§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1907201617201100
DOI 10.6846/TKU.2016.00573
論文名稱(中文) 利用X光吸收光譜研究單晶結構的YBaCuFeO5
論文名稱(英文) X-ray absorption studies of YBaCuFeO5 single crystal
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 物理學系碩士班
系所名稱(英文) Department of Physics
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 邱顯勝
研究生(英文) Xian-Sheng Qiu
學號 602210071
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2016-06-20
論文頁數 48頁
口試委員 指導教授 - 彭維鋒
委員 - 杜昭宏
委員 - 邱昭文
關鍵字(中) 吸收光譜
X光吸收之線二向性
關鍵字(英) YBCFO
XLD
XANES
EXAFS
第三語言關鍵字
學科別分類
中文摘要
本論文主要以同步輻射相關實驗研究類鈣鈦礦單晶結構的YBaCuFeO5電子、原子結構的相關性。實驗包含在不同溫度下X光吸收之線二向性(XLD)、X光吸收近邊緣結構(XANES)、延伸X光吸收精細結構(EXAFS)。YBaCuFeO5隨著溫度從室溫降至低溫我們觀察到電阻率急遽增加,沿著樣品不同的方向上(AB平面)和(C軸)測量到(110K)及(125K)不同的相變溫度。從XLD實驗結果中發現位於晶格結構中心的Fe 3d eg電子從室溫降到相變溫度時,電子軌域由x2-y2轉向3z2-r2軌域;同樣位於晶格結構中心的Cu 3d eg電子在變溫過程中卻沒有任何明顯的變化,從X光延伸吸收精細結構的實驗中,可以觀察到降溫過程時Cu-O鍵沒有明顯的變化;而Fe-O鍵在相變溫度時會發現樣品不同平面的鍵結縮短及拉長,導致電阻變大。
英文摘要
We report the x-ray absorption study of the single crystal YBaCuFeO5 (YBCFO) to investigate the role of charge, orbital and local structure around the associated Fe/Cu cations on the electrical transport behavior of YBCFO. A resistivity transition is observed ~125K. X-ray linear dichroism (XLD) at Fe L3,2-edge shows different preferential occupation of eg-orbitals below (3d3z2-r2) and above (3dx2-y2) the transition temperature (125K). Larger resistivity along c-axis as compared to the ab-plane is argued in terms of direction dependent hybridization of Fe/Cu 3d - O 2p states as evident by the temperature dependent O K-edge XANES spectra and larger Fe - Oapical bond length compared to Fe - Obasal. Unusual increase in Debye-Waller Factor for Fe at 125K, accompanied by an increase in Fe – O bond distance, is observed, with expected temperature evolution of DWF for Cu. These findings reveal the distortion in square pyramidal sublattice associated with iron square pyramid. Fe/Cu K-edge spectra of YBCFO single crystal reveal the existence of Fe and Cu in Fe3+ and Cu2+ oxidation states, respectively.
第三語言摘要
論文目次
目錄
目錄..........................................................................................................IV
圖表目錄..................................................................................................VI
第一章、緒論............................................................................................1
1-1. 多鐵材料.....................................................................................1
1-2. 文獻回顧.....................................................................................2
第二章、實驗技術.......................................................................4
2-1. X光吸收光譜簡介 ......................................................................4
2-1-1. 吸收邊緣與E0值.............................................................6
2-1-2. X光吸收近邊緣結構(XANES)........................................7
2-1-3. 延伸X光吸收精細結構(EXAFS)..................................8
2-1-4. 實驗方法.........................................................................13
2-1-5數據分析...........................................................................17
2-2. X光吸收之線二向性簡介 ........................................................21
(X-ray Linear Dichroism、XLD) ...................................................21
第三章、實驗數據分析與討論.......................................................25
3-1.樣品製備與基本量測.................................................................25
3-2. X光吸收近邊緣結構(X-ray Absorption Near Edge Structure、XANES) 之分析..........................................................30
3-3. X光吸收之二向性能譜(X-ray Linear Dichroism、XLD) 之分析....................................................................................................34
3-4. 延伸X光吸收精細結構(Extended X-ray Absorption Fine Structure、EXAFS) 之分析...........................................................39
第四章、結論....................................................................................44
參考文獻...................................................................................................46

圖表目錄
圖1-1 YBa2Cu3O7與YBaCuFeO5單位晶胞........................................3
圖2-1光子能量與銅吸收截面關係圖.....................................................5
圖2-2XANES與EXAFS分界圖..........................................................10
圖2-3光電子平均自由路徑與能量關係圖...........................................10
圖2-4單一散射與多重散射之圖像.......................................................11
(a)為單一散射路程示意圖...............................................................11
(b)為多重散射路程示意圖...............................................................11
圖2-5射出電子受鄰近原子的背向散射,而產生干涉現象...............12
(a)建設性干涉(b)破壞性干涉........................................................12
圖2-6X光吸收光譜實驗示意圖............................................................14
圖2-7 三種光譜量測方法......................................................................16
圖2-8 X光吸收光譜之數據分析流程...................................................17
圖2-9 eg軌域的壓縮或拉伸改變能階...................................................23
圖2-10 θ= 0º 和70º Fe L3,2-edge吸收譜.............................................24
圖2-11 (0º -70º) Fe L-edge XLD譜圖..................................................24
圖3-1樣品生長方向與背向勞厄X射線衍射圖..................................27
圖3-2 YBaCuFeO5X光繞射圖.............................................................27
圖3-3 YBaCuFeO5變溫電阻率和變溫磁化率.....................................29
圖3-4(a)、(b)Fe θ= 0⁰及70⁰時K-edge XANES能譜........................32
(c)、(d)Cu θ= 0⁰及70⁰時K-edge XANES能譜.........................32
圖3-5(a)、(b)Fe受到不同的位能差影響激發填入的軌域.................32
(c)Cu d軌域只剩單一空缺可以填入............................................32
圖3-6 Fe3+與O2-超交互作用示意圖......................................................33
圖3-7(a) Fe (b) Cu L3,2-edge及XLD譜圖..........................................36
圖3-8(a) 變溫O K-edge吸收光譜.......................................................38
(b) O 2px,y和Fe、Cu 軌域混成積分...........................................38
圖3-9 Fe 0º和70º EXAFS傅立葉轉換圖............................................41
圖3-10 Cu 0º和70º EXAFS傅立葉轉換圖.........................................41
圖3-11 Fe和Cu各個溫度下的鍵長和第白-華勒因子.......................42
表格3-1: Fe K-edge Fitting....................................................................43
表格3-2: Cu K-edge Fitting...................................................................43
參考文獻
[1] Nicola A. Spaldin, Manfred Fiebig et al., Science 309, 391 (2005).
