§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1907201306482100
DOI 10.6846/TKU.2013.00725
論文名稱(中文) 鳳梨葉萃取物與查耳酮衍生物抗UVB引起的氧化壓力及抗癌活性評估
論文名稱(英文) Evaluation of the inhibition effects of pineapple leaf extract and chalcone derivatives on ultraviolet radiation-induced oxidative stress and anticancer activities
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 101
學期 2
出版年 102
研究生(中文) 陳玥君
研究生(英文) Yue-Jyun Chen
學號 600180086
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2013-05-29
論文頁數 81頁
口試委員 指導教授 - 陳曜鴻
委員 - 莊子超
委員 - 陳盛良
委員 - 陳曜鴻
關鍵字(中) 斑馬魚
查耳酮
鳳梨葉萃取物
紫外線
活性氧化物質
人類表皮膚癌細胞
關鍵字(英) Zebrafish
chalcone
pineapple leaf extract
UVB
ROS
A431
第三語言關鍵字
學科別分類
中文摘要
紫外線會對皮膚造成傷害,包括:產生紅斑、DNA斷裂及皮膚癌等。許多研究中證實鳳梨葉萃取物具有降血糖及降血脂之功效;查耳酮其衍生物於藥理活性上具抗發炎、抑制血栓形成、抗氧化及抑制腫瘤細胞生長之活性。
本篇論文中,選用受精後72小時斑馬魚之幼魚為快篩模式物種,評估鳳梨葉萃取物和查耳酮其衍生物對是否具有防護紫外線照射能力。進一步探討是否能夠有效增強UVB於人類表皮癌細胞(A431)所引起之細胞凋亡。
由研究結果得知,鳳梨葉萃取物及查耳酮衍生物皆能夠有效減少UVB照射後所產生之ROS含量及具有防護魚鰭損傷功效。UVB、鳳梨葉萃取物和查耳酮及其衍生物分別作用於A431細胞時,都能夠抑制癌細胞生長。然而,UVB (30 mJ/cm2)與Compound 4 (10 μg/mL)合併與各別作用A431細胞後,發現合併治療之PARP片段(PARP cleavage)表現量增加,即表示合併治療誘導之細胞凋亡情形更加顯著。UVB和Compound 4合併作用於人類表皮膚癌細胞(A431)具有協同作用,因此,Compound 4可能為一種治療皮膚癌之化療藥物。
本研究以斑馬魚之幼魚作為模式物種,添加抗氧化物質評估是否具有防護UVB之效果。此模式的建立,之後可以用於快速檢驗抗氧化物質的光防護能力,並且同時評估抗氧化物質於生物體內之毒性影響。另外,藉由與UVB合併治療A431細胞,探討抗氧化物質是否具有開發為抗癌及化療藥物的潛力。此研究模式之建立,能夠作為日後快速評估防護UVB照射能力與治療皮膚癌之化療藥物開發。
英文摘要
Human exposed to heavy UVR could cause serious health effects such as skin erythema, DNA breakage and skin cancers. It is reported that chalcone have various biological activities such as anti-inflammatory, anti-oxidative, anti-cancer, and anti-coagulant effects. The extract of pineapple leaves has anti-diabetic and anti-dyslipidemic effects. This study is aimed to focus on those antioxidants applied in 3 day-post-fertilization (dpf) zebrafish model system to evaluate whether providing the UV protective effects. 
Here, we investigated whether pineapple leaf extract and chalcone derivatives can sensitize A431 human epidermoid carcinoma cells to UVB induced cell death. We examined the combined effect of UVB and drug on A431 cells. 
Results showed the extract of pineapple leaves and chalcone derivatives can protect zebrafish fin from UVB damage and reduce of reactive oxygen species (ROS) produce. Exposure of A431 carcinoma cells to UVB radiation, pineapple leaves and chalcone derivatives can induced cytotoxicity. However, the combination of Compound 4 (10 μg/mL) and UVB (30 mJ/cm2) exposure was associated with increased cytotoxicity inhibition of A431 cells compared with either agent alone. Moreover, Compound 4 markedly activation the PARP cleavage in protein expression, and finally cell death. In conclusion, our study demonstrates that the combination of Compound 4 and UVB act synergistically against skin cancer cells. Thus, Compound 4 is a potential chemotherapeutic agent against skin carcinogenesis.
In the future, UVB protective effects and speedy antioxidants selection could be applied in these model systems. These screening method are excellent and effective for large-scale organisms toxicity and antioxidants screening. In conclusion, our study demonstrates that the combination of antioxidants and UVB act synergistically against skin cancer cells. Thus, chalcone derivatives and similar antioxidants is a potential chemotherapeutic agent  against  skin carcinogenesis.
第三語言摘要
論文目次
圖目錄	v
表目錄	vii
第一章	前言	1
1-1 紫外線 (Ultraviolet, UV)	1
1-2 紫外線 (Ultraviolet, UV) 對皮膚之影響	1
1-3 活性氧化物質(Reactive oxygen species, ROS)與皮膚病變之關係	2
1-4 抗氧化物質	3
1-5抗氧化物質能夠增強UVB所誘導之細胞凋亡	4
1-6 鳳梨	5
1-7 鳳梨葉之應用	6
1-8 查耳酮 (Chalcone) 及其衍生物來源	8
1-9 Chalcone 及其衍生物之應用	9
1-10 模式物種-斑馬魚優勢	10
1-11研究目的	11
第二章 材料與方法	12
2-1 野生型斑馬魚 ( AB strain ) 之飼養及胚胎收集	12
2-2 鳳梨葉萃取物及查耳酮(chalcone)衍生物	12
2-3 浸泡方式及藥物篩選	13
2-4 UVB照射	13
2-5 魚鰭損傷修復觀察記錄	14
2-6 治療損傷之魚鰭修復記錄	14
2-7 偵測活性氧分子 ( Reactive oxygen species ,ROS )	14
2-8 受損魚鰭回復至正常魚鰭面積之統計分析	15
2-9 細胞凋亡分析 (TUNEL assay)	16
2-10 斑馬魚胚胎核酸(Riobonucleotide acid, RNA) 之萃取	17
2-11 反轉錄聚合酶連鎖反應 (Reverse transcription-PCR, RT-PCR )	18
2-12 即時定量聚合酶連鎖反應 (quantitative real-time polymerase chain reaction, qRT-PCR)	18
2-13 人類表皮癌細胞 (A431) 培養	19
2-14 細胞存活率檢測 (MTT assay)	19
2-15 UVB照射處理人類表皮膚癌細胞細胞(A431)	20
2-16 西方墨點法 (Western blot)	21
2-17 統計分析	22
2-18 螢光顯微鏡、顯微照相系統	23
第三章 結果	24
3-1 確立斑馬魚幼魚為模式物種之紫外線暴露劑量	24
3-2人類表皮膚癌細胞(A431)經UVB照射後明顯誘導凋亡	25
PARTⅠ鳳梨葉萃取物	26
3-3鳳梨葉萃取物對斑馬魚幼魚毒性低	26
3-4 鳳梨葉萃取物具顯著防護UVB照射之能力	26
3-5鳳梨葉萃取物具光保護魚鰭損傷能力	27
3-6 鳳梨葉萃取物能減少UVB引起之細胞凋亡	29
3-7 鳳梨葉萃取物為UVB防護劑對細胞凋亡相關基因之影響	31
3-8 長時間浸泡鳳梨葉萃取物會對斑馬魚幼魚造成毒性影響	31
3-9 低濃度鳳梨葉萃取物有效治療及加速魚鰭損傷修復	32
3-10 鳳梨葉萃取物具有抑制人類表皮癌A431細胞生長能力	34
3-11低濃度萃取物無法增加UVB對癌細胞數之影響	35
PARTⅡ查爾酮(chalcone)及其衍生物	37
3-12 低劑量查耳酮衍生物不具生物毒性	37
3-13 低濃度下查耳酮(chalcone)防護UVB能力最佳	38
3-14查耳酮衍生物皆無保護魚鰭損傷	39
3-15斑馬魚對查耳酮衍生物隨浸泡時間增而增強毒性	40
3-16 查耳酮及其衍生物具有抑制人類表皮癌A431細胞生長能力	41
3-17 Compound 4 (Cpd 4)有效增加UV造成之癌細胞數量減少	42
3-18 Compound 4 (Cpd 4)有效增加UVB引起之細胞凋亡	44
第四章 討論	45
4-1 查耳酮衍生物依其結構分析抗癌功效	45
4-2 查耳酮衍生物造成鈣離子失衡,為凋亡過程中之上調因子	46
4-3 鳳梨葉萃取物及查耳酮衍生物為有效之光保護劑	47
4-4 查耳酮衍生物具有良好之滲透性	49
4-5 鳳梨葉萃取物(10 μg/mL)能作為組織修復中抗氧化劑	50
4-5 查爾酮衍生物(Cpd 11)藉由不同路徑對斑馬魚幼魚及癌細胞造成影響	51
4-6 結論與未來研究方向	52
第五章 參考文獻	54

