§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1907201419171800
DOI 10.6846/TKU.2014.00735
論文名稱(中文) 利用微藻薄膜系統處理生活污水之研究
論文名稱(英文) A study on the microalgae membrane system in the sewage treatment
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 水資源及環境工程學系碩士班
系所名稱(英文) Department of Water Resources and Environmental Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 許之顥
研究生(英文) Chih-Hao Hsu
學號 601480410
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-06-19
論文頁數 68頁
口試委員 指導教授 - 高思懷
委員 - 鄧宗禹
委員 - 李奇旺
關鍵字(中) 微藻薄膜系統
小球藻
超過濾(UF)
微過濾(MF)
薄膜濃縮
關鍵字(英) microalgae membrane system
Chlorella sp.
UF
MF
membrane concentration
第三語言關鍵字
學科別分類
中文摘要
現今的污水處理方式之生物處理多以活性污泥法為主,但在廢污水處理過程中會產生大量CO2、且國內污泥產量日益增加而最終處置場地有限。在許多國內外研究均證實微藻具有同時處理廢污水中碳、氮、磷等污染物以及固定CO2之能力,且增殖之微藻可用作生質柴油原料等,能解決污泥處理處置問題。
本研究為了解微藻處理生活污水可行性並克服傳統活性污泥處理之缺陷,因而利用微藻薄膜系統處理生活污水中營養鹽及有機物,觀察微藻處理生活污水之生長及營養鹽去除效率,探討利用薄膜提升微藻藻體濃度並縮短污水處理時程之可行性。
由實際污水處理結果發現,將小球藻培養於經初沉池沉澱之生活污水,會受到雜菌感染而死亡;而利用超過濾(UF)及微過濾(MF)預先過濾生活污水則可去除所有懸浮固體及大部分細菌、病毒,使小球藻成為優勢種而能成功培養。在UF及MF過濾水處理方面,發現利用初始生物質量為0.08及0.05 g/L小球藻,可在120小時分別去除99.3%及89.6%氨氮;在開放式培養實驗,發現利用初始生物質量為0.06及0.38 g/L小球藻處理UF過濾水,可在5天去除95%以上之氨氮。利用初始生物質量0.43 g/L小球藻處理MF過濾水,在處理5天之氨氮去除率為77.3%。
英文摘要
Activated sludge is popular method of biological treatment in the sewage management. However, the operation process confronts some problems which would produce lots of CO2, increase large amount of sewage sludge and is difficult to find the final disposal site in Taiwan. Many studies have proven the microalgae can remove carbon, nitrogen and phosphorus of the sewerage and fix carbon dioxide simultaneously. Furthermore, the proliferated microalgae form the treatment process can be as the feedstock of biodiesel and also solve the problem of sludge treatment.
In order to understand the feasibility about using microalgae to treat sewage and defeat the defects of conventional activated sludge method. This study used microalgae membrane system to treat the nutrients and organics of the sewage to explore the microalgae growth and remove efficiency of nutrients and organics, and increase the concentration of microalgae biomass to reduce the time of the treatment process.
The results of the sewage treatment show that the microalgae would die by infecting of mixed microbe when that cultured in sewage through primary sedimentation tank. Ultrafiltration (UF) and microfiltration (MF) were used to filter the sewage, which can remove the entire suspended solid, the most of bacteria and virus to make the microalgae as dominate species. When the initial biomass of Chlorella sp. were 0.08 and 0.05 g/L, after 120h, the ammonia nitrogen remove rate were 99.3% and 89.6% respectively. In the open cultural experiment, the remove rate of ammonia nitrogen of UF water was 95% after 5 days when the initial biomass were 0.06 and 0.38 g/L. The remove rate of ammonia nitrogen of MF water was 77.3% after 5 days when the initial biomass were 0.43 g/L.
