§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1907201613590400
DOI 10.6846/TKU.2016.00565
論文名稱(中文) 層間剪動下砂顆粒之粒徑級配演變研究
論文名稱(英文) Evolution of Sand Grain Size Distribution during Bedding Shear
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 104
學期 2
出版年 105
研究生(中文) 林庭鞍
研究生(英文) Ting-An Lin
學號 603380071
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2016-06-24
論文頁數 179頁
口試委員 指導教授 - 楊長義
委員 - 李宏輝
委員 - 洪勇善
關鍵字(中) 層間剪動
砂顆粒
粒徑級配演變
碎形維度
關鍵字(英) Bedding Shear
Sand
Evolution of Sand Grain Size Distribution
Fractal
第三語言關鍵字
學科別分類
中文摘要
順向坡的特性是具順層的結構,且因受到層間之錯動(bedding shear)常存在層間摩擦剪動的「泥縫(seam)」,其被蹍碎後的顆粒常比上下母岩更細微化或成黏土等級,因此其摩擦角常又比原來母岩更低、且更易吸水。因此,本文主要以兩片粗糙花崗岩面對夾層砂顆粒材料進行磨碎試驗,目的是在探討砂土顆粒材料受剪後顆粒大小、形狀、級配與顆粒間距離分佈特性之改變與產生細粒料(小於#200)的量變化。
結果得致下列主要結論:(1) 本文自製的簡易型梳尺儀可用以量測岩面粗糙度,以利計算JRC。係採用108根直徑0.88 mm測釘排列於兩片鐵片中,再置放於花崗岩粗糙面上量測高程,量測後拍照各測釘高度投影剖面匯入繪圖軟體,標定基準線,可連接108個高程點即可繪出岩面剖面,並計算其JRC值。文中亦使用手機結合新式顯微鏡,可將手機顯微鏡應用於觀察砂顆粒細粒化後之形狀。 (2) 施加正向應力階段,顆粒就會破碎使粒徑變小,但粒徑尚皆大於#200尺寸;粒徑小於#200的細粒料則是在受剪後隨著剪動位移才變多。因在層間受剪破碎愈來愈小,故其整體抗剪摩擦角將漸低。 (3) 夾層顆粒於低正應力(
英文摘要
Consequent slope is a smooth layer structure and because by the bedding shear between the layers, there is often present interlayer friction shear move called "seam", which the particle broken after often than upper and lower rock more or a level of fine clay, so often surpasses the original rock friction angle lower and more absorbent.Therefore, this paper mainly two rough granite face sandwich sand particulate material grinding test, the purpose is to explore the distribution characteristics of sand particulate material change of distance between the after shear particle size, shape, gradation and fine particles produced by the amount of material (less than #200) change.
The results obtained to the following main conclusions:(1) Simple homemade comb foot instrument used to measure the surface roughness of the rock, in order to facilitate the calculation JRC. 108 diameter 0.88 mm using soil nails arranged in two iron sheet, and then placed in a granite surface roughness measuring height, measured after each soil nail pictures sectional height of the projector into graphics software, calibration baseline, 108 soil nails can be connected elevation points to draw a cross-section of rock face, and calculate the value of JRC. The paper also use the new handsets combined with the microscope, the microscope can phone the shape of fine sand particles are applied after the observation.