圖目錄
Fig. 1UVB 照射次數不同對斑馬魚幼魚存活率有顯著差異 .............. 61
Fig. 2 UVB 不同照射劑量處理A431 細胞皆有顯著影響 .................. 61
Fig. 3 UVB 對A431 細胞之影響程度隨時間增加而更顯著 .............. 62
Fig. 4 斑馬魚幼魚浸泡不同濃度鳳梨葉萃取物1.5 小時之存活率 .... 62
Fig. 5 鳳梨葉萃取物相對應UVB 控制組所產生ROS 表現量 .......... 63
Fig. 6 UVB 照射24 小時後對魚鰭造成之損傷程度分類 ................... 63
Fig. 7 UVB 照射後顯著對魚鰭造成傷害並造成大量細胞凋亡訊號
產生 ................................................................................................. 64
Fig. 8 高濃度鳳梨葉萃取物有效減少UVB 造成之細胞凋亡訊號產
生 ..................................................................................................... 64
Fig. 9 隨著鳳梨葉萃取物濃度增加,細胞凋亡之相關基因表現越不
顯著 ................................................................................................. 65
Fig. 10 長時間浸泡鳳梨葉萃取物對斑馬魚幼魚之毒性影響 ............ 65
Fig. 11 高濃度之鳳梨葉萃取物具有效抑制A431 細胞生長能力 ..... 66
Fig. 12 低濃度鳳梨葉萃取物無法增強抑制A431 細胞生長能力 ..... 66
Fig. 13 斑馬魚幼魚經Compound 11 (Cpd 11)浸泡1.5 小時後,造成
幼魚出現心包腔腫大及積血之情形 ............................................. 67
Fig. 14 查耳酮相對應UVB 控制組能夠減少產生ROS 表現量 ........ 67
Fig. 15 Compound 4 不同濃度作用於A431 細胞12 小時後之細胞存
活率分析 ......................................................................................... 68
Fig. 16 Compound 4 與UVB (50mJ/cm2)合併治療A431 細胞 ........... 68
Fig. 17 Compound 4(10 μg/mL)與UVB (30mJ/cm2)合併治療A431 細
胞,顯著減少細胞存活率 ............................................................. 69
Fig. 18 Compound 4(10 μg/mL)與UVB (30mJ/cm2)合併治療後增加
A431 細胞凋亡 ............................................................................... 70