第三語言摘要
論文目次
目錄
圖目錄 VIII
表目錄 X
第一章	研究背景與目的	1
1-1	研究背景	1
1-2	研究目的	4
第二章	文獻回顧	5
2-1	小球藻(Chlorella sp.)	5
2-2	生長曲線及測定	6
2-3	光合作用	7
2-4	影響微藻生長因子	11
2-4-1	光照強度和週期影響	11
2-4-2	溫度的影響	12
2-4-3	pH值的影響	12
2-4-4	碳源的影響	13
2-4-5	氮源的影響	13
2-4-6	磷源的影響	14
2-5	微藻培養方法	15
2-6	微藻之應用	16
2-7	薄膜技術	17
第三章	研究方法	18
3-1	實驗進行流程	18
3-2	實驗材料	21
3-2-1	藻種來源與培養基成分	21
3-2-2	廢水來源及水質	23
3-3	實驗步驟	25
3-3-1	前期培養	25
3-3-2	模擬污水與實際污水處理比較	26
3-3-3	小球藻處理UF及MF過濾水	27
3-3-4	UF及MF薄膜濃縮	28
3-4	分析方法	30
3-4-1	藻體生物質量的測定(biomass)	30
3-4-2	光照強度的測定	30
3-4-3	pH值測定	30
3-4-4	氨氮濃度測定	30
3-4-5	硝酸鹽氮濃度測定	30
3-4-6	亞硝酸鹽氮濃度測定	30
3-4-7	正磷酸鹽濃度測定	31
3-4-8	溶解性總有機碳濃度測定	31
3-4-9	生化需氧量濃度測定	31
3-4-10	化學需氧量濃度測定	31
3-4-11	總菌落數測定	31
3-4-12	懸浮固體測定	31
3-4-13	營養鹽去除率計算	32
3-4-14	藻體比生長速率計算	32
3-5	實驗儀器與設備	33
第四章	結果與討論	34
4-1	密閉式批次實驗	34
4-1-1	模擬污水及生活污水處理	34
4-1-2	生活污水前處理	38
4-1-3	小球藻處理UF及MF過濾水	43
4-2	開放式批次實驗	50
4-2-1	濃縮小球藻對處理效率之影響	51
4-2-2	薄膜濃縮	60
第五章	結論與建議	63
5-1	結論	63
5-2	建議	64
參考文獻 	65

圖目錄
圖2-1 Chlorella sp.圖片	5
圖2-2 綠藻之生長曲線	7
圖2-3 光合作用光反應流程圖	8
圖2-4光合作用暗反應流程圖	9
圖3-1 實驗流程圖	18
圖4-1小球藻培養於不同pH值模擬污水之生物質量及pH值變化	36
圖4-2小球藻培養於不同pH值模擬污水之總有機碳濃度及去除率變化	37
圖4-3 小球藻培養於未經處理之生活污水情況	37
圖4-4小球藻培養於UF過濾水之情況	39
圖4-5小球藻培養於MF過濾水情況	39
圖4-6生活污水經UF過濾前後比較	41
圖4-7生活污水經MF過濾前後比較	42
圖4-8小球藻培養於UF及MF過濾水之生物質量及pH值變化	45
圖4-9小球藻培養於UF過濾水之營養鹽濃度變化	46
圖4-10小球藻培養於MF過濾水之COD,DOC及營養鹽濃度變化	46
圖4-11小球藻培養於UF及MF過濾水之DOC及氨氮去除率變化	47
圖4-12模擬污水及MF過濾水之總有機碳去除情況比較	48
圖4-13開放式批次培養實驗情況	50
圖4-14不同初始濃度小球藻培養於UF及MF過濾水之生物質量變化	52
圖4-15 小球藻於MF過濾水處理情況	53
圖4-16不同初始濃度小球藻培養於UF及MF過濾水之pH值變化	55
圖4-17 0.06 g/L小球藻培養於UF過濾水之營養鹽濃度變化	56
圖4-18 0.38 g/L小球藻培養於UF過濾水之營養鹽濃度變化	56
圖4-19 0.43 g/L小球藻培養於MF過濾水之營養鹽濃度變化	57
圖4-20小球藻於UF及MF過濾水之氨氮去除率比較	57
圖4-21利用薄膜濃縮小球藻之情況	61
圖4-22小球藻於膜面沉積情況	61
圖4-23利用經薄膜過濾之生活污水反沖洗薄膜之情況	62
圖4-24小球藻於薄膜膜面沉積圖	62

表目錄
表2-1光反應與暗反應比較表	10
表3-1培養基成分表	21
表3-2模擬污水成分	22
表3-3取自淡水污水廠之初沉池出流水水質	24
表3-4藻類培養設備	33
表3-5分析儀器與設備	33
表4-1模擬污水水質	34
表4-2生活污水經UF過濾前後及濃縮液水質比較	41
表4-3生活污水經MF過濾前後及濃縮液水質比較	42
表4-4 UF過濾水經0.06 g/L小球藻處理前後水質比較	58
表4-5 UF過濾水經0.38 g/L小球藻處理前後水質比較	59
表4-6 MF過濾水經0.43 g/L小球藻處理前後水質比較	59
參考文獻
Babel, S.,Takizawa, S.Ozaki, H. (2002). "Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae." Water Research 36(5): 1193-1202.
Becker, E. W. (1993). Microalgae: biotechnology and microbiology, Cambridge University Press.