(2) Stress is applied to the positive phase, the particles will be broken so that the particle size becomes smaller, but still larger than in particle size # 200; fine aggregate size of less than #200 is in the shear with only dynamic displacement increases. Because the interlayer shear crushing smaller and smaller, so the overall shear angle of friction will gradually lower.(3) Interlayer particles under low normal stress (
第三語言摘要
論文目次
目錄
目錄	I
表目錄	III
圖目錄	IV
第一章  緒論	1
1.1 研究動機與目的	1
1.2 研究方法	5
1.3 研究架構與內容	6
第二章  文獻回顧	7
2.1 顆粒破碎	7
2.2 顆粒材料剪力強度之影響因素	8
2.2.1 粒徑大小之影響	8
2.2.2 顆粒形狀之影響	9
2.3 碎形維度之概念	10
2.3.1 單一顆粒之碎形維度	10
2.3.2 顆粒級配之碎形維度	11
2.3.3 顆粒群堆疊之碎形維度	13
第三章  試驗配置與規劃	21
3.1 試驗儀器	21
3.1.1 直接剪力試驗儀	21
3.1.2 監測系統	21
3.1.3 儀器校正	22
3.2 試驗材料基本性質試驗	27
3.3 圍岩粗糙面之起伏程度	30
3.4 夾層砂顆粒之直接剪力試驗	38
3.4.1 試驗內容	38
第四章  試驗結果與分析	51
4.1 試驗之可重複性測試	51
4.2夾層顆粒重複受剪後剪應力-剪位移曲線之累積改變	59
4.3 顆粒粒徑與尖峰摩擦角之關係	61
4.4 夾層顆粒受剪後之大小變化	75
第五章 顆粒受剪後形狀與級配碎形維度之演化	84
5.1 本文砂土受剪後之形狀改變	84
5.1.1 手機顯微鏡之開發	84
5.2 顆粒級配之碎形維度	103
5.2.1 夾層砂粒受剪後級配碎形維度分析結果	104
第六章  兩兩顆粒間距離分佈特性	114
6.1 雙點相關維度之意義	114
6.2 夾層砂顆粒受剪後排列變化	117
6.3 夾層顆粒堆疊試驗之重複性檢視	119
6.4 受剪後夾層顆粒之排列變化	122
6.5 受剪夾層顆粒排列之雙點相關維度變化	138
第七章  結論與建議	174
7.1 結論	174
7.2 建議	175

 
表目錄
表1.1 台灣近年重大順向坡滑動災害與地質因素(紀宗吉,2010)	3
表1.2 國道3號順向坡滑動場址岩性剪力強度參數(交通部,2011)	3
表3.1 本文所使用No.201砂之基本性質	28
表3.2 顆粒反覆受剪動後各種粒徑之重量(g)比較(
參考文獻
1.	王永煜 (2005),「顆粒級配與堆疊對礫石材料剪力強度之影響」,私立淡江大學土木工程研究所,碩士論文,淡水。
2.	交通部 (2011),「國道3號3.1公里崩塌事件原因調查工作總結報告」。
3.	李錫堤 (2011),「台灣的順向坡與順向坡滑動案例探討」,2011海峽兩岸地質災害防治學術研討會論文集:7-19。
4.	李錫堤 (2012),「台灣困難地質條件下之工程挑戰與對策」,2012岩盤工程研討會,苗栗。
5.	吳東杰 (2003),「以碎形維度探討顆粒性材料強度之組構因素」,私立淡江大學土木工程研究所,碩士論文,淡水。
6.	李彥宏 (2005),「山崩空間幾何特性之碎形分析」,私立淡江大學土木工程研究所,碩士論文,淡水。
7.	林錫宏、林銘郎、紀宗吉 (2012),「平面型岩體滑動的邊坡穩定與層間剪裂帶影響探討-以嘉義態和地區為例,2012岩盤工程研討會,苗栗:609-618。
8.	紀宗吉 (2010),「全臺重大順向坡滑動歷史事件簿」,地質29(2):24-27。
9.	洪如江 (2010),「台灣的順向坡滑動災害的回顧與災害防治的原則」,土木水利37(3):1-7。
10.	陳惠宜 (2012),「顆粒級配對砂土滲透係數之影響」,私立淡江大學土木工程研究所,碩士論文,淡水。
11.	國道新建工程局 (2000),「第二高速公路邊坡坍滑案例回饋設計之研究」。
12.	張光宗、陳宥序、鄭敏杰 (2014),「以數值方法探討卵礫石層的力學行為」,中華水土保持學報,45(2):95-102。
13.	楊長義、楊振榮 (2001),「以方格覆蓋法解釋卵礫石篩分析粒徑分佈特徵」, 第九屆大地工程學術研討會,桃園,第B007-1 –8 頁。
14.	楊振榮 (2002),「以GIS輔助分析顆粒材料之組構特性」,私立淡江大學土木工程研究所,碩士論文,淡江。
15.	楊智凱 (2015),「夾層泥縫對邊坡破壞面發展行為之影響研究」,私立淡江大學土木工程研究所,碩士論文,淡水。
16.	褚炳麟、潘進明、張國雄 (1996),「台灣西部卵礫石層現地之大地工程性質」,地工技術,第55期,第47-58頁。
17.	鄭文隆 (1986),「室內試驗方法對夯實紅土礫石材料力學性質之研究」,行政院國家科學委員會專題研究計畫成果報告。
18.	蔡明欣、陳錦清、王銘德 (1995),「台灣西部地區卵礫石層現地抗剪強度研究」,國際卵礫石層地下工程研討會,第21-30頁。
19.	Barton, N. (1980) “Evaluation of shear strength in rockfill and between rockfills and rock foundations.”, NGI report53101-2,67p.(In Norwegian).