表目錄
Table 1 Chalcone 衍生物主要之結構式、名稱及化學式 .................... 71
Table 2 反轉錄聚合酶連鎖反應(qRT-PCR) 所用之引子 ................... 72
Table 3 Kaplan-Meier 法分析鳳梨葉萃取物作為防護時各實驗組受
損魚鰭(未回復正常魚鰭面積),估計各組恢復正常魚鰭面積平
均時間 ............................................................................................. 73
Table 4 Cox proportional hazards regression method 分析鳳梨葉萃取
物防護UVB 照射後臀鰭恢復率 ................................................... 74
Table 5 Kaplan-Meier 法分析鳳梨葉萃取物作為治療時各實驗組受
損魚鰭(未回復正常魚鰭面積),估計各組恢復正常魚鰭面積平
均時間 ............................................................................................. 75
Table 6 Cox proportional hazards regression method 分析鳳梨葉萃取
物治療UVB 照射後臀鰭恢復率 ................................................... 76
Table 7 斑馬魚幼魚浸泡查耳酮衍生物1.5 小時之存活率 ................ 77
Table 8 Kaplan-Meier 法分析查耳酮及其衍生物作為防護時各實驗
組受損魚鰭(未回復正常魚鰭面積),估計各組恢復正常魚鰭面
積平均時間 ..................................................................................... 78
Table 9 Cox proportional hazards regression method 分析查耳酮及其
衍生物防護UVB 照射後臀鰭恢復率 ........................................... 79
Table 10 斑馬魚幼魚浸泡查耳酮衍生物24 小時之存活率 ................ 80
Table 11 查耳酮及其衍生物具有效抑制A431 細胞生長能力 ........... 81
參考文獻
1.SCHMITZ-EIBERGER, M. & NOGA, G. (2001) Quantification and reduction of UV-B induced plant damage in Phaseolus vulgaris leaves and Malus domestica fruits, Journal of applied botany, 75, 53-58.

