§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1907200715035800
DOI 10.6846/TKU.2007.00587
論文名稱(中文) 映射對稱圖至超立方體衍生圖之錯誤避免法
論文名稱(英文) Fault-Avoiding Methods for Mapping Symmetric Graphs on the Hypercube Derivatives
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 資訊工程學系博士班
系所名稱(英文) Department of Computer Science and Information Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 藍冠麟
研究生(英文) Kuan-Lin Lan
學號 891190109
學位類別 博士
語言別 英文
第二語言別
口試日期 2007-06-07
論文頁數 83頁
口試委員 指導教授 - 葛煥昭
委員 - 莊淇銘
委員 - 蔣定安
委員 - 施國琛
委員 - 王亦凡
委員 - 葛煥昭
關鍵字(中) 超立方體
漢米爾頓路徑
漢米爾頓迴路
環路
網格
完全二元樹
費伯納茲立方體
關鍵字(英) Hypercube
Hamiltonian path
Hamiltonian cycle
Ring
Mesh
Complete Binary Tree
Fibonacci cube
第三語言關鍵字
學科別分類
中文摘要
在平行計算機器上,嵌入法是一項很重要的應用。在每一項平行的應用中,具有其個別的傳輸架構。這一些傳輸架構,可被映射成為多處理器架構下的拓撲,因此與其相符合的應用將可被執行。本篇論文在具有故障節點的超立方體圖或超立方體衍生圖中,提出一項新的正規圖形階層演算法,包括漢米爾頓路徑(Hamiltonian path),漢米爾頓迴路(Hamiltonian cycle),環路(ring),網格(mesh),完全二元樹(complete binary tree),以及費伯納茲立方體(Fibonacci cube)。
首先,在具有故障的節點圖中,找出一個可取代故障節點的點,當n個故障節點出現時,容錯可達擴張度2,延展度3,壅塞度1及負載度1。此外,這種方法也可擴展至超立方體或超立方體衍生圖中。不同於許多目前所見的演算法只能嵌入單一類型的圖,這種演算法以一致的方法嵌入到上述的圖型中。藉由這個結果,我們可以輕鬆的將平行演算法發展到超立方體或超立方體衍生圖的正規圖型架構。此一嵌入的方法非常適合使用於高速的平行電腦中。
英文摘要
Embedding is of great importance in the applications of parallel computing. Every parallel application has its intrinsic communication pattern. The communication pattern graph is mapped into the topology of multiprocessor structures so that the corresponding application can be executed. This thesis proposes a novel algorithm for emulation a class of regular graphs in the faulty hypercube or hypercube derivatives, including the Hamiltonian path, the Hamiltonian cycle, the linear array, the ring, the mesh, the complete binary tree, and the Fibonacci cube.
First, to obtain the replaceable node of the faulty node, n faults can be tolerated with expansion 2, dilation 3, congestion 1, and load 1. Furthermore, our method is also extending the distributed fault-tolerant emulation of a class of regular graphs in hypercube or hypercube derivatives. Unlike many existing algorithms which are capable of embedding only type of graphs, our algorithm embeds the above graphs in a unified way. By the results, we can easily port the parallel algorithms developed for the structure of a class of regular graphs to hypercube or hypercube derivatives. This methodology of embedding enables extremely high-speed parallel computation.
第三語言摘要
論文目次
1	Introduction	1
1.1	Motivations	1
1.2	Outline of the Dissertation	6
2	Related works and preliminaries	7
2.1	Definitions and notations	7
2.2	Hypercubes	9
2.3    Rings and linear arrays	13
2.4    Mesh	16
2.5    Trees	18
2.6    Fibonacci cube	21
3	Embedding applications of Hypercube	23
3.1	Embedding of rings and linear arrays	23
3.2	Embedding of mesh	25
3.3	Embedding of complete binary tree	26
3.4	Embedding of Fibonacci cube	33
4	Fault-Avoiding Methods for Mapping Symmetric Graphs on a Faulty Hypercube Derivative	34
4.1	Embedding Rings on a Faulty Hypercube Derivative	34
4.2	Embedding Meshes on a Faulty Hypercube Derivative	40
4.3	Embedding Complete binary trees on a Faulty Hypercube Derivative	43
4.4	Embedding the Fibonacci cube on the Faulty Hypercube	46
5	Conclusions and Future Works	54
5.1	Conclusions	54
5.2	Future works	55
Bibliography	56
Appendix A."Fault Tolerant Emulation of a Class of Regular Graphs in 
Hypercubes" WSEAS TRANSATIONS ON SYSTEMS	61
Appendix B.	"Embedding the Fibonacci Cube into the Faulty Hypercube" 
WSEAS TRANSACTIONS ON COMPUTERS	72
List of Figures
Figure 2.1 One-dimensional cube	9
Figure 2.2 Two-dimensional cube	9
Figure 2.3 Three-dimensional cube	10
Figure 2.4 The Four-dimensional hypercube with 16 nodes	10
Figure 2.5 An example of Ring topology	13
Figure 2.6 An example of linear arrays topology	13
Figure 2.7 A 3-bits ring of length 8	14
Figure 2.8 A Hamiltonian cycle on the hypercube	14
Figure 2.9 mesh network	16
Figure 2.10 Example of 2-dimensional mesh	17
Figure 2.11 Example of d-dimensional mesh	17
Figure 2.12 An example of the tree	18
Figure 2.13 An example of the complete binary tree	18
Figure 2.14 Emulation DTh in H3	20
