§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1907201617312800
DOI 10.6846/TKU.2016.00574
論文名稱(中文) 醇胺水溶液吸收二氧化碳於平板系統之解析解與實驗研究
論文名稱(英文) Theoretical and Experiment Studies of Membrane Absorption of CO2 with Amine through Rectangular Conduits
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 陳 立
研究生(英文) Li Chen
學號 603400242
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-06-14
論文頁數 99頁
口試委員 指導教授 - 何啟東(cdho@mail.tku.edu.tw)
委員 - 涂志偉(891360033@s91.tku.edu.tw)
委員 - 陳俊成(Luke@mail.tku.edu.tw)
關鍵字(中) 二氧化碳吸收
平板薄膜系統
解析解
薄膜吸收
關鍵字(英) PTFE-Membrane
Membrane Processes
Analytical Solution
Carbon dioxide
第三語言關鍵字
學科別分類
中文摘要
本研究主要是針對屬於共軛格拉茲問題的薄膜氣體吸收系統進行理論分析,利用正交展開法求得系統中氣體溶質於氣、液兩相內之二維濃度分佈式,所推導出之解題流程適用於平板之順流與逆流系統。使用分離變數法將系統之偏微分方程式化簡為常微分方程式以求解其特徵函數計算符合入、出口處之邊界條件。研究中也推導出氣體溶質在氣-液薄膜接觸器內,於氣、液兩相中之平均濃度分佈、質傳係數、吸收速率及吸收效率等物理量之數學表示式。
    以本論文所推導之理論為基礎,以醇胺對二氧化碳之化學吸收作廣泛的討論,結果發現,不論是何種類型之吸收,增加液體的流率或減少氣體的流率皆能增加二氧化碳之吸收效率,而各種濃度變化的趨勢,也都能符合吾等之預期。此外,由平板吸收實驗所得之結果更可以確定本論文所提出的數學模型之正確性。
    本論文最大的貢獻為無須花費過多的費用時的實驗即可求出整個吸收系統的質傳係數以及氣體溶質之二維濃度分佈式,對影響薄膜吸收的各種變因有更進一步的認識。
英文摘要
The absorption efficiency of CO2 in ethanolamine (MEA) solvent system of a parallel-plate membrane contactor with countercurrent- flow and concurrent-flow operation was investigated theoretically and experimentally.  A two-dimensional modeling equation for predicting the concentration distribution and total absorption rate was developed and the analytical solution for the resultant partial differential equations is obtained using the separated variables method with an orthogonal expansion technique.  The theoretical predictions were presented graphically with the mass-transfer liquid flow rate and inlet CO2 concentration as parameters.  The absorption efficiency, average Sherwood number and concentration distributions are represented graphically with absorbent flow rate, gas feed flow rate and inlet CO2 concentration in the gas feed as parameters.
第三語言摘要
論文目次
中文摘要	                                                Ⅰ
英文摘要	                                                Ⅱ
符號說明                                                Ⅲ
目錄                                                   Ⅵ
圖目錄                                                 Ⅷ
表目錄                                                 XI
第一章 緒論                                              1
1-1簡介                                                 1
1-1.1 薄膜分離                                           1   
1-1.2薄膜氣體吸收                                        3
 1-1.3醇胺的種類與特性於二氧化碳吸收                       4
1-1.4格拉茲問題                                          7
1-2 研究動機、目的與方向                                  8
第二章 文獻回顧	                                       10
第三章 平板型順流式氣-液薄膜接觸器                        13
3-1 基本理論	                                       13
3-2 平均濃度與質傳係數                                   22
3-3 吸收速率與吸收效率	                               23
3-4 計算範例、結果與討論	                               23
第四章 平板型逆流式氣-液薄膜接觸器	                       31
4-1 基本理論	                                       31
4-2 平均濃度與質傳係數	                               37
4-3 吸收速率與吸收效率	                               38
4-4 計算範例、結果與討論	                               38
第五章 薄膜吸收實驗	                               46
5-1 實驗裝置與藥品	                               46
5-2 實驗流程	                                       51
5-2.1順流吸收實驗                                       51
5-2.2逆流吸收實驗                                       52
5-3 結果與討論                                          52
第六章 結論                                             67
參考文獻	                                               70