2.ASSEFA, Z., VAN LAETHEM, A., GARMYN, M. & AGOSTINIS, P. (2005) Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1755, 90-106.

3.LONGSTRETH ET AL., J. D. L., F.R. GRUIJI, M.L. KRIPKE, S. ABSECK, F. ARNOLD, H. SLAPER, G. VELDERS, Y. TAKIZAWA, J.C. VANDERLEUN. (1998) Health risks. J. Photochem. Photobiol. B., 46: pp. 20-39.

4.MADAN V, L. J., SZEIMIES RM. (2010) Non-melanoma skin cancer. Lancet.,375(9715):673–685.

5.DR ENGLISH, B. A., A KRICKER, C FLEMING. (1997) Sunlight and cancer. Cancer Causes Control., 8: pp. 271-283.

6.D. KULMS, T. S. (2000) Molecular mechanisms of UV-induced apoptosis. Photodermatol. Photoimmunol. Photomed., 16: pp. 195-201.

7.KULMS, D. A. S., T. (2000) Molecular mechanisms of UV-induced apoptosis. Photodermatol. Photoimmunol. Photomed. 16, 195-201.

8.D.A. LEWIS, Q. Y., J.B. TRAVERS, D.F. SPANDAU. (2008) UVB-induced senescence in human keratinocytes requires a functional insulin-like growth factor-1 receptor and p53. Mol. Biol. Cell 19: 1346–1353.

9.J. LI, Z. L., C. TAN, X. GUO, L. WANG, A. SANCAR, D. ZHONG. (2010) Dynamics and mechanism of repair of ultraviolet-induced (6–4) photoproduct by photolyase. Nature 466:87–890.

10.HALLIWELL B, G. J. (1990) Role of free radicals and catalytic  metal ions in human disease: an overview. Methods Enzymol 186:1-85.

11.RM., T. (1995) Ultraviolet radiation and free radical damage to skin. Biochem Soc Symp 61: 47-53.

12.BLACK HS, L. C. (2001) Radical reactions of carotenoids and potential influence on UV carcinogenesis. Dermatol., Curr Probl 29:140-56.

13.RM., T. (1994) The molecular and cellular pathology of solar ultraviolet radiation. Mol. Aspects Med 15: 1-77.

14.FARBER, J. L. (1994) Mechanisms of cell injury by activated oxygen species. Environ. Health Perspect., 102: (10) 17-24.

15.BUTTKE TM, S. P. (1994) Oxidative stress as a mediator of apoptosis Immunol Today 15:7-10.

16.LIU, R. H. L. (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. American Journal of Clinical and Nutrition., 78: pp. 517S-520S.

17.KOLB, C. A., KASER, M. A., KOPECKY, J. et al. (2001) Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves, Plant Physiology, 127, 863-875.

18.FLINT, S. D., JORDAN, P. W. & CALDWELL, M. M. (1985) Plant protective response to enhanced UV‐B radiation under field conditions: leaf optical properties and photosynthesis, Photochemistry and Photobiology, 41, 95-99.

19.CALDWELL MM, R. R., FLINT SD (1983) Intemal filters: prospects for UV-acclimation in higher plants. Physiol Plant 58:445-450 

20.RAMADAN-HASSANIEN, M. F. (2008) Total antioxidant potential of juices, beverages and hot drinks consumed in Egypt screened by DPPH in vitro assay. Grasas Y Aceites 59: 254-259.

21.SAURA-CALIXTO, F. A. I. G. (2006) Antioxidant capacity of the Spanish Mediterranean diet. Food Chem., 94: 442-447.

22.AMANDINE BRETTONNET, A. H., SHARON DEJONG, MARIA CECILIA LANARI. (2009) Phenolic acids composition and antioxidant activity of canola extracts in cooked beef, chicken and pork. Food Chemistry 121:927–933.

23.M.H. AZIZ, R. K., N. AHMAD. (2003) Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms (review). Int. J. Oncol. 
23:17-28.