Camiro-Vargas, T. K.,Hernandez-Ayon, J. M.,Valenzuela-Espinoza, E.,Delgadillo-Hinojosa, F. and Cajal-Medrano, R. (2005). "Dissolved inorganic carbon uptake by Rhodomonas sp. and Isochrysis aff. galbana determined by a potentiometric technique." Aquacultural engineering 33(2): 83-95.
Chang, I.-S.,Le Clech, P.,Jefferson, B. and Judd, S. (2002). "Membrane fouling in membrane bioreactors for wastewater treatment." Journal of environmental engineering 128(11): 1018-1029.
Chen, F. (1996). "High cell density culture of microalgae in heterotrophic growth." Trends in biotechnology 14(11): 421-426.
Cho, S.,Lee, N.,Park, S.,Yu, J.,Luong, T. T.,Oh, Y. K. and Lee, T. (2013). "Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources." Bioresource Technology 131: 515-520.
Chojnacka, K.Noworyta, A. (2004). "Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures." Enzyme and Microbial Technology 34(5): 461-465.
De la Noue, J.De Pauw, N. (1988). "The potential of microalgal biotechnology: A review of production and uses of microalgae." Biotechnology advances 6(4): 725-770.
Fujita, K. (1959). "The metabolism of acetate in Chlorella cells." Journal of Biochemistry 46(3): 253-268.
Gao, K.Yu, A. (2000). "Influence of CO2, light and watering on growth of Nostoc flagelliforme mats." Journal of Applied Phycology 12(2): 185-189.
Gonzalez, L. E.,Canizares, R. O.Baena, S. (1997). "Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus." Bioresource Technology 60(3): 259-262.
Hill, J.,Nelson, E.,Tilman, D.,Polasky, S. and Tiffany, D. (2006). "Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels." Proceedings of the National Academy of Sciences of the United States of America 103(30): 11206-11210.
Hu, Q. (2004). "5 Environmental Effects on Cell Composition." Handbook of microalgal culture: Biotechnology and applied Phycology: 83.
Hu, Q.,Sommerfeld, M.,Jarvis, E.,Ghirardi, M.,Posewitz, M.,Seibert, M. and Darzins, A. (2008). "Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances." Plant Journal 54(4): 621-639.
Huertas, E.,Montero, O.Lubian, L. M. (2000). "Effects of dissolved inorganic carbon availability on growth, nutrient uptake and chlorophyll fluorescence of two species of marine microalgae." Aquacultural engineering 22(3): 181-197.