20.	Barton, N. R. and Choubey, V. (1977) “The Shear Strength of Rock Joint In Theory and Practice.”, Rock Mechanics,10:1-54.
21.	Bishop, A. W. (1984) “A large shear box for testing sands and gravels.”, Proceeding of the 2nd International Conference on Soil and Foundation.
22.	Chen, L. S. (1948) “An investigation of stress-strain and strength characteristics of cohesion less soil by triaxial compression test.”, Proceeding of the 2nd International Conference on Soil and Foundation Engineering,Vol.1pp.35-43
23.	Coughlin, J. and Kranz, R. (1991) “New approaches to studying rock burst-associated seismicity in mines”, Rock Mechanics, pp. 491-500, Balkema, Rotterdam.
24.	Holtz, W. G. and Gibbs, H. J. (1956) “Triaxial shear tests on pervious gravelly soils. ”, Proceedings, American Society of Civil Engineers,pp.1-22.
25.	Hall E B, Gordon B B. (1963) “Triaxial testing with large-scale high pressure equipment”, [J].Laboratory Shear Testing of Soils. Spechial Tech. Pubication,361: 315-328.
26.	Hardin (1985) “Crushing of soil particle.”, [J].Journal of Geotechnical Engineering American Society of Civil Engineers,111(10):1177-1192.
27.	Hart, M. W. (2000) “Bedding-parallel shear zones as landslide mechanism in horizontal sedimentary rocks”, Environmental & Engineering Geoscience 11(2): 95-113.
28.	Huhn, K., I. Kock and A.J. Kopf (2006) “Comparative numerical and analogue shear box experiments and their implications for the mechanics along the failure plane of landslides”, Norwegian Journal of Geology 86:209-220.
29.	Krumbein, W.C., (1941) “Measurement and geological significance of shape and roundness of sedimentary particles.”, Journal of Sedimentary Petrology 11 (2), 64–72.
30.	Kjaernsli B, Sand A. (1963) “Compressibility of some coarse-grained materials”, Proc. European Conf. Soil Mech. and Found. Engrg. Weisbaden: Germany,:245-251.
31.	Kagan, Y.Y. and Knopoff, L. (1980) “Spatial distribution of earthquakes: the two-point correlation function”, The Geophysical Journal of The Royal Astronomical Society,Soc.62, pp.303-320.
32.	Ladanyi, B. and G. Archambault (1970) “Simulation of Shear Behavior of a Jointed Rock Mass.”, Proc.11th U.S. Symposium on Rock Mechanic:105-125.
33.	Liu Han-long, Qin Hong-yu, Gao Yu-feng, et al. (2005) “Experimental study on particle breakage of rockfill and coarse aggregates.”, [J].Rock and Soil Mechanics, 26(4): 562–566.
34.	Lobo-Guerrero, S., Vallejo L. E. (2005) “Visualization of crushing evolution in granular materials under compression using DEM.”,[J]. International Journal of Geotechnique,6(3):195–200.
35.	Marsal R J. (1967) “Large scale testing of rockfill materials.”, [J].Journal of the Soil Mechanics and Foundations Division, 93(SM2): 27-43.
36.	Marachi, N. (1969) “Strength and deformation characteristics of rock-fill materials.”, PhD Dissertation,University of California,Berkeley.
37.	Mandelbrot, B.B. (1982) “The Fractal Geometry of Nature”, Freman, SanFrancisco.
38.	Milne, D., Germain, P., Grant, D., and Noble, P., (1991) “Field observation for the standardization of the NGI classification system for underground mine design.”, International Congress on Rock Mechanics. A.A. Balkema: Aachen, Germany.
39.	Shigui, D, Yunjin, H, and Xiaofei, H, (2009) “Measurement of joint roughness coefficient by using profilograph and roughness ruler.”, Journal of Earth Science, 20(5): 890-896.
40.	Tse, R., &Cruden, D. M.(1979). “Estimating joint roughness coefficients.”, International Journal of Rock Mech. Mining Science & Geomechanic Abstracts, 16(4), 303-307.
41.	Xie, H.(1993), “Fractals in Rock Mechanics.”, Balkema Publishers, Rotterdam.
42.	Yang, Z. Y. and Jou, J. L. (2001) “Interpretation of sieve analysis data using the box-counting method for gravel cobbles.”,Canadian Geotechnical Journal,Vol.38,No.6,pp.1201-1212.
43.	Zhao Guang-si, Zhou Guo-qing, Zhu Feng-pan at al. (2008) “Experimental research on the influence of particle crushing on direct shear strength of sand.”[J].Journal of China University of Mining & Technology,37(3):291-294.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信