24.M.S. BALIGA, S. K. K. (2006) Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochem. photobio. Sci. 5: 243-253.

25.F. AFAQ, V. M. A., N. AHMAD. (2003) Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol. Appl. Pharmacol. 186 : 28-37.

26.ROY, P., E. MADAN, N. KALRA. (2009) Resveratrol 
enhances ultraviolet B-induced cell death through nuclear factor-kappaB pathway in human epidermoid carcinoma A431 cells. Biochem. Biophys. Res. Commun. 384: 215-220.

27.R.P. SINGH, R. A. (2002) Flavonoid antioxidant silymarin and skin cancer, Antioxid. Redox Signal. 4: 655–663.
28.R.P. SINGH, A. K. T., J. ZHAO, R. AGARWAL. (2002) Silymarin inhibits growth  and causes regression of established skin tumors in SENCAR mice via modulation of mitogen-activated protein kinases and induction of apoptosis. Carcinogenesis. 23: 499-510.

29.S. MOHAN, S. D., G.U. MALLIKARJUNA, R.P. SINGH, R. AGARWAL. (2004) Silibinin modulates UVB-induced apoptosis via mitochondrial proteins, caspases activation, and mitogen-activated protein kinase signaling in human epidermoid carcinoma A431 cells. Biochem. Biophys. Res. Commun. 320: 183–189.

30.ZHOU, Y., DAHLER, J. M., UNDERHILL, S. J. & WILLS, R. B. (2003) Enzymes associated with blackheart development in pineapple fruit, Food Chemistry, 80, 565-572.

31.ZHOU Y, D. J., UNDERHILL JR, WILLS RBH. (2003) Enzyme associated with blackheart development in pineapple fruit. Food Chemistry 80: 565–572.

32.SRIPANIDKULCHAI B, W. V., LAUPATTARAKASEM P, SUWANSAKSRI J, JIRAKULSOMCHOK D. (2001) Diuretic effects of selected Thai indigenous medicinal plants in Rats. Journal of Ethnopharmacology 75: 185-190.

33.OLIVEIRA, A. C. D., VALENTIM, I. B., SILVA, C. A. et al. (2009) Total phenolic content and free radical scavenging activities of methanolic extract  powders of tropical fruit residues. Food Chemistry 115: 469-475.

34.MAURER., H. R. (2001) Bromelain: biochemistry, pharmacology and medical use. Cell. Mol. Life Sci., 58: 1234-1245.

35.CHOBOTOVA K, V. A., MAJID FAA. (2010) Bromelain’s activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Letett 290:148-156.

36.BHUI K, T. S., SRIVASTAVA AK, SINGH M, ROY P, SINGH R, SHUKLA Y. (2011) Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2) /M arrest to apoptosis. Mol Carcinog.51(3):231-43.

37.SONG, L. L. C. H. (1999) Administrant Department of National Chinese Traditional Medicine: Shanghai China, Vol. 8: pp. 296-297 (in Chinese).

38.XIE, W. D., XING, D.M., SUN, H., WANG, W., DING, Y., DU, L.J. (2005) The effects of Ananas comosus L leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet. American Journal of Chinese Medicine 33: 95-105.

39.XIE, W. W., H. SU, D. XING, G. CAI, L. DU. (2007) Hypolipidemic Mechanisms of Ananas comosus L. Leaves in Mice: Different From Fibrates but Similar to Statins. Journal of Pharmacological Sciences. 103: pp. 267-274.

40.HU, J., LIN, H., SHEN, J. et al. (2011) Developmental toxicity of orally administered pineapple leaf extract in rats, Food and Chemical Toxicology, 49, 1455-1463.

41.W. WANG, Y. D., D.M. XING, J.P. WANG, L.J. DU. (2006) Studies on phenolic constituents from leaves of pineapple (Ananas comosus). China J. Chinese Mat. Med., 31: p.1242.

42.ULLAH MF, K. M. (2008) Food as medicine: potential therapeutic  tendencies of plant derived polyphenolic compounds. Asian Pac J Cancer Prev 9:187–195.

43.RICE-EVANS C, S. J., SCHROETER H, RECHNER AR. (2000) Bioavailability of flavonoids and potential bioactive forms in vivo. Drug Metabol Drug Interact 17, 1–4.

44.ANAFAS’EV IB, D. A., BRODSKII AV, KOYTYUK VA, POTAPOVITCH AI. (1989) Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol 38, 1763–9.