附錄A 正交性質證明	                               77
A-1 平板系統正交性質                                     77
附錄B 積分公式證明	                               83
B-1 平板系統積分公式	                               83
附錄C 展開係數求解過程	                               87
C-1 平板系統展開係數	                               87
附錄D 平均濃度	                                       97
D-1 平板系統平均濃度	                               97

圖  目  錄

圖3.1平板型順流式氣-液薄膜吸收器	                       14
圖3.2平板型吸收模組順流操作於接觸器內不同位置之濃度分佈  (Qa = 6.67 cm3/s,Qb = 5 cm3/s)	                       27
圖3.3平板型吸收模組順流操作之平均謝塢數與液相平均流速關係    28	                     
圖3.4平板型順流式吸收模組不同氣體濃度下, 與吸收效率之關係   29 	
圖3.5平板型吸收模組不同 下, 與吸收效率之關係	       30
圖4.1平板型順逆流式氣-液薄膜吸收器	                       32
圖4.2平板型吸收模組逆流操作於接觸器內不同位置之濃度分佈  (Qa = 6.67 cm3/s,Qb = 5 cm3/s)	                       42
圖4.3平板型吸收模組順-逆流操作之平均謝塢數與液相平均流速關係 43                 
圖4.4平板型逆流式吸收模組不同氣體濃度下, 與吸收效率之關係   44
圖4.5平板型吸收模組不同Qa下, 與吸收效率之關係順逆流比較圖   45
圖5-1.1模組壓克力頂版                                    46
圖5-1.2氣體質量控制器                                    48
圖5-1.3氣相層析儀	                                       49
圖5-1.4平板模組絕熱棉包覆圖	                       49
圖5-1.5恆溫水槽	                                       50
圖5-1.6氣相層析儀氣密針	                               50
圖5-2.1順流平板型二氧化碳吸收器                           55
圖5-2.1逆流平板型二氧化碳吸收器	                       56
圖5.3平板實驗二氧化碳吸收系統實際設備圖	               57
圖5.4平板二氧化碳吸收實驗系統模組	                       57
圖5.5平板吸收模組順流系統中理論與實驗於不同Qb,Qb與出口濃度之關係(Qa = 5 cm3/s)	                                       58
圖5.6平板吸收模組順流系統中,理論與實驗之二氧化碳吸收速率與液相流率之關係(Qa = 5 cm3/s)	                               59
圖5.7平板吸收模組順流系統中理論與實驗於不同vb,vb與吸收通量之關係(Qa = 5 cm3/s)	                                       60
圖5.8平板吸收模組順流系統中理論與實驗於不同Qb,Qb與吸收效率之關係。(Qa = 5 cm3/s)	                               61
圖5.9 平板吸收模組逆流系統中理論與實驗於不同Qb,Qb與出口濃度之關係(Qa = 5 cm3/s)	                               62
圖5.10平板吸收模組逆流系統中,理論與實驗之二氧化碳吸收速率與液相流率之關係(Qa = 5 cm3/s)                                63
圖5.7平板吸收模組逆流系統中理論與實驗於不同vb,vb與吸收通量之關係(Qa = 5 cm3/s)	                                       64
圖5.8平板吸收模組逆流系統中理論與實驗於不同Qb,Qb與吸收效率之關係。(Qa = 5 cm3/s)	                               65
圖6.1平板型氣體吸收薄膜氣-液接觸器內,氣體溶質於氣、液兩相中的無因次濃度分佈求解流程圖	                               68
 
表  目  錄

表1-1常見的現象方程式	                                2
表1-2常用的醇胺	                                        5
表1-3 參合醇胺之研究文獻	                                6
表3-1平板型順流式薄膜吸收特徵質對平均出口濃度之比較值	       26
表4-1平板型逆流式薄膜吸收特徵質對平均出口濃度之比較值       41表5.1  PTFE/PP 複合膜之薄膜性質	                       47
表5.2  實驗值與理論值之平均誤差	                       66
參考文獻
1. W. K. Wang, (2001). Membrane Separations in Biotechnology, New York: M. Dekker.
2. A. E. Fouda, (1989). Membrane Separations in Chemical Engineering, New York : American Institute of Chemical Engineers. 
3. H. M. Yeh, and Y. S. Shu, Analysis of Membrane Extraction Through Rectangular Mass Exchangers, Chem. Eng. Sci., 54, 897 (1999).
4. J. J. Guo, C. D. Ho, H. M. Yeh, Mass-Transfer Efficiency of Membrane Extraction in Laminar Flow between Parallel-Plate Channels: Theoretical and Experimental Studies, Ind. Eng. Chem. Res., 46, 778 (2007).
5. J. J. Guo, C. D. Ho, Theoretical and experimental studies of membrane extraction of Cu2+ with D2EHPA through rectangular conduits. Chem. Eng. Process., 48, 111 (2009).
6. H. M. Yeh, Y. Y. Peng and Y. K. Chen, Solvent Extraction through a Double-pass Parallel-plate Membrane Channel with Recycle, J. Membrane Sci., 163, 177 (1999).
7. S. H. Lin, K. L. Tung, H. W. Chang, K. R. Lee, Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery, Chemosphere, 75, 1410 (2009).
