-175.
2. B. P. Xiao, A. K. Biswas, S. S. Li, Absorption of Carbon Dioxide into Aqueous Blends of 2-Amino-2-Methyl-1-Propanol and Diethanolamine, Chem. Eng. Sci, 58 (2003) 4137-4144.
3. C. D. Ho, Y. J. Sung, Y. C. Chuang, An Analytical Study of Laminar Concurrent Flow Membrane Absorption through a Hollow Fiber Gas-Liquid Membrane Contactor, J. Membr. Sci., 428 (2013) 232-240.
4. G. M. Brown, Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat Conduit, AIChE J., 6 (1960) 179-183.
5. T. L. Perelman, On Conjugated Problems of Heat Transfer, Int. J. Heat Mass Transfer, 3 (1961) 293-303.
6. A. P. Hatton and A. Quarmby, Heat Transfer in the Thermal Entry Length with Laminar Flow in an Annulus, Int. J. Heat Mass Transfer, 5 (1962) 973-980.
7. R. J. Nunge and W. N. Gill, Analysis of Heat or Mass Transfer in Some Countercurrent Flows, Int. J. Heat Mass Transfer, 8 (1965) 873-886.
8. R. J. Nunge and W. N. Gill, An Analytical Study of Laminar Counterflow Double-Pipe Heat Exchangers. AIChE J., 12 (1966) 279-289.
9. C. J. Hsu, Heat Transfer in a Round Tube with Sinusoidal Wall Heat Flux Distribution, AIChE J., 11 (1965) 690-695.
10. E. J. Davis, Exact Solutions for a Class of Heat and Mass Transfer Problems, Can. J. Chem. Eng., 51 (1973) 562-572.
11. H. M. Yeh, T.W. Chang and S. W. Tsai, A Study of the Graetz Problems in Concentric-Tube Continuous-Contact Countercurrent Separation Process with Recycles at Both Ends, Sep. Sci. Technol., 21 (1986) 403-419.
12. M. A. Ebadian and H. Y. Zhang, An Exact Solution of Extend Graetz Problem with Axial Heat Conduction, Int. J. Heat Mass Transfer, 32 (1989) 1709-1717.
13.X. Yin and H. H. Bau, The Conjugated Graetz Problem with Axial Conduction, J. Heat Trans, 118 (1996) 482-485.
14.C. D. Ho, H. M. Yeh and W. S. Sheu, An Analytical Study of Heat and Mass Transfer through a Parallel-Plate Channel with Recycle, Int. J. Heat Mass Transfer, 44 (1998) 2589-2599.
15.C. D. Ho and W. Y. Yang, Heat Transfer of Conjugated Graetz Problems with Laminar Counterflow in Double-pass Concentric Circular Heat Exchangers, Int. J. Heat Mass Transfer, 48 (2005) 4474-4480. 
16.R. O. C. Guedes and M. N. Ozisik, Conjugated Turbulent Heat Transfer with Axial Condition in Wall and Convection Boundary Conditions in a Parallel-Plate Channel, Int. J. Heat and Fluid Flow, 13 (1992) 322.
17. E. J. Davis and S. Venkatesh, The Solution of Conjugated Multiphase Heat and Mass Transfer Problems, Chem. Eng. Sci., 34 (1978) 775-787.
18. E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-I General Formalism and a Class of Solid-Fluid Problems, Chem. Eng. Sci., 36 (1981) 1381-1391.
19. E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-II Fluid-Fluid Problems, Chem. Eng. Sci., 36 (1981) 1393-1399.
20. M. R. Doshi, P. M. Daiya and W. N. Gill, Three Dimensional Laminar Dispersion in Open and Close Rectangular Conduits, Chem. Eng. Sci., 33 (1978) 795-804.
21. C. W. Tan and C. J. Hsu, Low Peclet Number Mass Transfer in Laminar Flow Through Circular Tubes, Int. J. Heat Mass Transfer, 15 (1972) 2187-2201.
22. A. Pozzi and M. Lupo, The Coupling of Conduction with Forced Convection in Graetz Problems, J. Heat Trans. 112 (1990) 323-328.
23. Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption I. Mass Transfer in the Liquid, J. Membr. Sci., 23 (1985) 321-332.
24. Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption II. Mass Transfer Across the Membrane, J. Membr. Sci., 23 (1985) 333-345.
25. M. C. Yang and E. L. Cussler, Designing Hollow-Fiber Contactors, AIChE J., 32 (1986) 1910-1916.
26. D. O. Cooney and C. C. Jackson, Gas Absorption in a Hollow Fiber Device, Chem. Eng. Comm., 79 (1989) 153-163.
27. H. Kreulen, G. F. Versteeg, C. A. Smolders and W. P. M. van Swaaij, Selective Removal of H2S from Sour Gas with Microporous Membranes. Part I. Application in a Gas-Liquid System, J. Membr. Sci., 73 (1992) 293-304.
28. M. J. Costello, A. G. Fane, P. A. Hogan and R. W. Schofield, The Effect of Shell Side Hydrodynamics on the Performance of Axial Flow Hollow Fiber Modules, J. Membr. Sci., 80 (1993) 1-11.
29. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 1. Physical Mass Transfer Process. A specific application: Mass Transfer in Highly Viscous Liquids, J. Membr. Sci., 78 (1993) 197-216.
30. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 2. Mass Transfer with Chemical Reaction, J. Membr. Sci., 78 (1993) 217-238.
31. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes, Chem. Eng. Sci., 48 (1993) 2093-2102.
32. S. Karoor and K. K. Sirkar, Gas Absorption Studies in Microporous Hollow Fiber Membrane Modules, Ind. Eng. Chem. Res., 32 (1993) 674-684.
33. H. A. Rangwala, Absorption of Carbon Dioxide into Aqueous Solutions Using Hollow Fiber Membrane Contactor, J. Membr. Sci., 112 (1996) 229-240.
34. H. Chen, A. S. Kovvali, S. Majumdar and K. K. Sirkar, Selective CO2 Separation from CO2-N2 Mixtures by Immobilized Carbonate-Glycerol Membrane, Ind. Eng. Chem. Res., 38 (1999) 3489-3498.
35. Y. S. Kim and S. M. Yang, Absorption of Carbon Dioxide Through Hollow Fiber Membrane Using Various Aqueous Absorbent, Sep. Purif. Technol. 21 (2000) 101-109.
36. Y. Lee, R. D. Noble, B. Y. Yeom, Y. I. Park and K. H. Lee, Analysis of CO2 removal by Hollow Fiber Membrane Contactors, J. Membr. Sci., 194 (2001) 57-67.
37. V. Y. Dindore, D. W. F. Brilman, F. H. Geuzebroek and G. F. Versteeg, Membrane-Solvent Selection for CO2 Removal Using Membrane Gas-Liquid Contactors, Sep. Purif. Technol., 40 (2004) 133-145.
38. V. Y. Dindore, D. W. F. Brilman, P. H. M. Feron and G. F. Versteeg, CO2 Absorption at Elevated Pressures Using a Hollow Fiber Membrane Contactor, J. Membr. Sci., 235 (2004) 99-109.
39. S. Nii and H. Takeuchi, Gas Absorption with Membrane Permeation-Acid Gas Removal from Flue Gases by a Permabsorption Method, Trans IChemE., 72 (1994) 21-26.
40. P. H. M. Feron and A. E. Jansen, Capture of Carbon Dioxide Using Membrane Gas Absorption and Reuse in the Horticultural Industry, Energy Convers. Mgmt, 36 (1995) 411-414.
41. S. Bhaumik, S. Majumdar and K. K. Sirkar, Hollow-Fiber Membrane-Based Rapid Pressure Swing Absorption, AIChE J., 42 (1996) 409-421.
42. P. H. M. Feron and A. E. Jansen, The Production of Carbon Dioxide from Flue Gas by Membrane Gas Absorption, Energy Convers. Mgmt., 38 (1997) S93-S98.
43. M. S. Chun and K. H. Lee, Analysis on a Hydrophobic Hollow-Fiber Membrane Absorber and Experimental Observations of CO2 Removal by Enhanced Absorption, Sep. Sci. Technol., 32 (1997) 2445-2466.
44. K. Li and W. K. Teo, Use of Permeation and Absorption Methods for CO2 Removal in Hollow Fiber Membrane Modules, Sep. Purif. Technol., 13 (1998) 79-88.
45. D. Bhaumik, S. Majumdar and K. K. Sirkar, Absorption of CO2 in a Transverse Flow Hollow Fiber Membrane Module Having a Few Wraps of the Fiber Mat, J. Membr. Sci., 138 (1998) 77-82.
46. A. Gabelman and S. T. Hwang, Hollow Fiber Membrane Contactor, J. Membr. Sci., 159 (1999) 61-106.
47. P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron and G. F. Versteeg, New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57 (2002) 1639-1651.
48. M. Mavroudi, S. P. Kaldis and G. P. Sakellaropoulos, Reduction of CO2 Emissions by a Membrane Contacting Process, Fuel, 82 (2003) 2153-2159.
49. S. S. Kim ans D. O. Cooney, An Improved Theoretical Model for Hollow-Fiber Enzyme Reactors, , Chem. Eng. Sci., 31 (1976) 289-294.
50. J. E. Vivian and C. J. King, Diffusivities of Slightly Soluble Gases in Water, AIChE J., 10 (1964) 220-221.
51. W.P. Wang, H.T. Lin, C.D. Ho, An Analytical Study of Laminar Co-current Flow Gas Absorption through a Parallel-Plate Gas-Liquid Membrane Contactor, J. Membr. Sci, 278 (2006) 181-189.
52. V. Danckwerts, Insights into CHEMICAL ENGINEERING. New York: Pergamon press Inc., 1981
53. Q. Zheng, L.H. Dong, J. Chen, G. Gao. W.Y. Fei, Absorption Solubility Calculation and Process Simulation for CO2 Capture, CIESC, 61 (2010) 1740-1746.
54. C. D. Ho, H. M. Yeh and R. C. Wang, Heat-Transfer Enhancement in Double-Pass Flat-Plate Solar Air Heaters with Recycle, Energy, 30 (2005) 2796-2817.
55. R. J. Moffat, Describing the Uncertainties in Experimental Results, Exp. Thermal Fluid Sci., 1 (1988) 3-17.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信