45.DEVANAND L. LUTHRIA, S. M., DONALD T. KRIZEK (2006) Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. Journal of Food Composition and Analysis 19: 771-777.

46.BRETTONNET, A., HEWAVITARANA, A., DEJONG, S., LANARI, M.C. (2010) Phenolic acids composition and antioxidant activity of canola extracts in cooked beef, chicken and pork. Food Chemistry 121:927-933.

47.SALAMEH, D., BRANDAM, C., MEDAWAR, W., LTEIF, R., STREHAIANO, P. (2008) Highlight on the problems generated by p-coumaric acid analysis in wine fermentations. Food Chemistry 107:1661-1667.

48.AZIZ NH, F. S., MOUSA LA AND ABO-ZAID MA. (1998) Comparative antibacterial  and  antifungal  effects  of  some  phenolic  compounds. Microbios 93(374): 43–54.

49.MANACH C, S. A., MORAND C, REMESY C, JIMENEZ L. (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747.

50.LOA, J., CHOW, P. & ZHANG, K. (2009) Studies of structure–activity relationship on plant polyphenol-induced suppression of human liver cancer cells, Cancer chemotherapy and pharmacology, 63, 1007-1016.

51.DI CARLO G, M. N., IZZO AA, CAPASSO F. (1999) Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci 65:337–353.

52.HARAGUCHI H, I. H., MIZUTANI K, TAMURA Y, KINOSHITA T.(1998) Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata Bioorg Med Chem.(3):339-47.

53.BARBORA ORLIKOVA, D. T., FRANTISEK GOLAIS, MARIO DICATO, MARC DIEDERICH (2011) Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 6(2): 125−147.

54.ANTO RJ, S. K., KUTTAN G, RAO MNA, SUBBARAJU V AND KUTTAN R (1995) Anticancer and antioxidant activity of synthetic chalcones and related compounds. Cancer Lett 97:33–37.

55.MADAN B, B. S., GHOSH B (2000) 2'-hydroxychalcone inhibits nuclear factor-kappaB and blocks tumor necrosis factor-alpha- and lipopolysaccharide-induced adhesion of neutrophils to human umbilical vein endothelial cells. Mol Pharmacol.58(3):526-34.

56.HSU YL, K. P., TZENG WS, LIN CC. (2006) Chalcone inhibits the proliferation of human breast cancer cell by blocking cell cycle progression and inducing apoptosis. Food Chem Toxicol. May;44(5):704-13.

57.CHOI TY, K. J., KO DH, KIM CH, HWANG JS, AHN S, KIM SY, KIM CD, LEE JH, YOON TJ. (2007) Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment Cell Resm 20(2):120-7.

58.J., D. H. ( 2005 ) Chemical Genetics: Drug Screens in Zebrafish. Biosci Rep.25(5-6):289-97.

59.DONG Q, S. K., TIERSCH TR, MONROE WT. ( 2007 ) Photobiological effects of UVA and UVB light in zebrafish embryos: evidence for a competent photorepair system J Photochem Photobiol B. 25;88(2-3):137-46.

60.PHAN T. T., S. P., LEE S. T., CHAN S. Y. (2011) Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine–xanthine oxidase induced damage. Burns, 27: 319-327 .

61.CABRERA, M., SIMOENS, M., FALCHI, G. et al. (2007) Synthetic chalcones, flavanones, and flavones as antitumoral agents: Biological evaluation and structure–activity relationships, Bioorganic & medicinal chemistry, 15, 3356-3367.

62.DE VINCENZO, R., SCAMBIA, G., BENEDETTI PANICI, P. et al. (1995) Effect of synthetic and naturally occurring chalcones on ovarian cancer cell growth: structure-activity relationships, Anti-cancer drug design, 10, 481-490.

63.NAM, N.-H., KIM, Y., YOU, Y.-J. et al. (2003) Cytotoxic 2′, 5′-dihydroxychalcones with unexpected antiangiogenic activity, European journal of medicinal chemistry, 38, 179-187.

64.SABZEVARI, O., GALATI, G., MORIDANI, M. Y., SIRAKI, A. & O’BRIEN, P. J. (2004) Molecular cytotoxic mechanisms of anticancer hydroxychalcones, Chemico-biological interactions, 148, 57-67.