[2] N. Hur, S. Park, P. A. Sharma, J. S. Ahn et al., Nature 429, 392-395 (2004)  .
[3] W. Eerenstein, N. D. Mathur, J. F. Scott et al., Nature 442, 759-765 (2006)
[4] J. C. Woicik et al., Phys. Rev. B 75, 140103 (2007).
[5] L. Er-Rakho, C. Michel, Ph. Lacorre et al., Journal of Solid State Chemistry 73, 531, (1988).
[6] Paola Benzi et al., Journal of Crystal Growth  269, 625-629 (2004) 
[7] C. Meyer, F. Hartmann-Bourton et al., Solid Stte Commum 76 163-168 (1990).
[8] N. G. Deshpande, C. H. Weng, Y. F. Wang, Y. C. Shao, C. Q. Cheng, D. C. Ling, H. C. Hsueh, C. H. Du, H. M. Tsai, C. W. Pao, H. J. Lin, J. F. Lee, J. W. Chiou, M. H. Tsai and W. F. Pong, J. Appl. Phys., 115, 233713 (2014).
[9]	Tull, B., Carey, J. & Mazur et al., MRS Bull.31, 626–633 (2006).
[10]	Crouch, C. H., Carey, J. E., Shen, M., Mazur, E. et al., Appl. Phys. A.79, 1635–1641 (2004).
[11]	Sheehy, M. a., Winston, L., Carey, J. E., Friend, C. M. & Mazur et al., Chem. Mater.17, 3582–3586 (2005).
[12]	 Her, T.-H., Finlay, R. J., Wu, C., Deliwala, S. & Mazur et al., Appl. Phys. Lett.73, 1673 (1998). 
[13]	 Chandra, A. P. & Gerson et al., Surf. Sci. Rep.65, 293–315 (2010).
[14]  Murphy et al., Surf. Sci. Rep.64, 1–45 (2009).
[15]	 Esbitt, H. W. N., Ancroft, G. M. B. & Ratt et al., Am. Mineral.83, 1067–1076 (1998).
[16] Ko, T. H. et al., Spectrochim. Acta. A. Mol. Biomol. Spectrosc.61, 2253–2259 (2005).
[17] C. T. Chen, L. H. Tjeng et al., Phys. Rev. Lett. 68, 2543 (1992)
[18] Y. C. Lai, G. J. Shu, W. T. Chen, C. H. Du and F. C. Chou, J. Cryst. Growth, 413, 100 (2015). 
[19] P. Orgiani,C. Adamo, C. Barone, A. Galdi, A. Yu. Petrov, D. G. Schlom, and L. Maritato, Phys. Rev. B 76, 012404 (2007).
[20] J. A. Kirby, D. B. Goodin, T. Wydrzynski, A. S. Robertson, and M. P. Klein, J. Am. Chem. Soc., 103, 5537 (1981).
[21] S. Bajt, S. R. Sutton, and J. S. Delaney, Geochimica et Cosmochimica Acta, 58, 5209 (1994).
[22] F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 42, 5459 (1990).
[23] P. Kuiper, B. G. Searle, P. Rudolf, L. H. Tjeng, and C. T. Chen Phys. Rev Lett. 70, 1549 (1993). 
[24] N. Hollmann, Z. Hu, T. Willers, L. Bohatý, P. Becker, A. Tanaka, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 82, 184429 (2010).
[25] A. V. Ushakov et al., J. Phys. Condens. Matter 23, 445601 (2011).
[26] P. W. Anderson, Phys. Rev. 115, 1 (1959).
[27] R. Werner, C. Raisch, V. Leca, V. Ion, S. Bals, G. Van Tendeloo, T. Chassé, R. Kleiner, and D. Koelle, Phys. Rev. B, 79, 054416 (2009).
[28] R. Castaner, C. Prieto, R. Ramirez, F. Mompean, J. L. Martinez, M. J. Ruiz-Aragon, and U. Amador, J. Alloys and Comp., 323-324, 102 (2001).
[29] B. Keimer and A. M. Oles, New J. Phys. 6, (2004)
[30] D. I. Khomski, Physca Scripta 72, CC8 (2005).
[31] B. Keimer, Nature Materials 5, 933 (2006).
[32] Y. Tokura, and N. Nagaosa, Science 288, 462 (2000).
[33] B. B. Van Aken, O. D. Jurchescu et al., Phys. Rev. Lett. 90, 066403 (2003)
[34] F. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen, Phys. Rev. B, 1989-I, 40, 5715.
[35] 賴彥仲, 淡江大學博士論文(2014)
[36] J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991). 
[37] A. I. Frenkel, E. A. Stern, M. Qian, and M. Newville, Phys. Rev. B 48, 12449 (1993).
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信