Isleten-Hosoglu, M.,Gultepe, I.Elibol, M. (2012). "Optimization of carbon and nitrogen sources for biomass and lipid production by Chlorella saccharophila under heterotrophic conditions and development of Nile red fluorescence based method for quantification of its neutral lipid content." Biochemical Engineering Journal 61: 11-19.
Kim, S.,Park, J. E.,Cho, Y. B. and Hwang, S. J. (2013). "Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions." Bioresource Technology 144: 8-13.
Lee, C. G. (1999). "Calculation of light penetration depth in photobioreactors." Biotechnology and Bioprocess Engineering 4(1): 78-81.
Liu, W.,Au, D. W. T.,Anderson, D. M.,Lam, P. K. S. and Wu, R. S. S. (2007). "Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina." Journal of experimental marine biology and ecology 346(1-2): 76-86.
Nicolaisen, B. (2003). "Developments in membrane technology for water treatment." Desalination 153(1): 355-360.
Perez-Garcia, O.,Escalante, F. M. E.,de-Bashan, L. E. and Bashan, Y. (2011). "Heterotrophic cultures of microalgae: Metabolism and potential products." Water Research 45(1): 11-36.
Pulz, O. (2001). "Photobioreactors: production systems for phototrophic microorganisms." Applied Microbiology and Biotechnology 57(3): 287-293.
Rai, L. C.,Gaur, J. P.Kumar, H. D. (1981). "Phycology and heavy-metal pollution." Biological Reviews of the Cambridge Philosophical Society 56(2): 99-151.
Shi, X. M.,Zhang, X. W.Chen, F. (2000). "Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources." Enzyme and Microbial Technology 27(3-5): 312-318.
Smith, C.,DiGregorio, D.Talcott, R. (1969). "The use of ultrafiltration membranes for activated sludge separation."
Sukenik, A.,Carmeli, Y.Berner, T. (1989). "Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. 1." Journal of Phycology 25(4): 686-692.
Terry, K. L.Raymond, L. P. (1985). "System design for the autotrophic production of microalgae." Enzyme and Microbial Technology 7(10): 474-487.
Van der Heide, T.,Roijackers, R. M.,Van Nes, E. H. and Peeters, E. T. (2006). "A simple equation for describing the temperature dependent growth of free-floating macrophytes." Aquatic Botany 84(2): 171-175.
Wang, L.,Min, M.,Li, Y.,Chen, P.,Chen, Y.,Liu, Y.,Wang, Y. and Ruan, R. (2010). "Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant." Applied Biochemistry and Biotechnology 162(4): 1174-1186.
Yang, C.,Hua, Q.Shimizu, K. (2000). "Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions." Biochemical Engineering Journal 6(2): 87-102.
Zhou, W.,Min, M.,Li, Y.,Hu, B.,Ma, X.,Cheng, Y.,Liu, Y.,Chen, P. and Ruan, R. (2012). "A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation." Bioresource Technology 110: 448-455.

李英敏 , 楊海波 , 張欣華 , 於媛 , 李傑智,2007,活性小球藻對鉛離子的吸附與解吸特徵研究,生物技術,第17卷第06期。
陳國帝,“環工技術於微藻再生能源生產之應用”,環境污染控制評估研討會論文集摘要,第29頁,新竹市(2009)。
徐明光(1999) “台灣的淡水浮游藻(I)-通論及綠藻(1)”國立台灣博物館印行。
藍大鈞,『藻類固定二氧化碳與藻體的利用研究』,長庚大學化學工程研究所碩士論文,2001 年。
王藝蓉(2003) “以光生化反應器培養微藻生產脂肪酸” 私立大葉大學       食品工學系碩士論文。
潘忠政,『整合鹼液吸收及光合作用以固定二氧化碳』,大葉大學環境工程研究所碩士論文,2001 年。
張惟閔(2005) “微藻培養於新型光生化反應器之系統開發” 國立清華大學化學工程研究所碩士論文。
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信