65.WON, S.-J., LIU, C.-T., TSAO, L.-T. et al. (2005) Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents, European journal of medicinal chemistry, 40, 103-112.

66.FLECKENSTEIN, A., JANKE, J., DORING, H. & LEDER, O. (1974) Myocardial fiber necrosis due to intracellular Ca overload-a new principle in cardiac pathophysiology, Recent advances in studies on cardiac structure and metabolism, 4, 563.

67.GOGVADZE, V., ROBERTSON, J. D., ZHIVOTOVSKY, B. & ORRENIUS, S. (2001) Cytochrome c release occurs via Ca2+-dependent and Ca2+-independent mechanisms that are regulated by Bax, Journal of Biological Chemistry, 276, 19066-19071.

68.GREEN, D. R. & REED, J. C. (1998) Mitochondria and apoptosis, SCIENCE-NEW YORK THEN WASHINGTON-, 1309-1312.

69.FARBER, J. L. (1994) Mechanisms of cell injury by activated oxygen species, Environmental health perspectives, 102, 17.

70.FLEURY, C., MIGNOTTE, B. & VAYSSIERE, J.-L. (2002) Mitochondrial reactive oxygen species in cell death signaling, Biochimie, 84, 131-141.

71.CHANDRA, J., SAMALI, A. & ORRENIUS, S. (2000) Triggering and modulation of apoptosis by oxidative stress, Free radical biology & medicine, 29, 323.

72.李雅婷 (2012) 第一部分: 查耳酮衍生物對斑馬魚胚胎之安全評估; 第二部分: rrm2 基因之轉錄調控, 淡江大學化學學系碩士班學位論文.

73.CARBONARE, M. D. & PATHAK, M. A. (1992) Skin photosensitizing agents and the role of reactive oxygen species in photoaging, Journal of Photochemistry and Photobiology B: Biology, 14, 105-124.

74.PODDA, M., TRABER, M. G., WEBER, C., YAN, L.-J. & PACKER, L. (1998) UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin, Free Radical Biology and Medicine, 24, 55-65.

75.SHINDO, Y., WITT, E., HAN, D. & PACKER, L. (1994) Dose-response effects of acute ultraviolet irradiation on antioxidants and molecular markers of oxidation in murine epidermis and dermis, Journal of investigative dermatology, 102, 470-475.

76.DELICONSTANTINOS, G., VILLIOTOU, V. & STAVRIDES, J. C. (1996) Nitric oxide and peroxynitrite released by ultraviolet B-irradiated human endothelial cells are possibly involved in skin erythema and inflammation, Experimental physiology, 81, 1021-1033.

77.BONINA, F. & MONTENEGRO, L. (1996) In vivo evaluation of radical scavenger compounds in cosmetic formulations by means of skin reflectance spectrophotometry, SOFW. Seifen, Ole, Fette, Wachse, 122, 684-688.

78.SIES, H. (1997) Oxidative stress: oxidants and antioxidants, Experimental physiology, 82, 291-295.

79.OHSAWA, K., WATANABE, T., MATSUKAWA, R., YOSHIMURA, Y. & IMAEDA, K. (1984) The possible role of squalene and its peroxide of the sebum in the occurrence of sunburn and protection from the damage caused by UV irradiation, The Journal of toxicological sciences, 9, 151.

80.BONINA, F., LANZA, M., MONTENEGRO, L. et al. (1996) Flavonoids as potential protective agents against photo-oxidative skin damage, International journal of pharmaceutics, 145, 87-94.

81.SAIJA, A., TOMAINO, A., CASCIO, R. L. et al. (1999) Ferulic and caffeic acids as potential protective agents against photooxidative skin damage, Journal of the Science of Food and Agriculture, 79, 476-480.

82.GURTNER G. C, W. S., BARRANDON Y, LONGAKER M. T. (2008) Wound repair and regeneration. Nature 453: 314–321.

83.LOU, C., YANG, G., CAI, H. et al. (2010) 2′, 4′-Dihydroxychalcone-induced apoptosis of human gastric cancer MGC-803 cells via down-regulation of survivin mRNA, Toxicology in Vitro, 24, 1333-1337.

84.XIE, W., XING, D., SUN, H. et al. (2005) The effects of Ananas comosus L. leaves on diabetic-dyslipidemic rats induced by alloxan and a high-fat/high-cholesterol diet, The American journal of Chinese medicine, 33, 95-105.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信