8. J. You, L. Tian, C. Zhang, H. Yao, W. Dou, B. Fan, S. Hu, Adsorption Behavior of Carbon Dioxide and Methane in Bituminous Coal: A Molecular Simulation Study, Chin. J. Chem. Eng., 17, 255 (2016).
9. P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron and G. F. Versteeg, New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57, 1639 (2002).
10. L. E. Applegate, Membrane Separation Processes, Chem. Eng., 91, 64 (1984).
11. P. M. Bungay, H. K. Lonsdale and M. N. De Pinho, (1986). Synthetic Membrane: Science, Engineering and Applications, D. Redel Publishing Company, Holland.
12. G. Sartori, D. W. Savage, Sterically hindered amines for carbon dioxide removal from gases, Ind. Eng. Chem. Fundam., 22, 239 (1983).
13. T. Chakravarty, U. K. Phukan, R. H. Weiland, Reaction of Acid Gases with Mixtures of Amine. Chem. Eng. Prog., 81, 32 (1985).
14. Kohl, A. L. and R. B. Nielsen, (1997). Gas Purification, 5th edition. Gulf, Houston, TX.	
15. G. M. Brown, Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat Conduit, AIChE J., 6, 179 (1969).
16. T. L. Perelman, On Conjugated Problems of Heat Transfer, Int. J. Heat Mass Transfer., 3, 293 (1961).	
17. A. P. Hatton and A. Quarmby, Heat Transfer in the Thermal Entry Length with Laminar Flow in an Annulus, Int. J. Heat Mass Transfer., 5  973 (1962).	
18. R. J. Nunge and W. N. Gill, Analysis of Heat or Mass Transfer in Some Countercurrent Flows, Int. J. Heat Mass Transfer., 8, 873 (1965).	
19. R. J. Nunge and W. N. Gill, An Analytical Study of Laminar Counterflow Double-Pipe Heat Exchangers. AIChE J., 12, 279 (1966).	
20. C. J. Hsu, Heat Transfer in a Round Tube with Sinusoidal Wall Heat Flux Distribution, AIChE J., 11, 690 (1965).	
21. E. J. Davis, Exact Solutions for a Class of Heat and Mass Transfer Problems, Can. J. Chem. Eng., 51, 562 (1973).
22. H. M. Yeh, T.W. Chang and S. W. Tsai, A Study of the Graetz Problems in Concentric-Tube Continuous-Contact Countercurrent Separation Process with Recycles at Both Ends, Sep. Sci. Technol., 21, 403 (1986).
23. M. A. Ebadian and H. Y. Zhang, An Exact Solution of Extend Graetz Problem with Axial Heat Conduction, Int. J. Heat Mass Transfer., 32, 1709 (1989).
24. X. Yin and H. H. Bau, The Conjugated Graetz Problem with Axial Conduction, J. Heat Transfer., 118, 428 (1996).
25. C. D. Ho, H. M. Yeh and W. S. Sheu, An analytical study of heat and mass transfer through a parallel-plate channel with recycle, Int. J. Heat Mass Transfer., 44, 2589 (1998).
26. C. D. Ho and W. Y. Yang, Heat transfer of conjugated Graetz problems with laminar counterflow in double-pass concentric circular heat exchangers, Int. J. Heat Mass Transfer., 48, 4474 (2005). 
27. R. O. C. Guedes and M. N. Ozisik, Conjugated Turbulent Heat Transfer with Axial Condition in Wall and Convection Boundary Conditions in a Parallel-Plate Channel, Int. J. Heat and Fluid Flow., 13, 322 (1992).
28. E. J. Davis and S. Venkatesh, The Solution of Conjugated Multiphase Heat and Mass Transfer Problems, Chem. Eng. Sci., 34 775 (1978).
29. E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-I General Formalism and a Class of Solid-Fluid Problems, Chem. Eng. Sci., 36, 1381 (1981).
30. E. Papoutsakis and D. Ramkrishna, Conjugated Graetz Problems-II Fluid-Fluid Problems, Chem. Eng. Sci., 36 1393 (1981).
31. M. R. Doshi, P. M. Daiya and W. N. Gill, Three Dimensional Laminar Dispersion in Open and Close Rectangular Conduits, Chem. Eng. Sci., 33, 795 (1978).
32. C. W. Tan and C. J. Hsu, Low Peclet Number Mass Transfer in Laminar Flow Through Circular Tubes, Int. J. Heat Mass Transfer., 15, 2187 (1972).
33. A. Pozzi and M. Lupo, The Coupling of Conduction with Forced Convection in Graetz Problems, J. Heat Transfer., 112, 1535 (1990).
34. Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption I. Mass Transfer in the Liquid, J. Membrane Sci., 23, 321 (1985).
35. Z. Qi and E. L. Cussler, Microporous Hollow Fibers for Gas Absorption II. Mass Transfer Across the Membrane, J. Membrane Sci., 23, 333 (1985).
36. H. Y. Zhang, R. Wang, D. T. Liang and J. H. Tay, Theortical and experimental studies of membrane wetting in the membrane gas-liquid contacting process for CO2 absorption, J. Membrane Sci., 23, 333 (1985).
37. R. Wang, H. Y. Zhang, P. H. M. Feron and D. T. Liang, Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors, J. Membrane Sci., 308, 162 (2008).
38. H. Kreulen, G. F. Versteeg, C. A. Smolders and W. P. M. van Swaaij, Selective Removal of H2S from Sour Gas with Microporous Membranes. Part I. Application in a Gas-Liquid System, Sep. Purif. Technol., 46, 33 (2005).
39. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 1. Physical Mass Transfer Process. A specific application: Mass Transfer in Highly Viscous Liquids, J. Membrane Sci., 78, 197 (1993).
40. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Microporous Hollow Fiber Membrane Modules as Gas-Liquid Contactors. Part 2. Mass Transfer with Chemical Reaction, J. Membrane Sci., 78, 217 (1993).
41. H. Kreulen, C. A. Smolders, G. F. Versteeg and W. P. M. van Swaaij, Determination of Mass Transfer Rates in Wetted and Non-Wetted Microporous Membranes, Chem. Eng. Sci., 48, 2093 (1993).
42. P. S. Kumara, J. A. Hogendoorna, P. H. M. Feronb, G. F. Versteega, New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors, Chem. Eng. Sci., 57, 1639 (2002).
43. A. Gabelman and S. T. Hwang, Hollow Fiber Membrane Contactor, J. Membrane Sci., 159, (1999) 61.
44. Y. Lee, R. D. Noble, B. Y. Yeom, Y. I. Park and K. H. Lee, Analysis of CO2 removal by Hollow Fiber Membrane Contactors, J. Membrane Sci., 194, 57 (2001).
45. P. S. Kumar, J. A. Hogendoorn, P. H. M. Feron and G. F. Versteeg, New Absorption Liquids for the Removal of CO2 from Dilute Gas Streams Using Membrane Contactors, Chem. Eng. Sci., 57, 1639 (2002).
46. M. Mavroudi, S. P. Kaldis and G. P. Sakellaropoulos, Reduction of CO2 Emissions by a Membrane Contacting Process, Fuel, 82, 2153 (2003). 
47. V. Y. Dindore, D. W. F. Brilman, F. H. Geuzebroek and G. F. Versteeg, Membrane-Solvent Selection for CO2 Removal Using Membrane Gas-Liquid Contactors, Sep. Purif. Technol., 40, 133 (2004).
48. C. H. Yu, C. H. Huang, C. S. Tan, A Review of CO2 Capture by Absorption and Adsorption, Department of Chemical Engineering., 12  745 (2012).
49. R. Sakwattanapong, A. Aroonwilas, and A. Veawab, Beahavior of Reboiler Heat Duty for CO2 Capture Plants Using Regenerable Single and Blended Alkanolamines," Ind. Eng. Chem. Fundls., 44, 4465 (2005).
50. V. Danckwerts, (1981). Insights into CHEMICAL ENGINEERING. New York: Pergamon press Inc.
51. Q. Zheng, L. Dong, J. Chen, G. Gao, W. Fei, Absorption solubility calculation and process simulation for CO2 capture. CIESC journal., 61, 1740 (2010).
52. R. J. Nunge, W. N. Gill, Analysis of heat transfer in some countercurrent flows, Int. J. Heat Mass Transfer., 8, 873 (1965).
53. R. J. Nunge, W. N. Gill, Analysis of laminar counterflow double-pipe heat exchangers. ICHE J., 12, 279 (1966).
54. C. D. Ho, H. M. Yeh and R. C. Wang, Heat-transfer Enhancement in Double-Pass Flat-Plate Solar Air Heaters with Recycle, Energy., 30 2796 (2005).
55. H. M. Yeh, C. D. Ho and J. Z. Hou, Collector efficiency of double-flow solar air heaters with fins attached, Energy., 27, 715 (2002).
56. S. H. Lin, K. L. Tung, H. W. Chang, K. R. Lee, Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery, Chemosphere., 75, 1410 (2009).
57. P. Singh, (1979). Amine Based Solvent for CO2 Absorption “From Molecular Structure to Process”, India: Uttar Pradesh.
58. W. P. Wang, H. T. Lin, C.D. Ho, An analytical study of laminar co-current flow gas absorption through a parallel-plate gas–liquid membrane contactor, J. Membrane Sci., 278, 181 (2006).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信