Figure 2.15 Fibonacci cube	22
Figure 3.1 The transformation of double-rooted complete binary tree	26
Figure 3.2 A double-rooted complete binary tree contains 2d node	27
Figure 3.3 The process of the transformation(1)	27
Figure 3.4 The process of the transformation(2)	28
Figure 3.5 The process of the transformation(3)	28
Figure 3.6 A double-rooted complete binary tree with 2d+1 nodes	29
Figure 3.7 A double-rooted complete binary tree with 4 nodes can be embedded 
          on a hypercube with 4 nodes	30
Figure 3.8 The transformation of mapping(1)	30
Figure 3.9 The transformation of mapping(2)	30
Figure 3.10 The transformation of mapping(3)	31
Figure 3.11 A double-rooted complete binary tree with 8 nodes	31
Figure 3.12 A double-rooted complete binary tree with 8 nodes can be embedded 
            on a hypercube with 8 nodes	31
Figure 3.13   can be embedded to 	33
Figure 4.1 The searching sequence of the replaceable node of the faulty node	36
Figure 4.2 Fault-tolerant emulation of a class of regular graph in a hypercube	45
Figure 4.3   can be embedded on faulty 	52
參考文獻
Bibliography
[1]	B. Aiello and T. Leighton, “Coding theory, hypercube embedding, and fault tolerance,”in Proc. 3rd Ann. ACM Symp. Parallel Algorithms Arch., 1991.
[2]	P. Banerjee, “Strategies for reconfiguring hypercube under faults,”in Proc. 20th Int. Symp. Foult-Tolerant Comput., 1990.
[3]	D. P. Bertsekas and J. N. Tsitsiklis,“Parallel and Distributed Computation: numerical methods,”Prentice Hall, Englewood Ciffs, New Jersey, 1989.
[4]	J. Bruck, R. Cypher, and D. Soroker, “Running algorithms efficiently on faulty hypercubes,”Comput. Arch. News, Vol. 19, No. 1, pp. 89-96, 1991.
[5]	S. Dutt, and J.P. Hayes,“An automorphic approach to the design of fault-tolerance Multiprocessor,”in Proceedings of the 19th International Symposium on Fault-Tolerant Computing,1989.
[6]	J. Hastad, T. Leighton, and M. Newman,Reconfiguring a Hypercube in the Presence of Faults,” ACM Theory of Computing, pp. 274-284, 1987.
[7]	C.-T. Ho, M.T. Raghunath, and S. Lennart Johnsson, “An Efficient Algorithm for Gray-to-Binary Permutation on Hypercubes,” Journal of Parallel and Distributed Computing, Vol. 20, pp.114-120, 1994.
[8]	Huan-Chao Keh and Jen-Chih Lin,“On Fault-Tolerant Embedding of Hamiltonian Cycles, Linear Arrays and Rings in a Flexible Hypercube,”Parallel Computing, Vol. 26, No. 6, pp. 769-781, 2000.
[9]	F. T. Leighton, Introduction to parallel algorithms and architectures: Arrays, Trees, Hypercubes, MORGAN KAUFMANN PUBLISHERS, Inc., 1992.
[10]	Jen-Chih Lin and Huan-Chao Keh,“Reconfiguration of Complete Binary Trees in Full IEH Graphs and Faulty Hypercubes,” International Journal of High Performance Computing Applications, Vol.15, No.1, pp.55-63, 2001.
[11]	Jen-Chih Lin, “Simulation of Cycles in the IEH Graph,” International Journal of High Speed Computing, Vol. 10, No. 3, pp. 327-342, 1999.
[12]	Jen-Chih Lin and Nan-Chen Hsien“Reconfiguring Binary Tree Structures in a Faulty Supercube with Unbounded Expansion,” Parallel Computing, Vol. 28, No. 3, pp.471-483, 2002.
[13]	Jen-Chih Lin and Steven K.-C. Lo,“Embedding Complete Binary Trees into Faulty Flexible Hypercubes with Unbounded Expansion,” Informatica, No. 27, pp. 75-80, 2003.
[14]	Y. Saad, and M. Schultz,“Topological properties of Hypercube,” IEEE Trans. on Computers, Vol. 37, No. 7, pp. 867-871, July 1988.
[15]	C. Seitz, “The Cosmic Cube,”Commun. ACM, Vol. 28, pp. 22-33, 1985.
[16]	S. B. Tien, C. S. Raghavendra, and M. A. Sridhar. “Reconfiguration embedded task graphs in faulty hypercubes by automorphisms,” in Proc. Hawaii Int. Conf.Syst. Sci., 1990, pp. 91-100.
[17]	Bhuyan, L. N., and Agrawal, D. P., “Generalized Hypercube and Hypercube Structure for a Computer Network,” IEEE 	Trans. on Computers, Vol. 33, 1984, pp.323-333.
[18]	D.A. Rennels, “On implemainting fault-tolerance in binary hypercube,” in Proceedings of the 16th Internation Symposium on Fault-tolerant Computing, 1985, pp.344-349.
[19]	Hayes, J. P., Mudge, T., and Stour, Q. F., “A Microprocessor-based Hypercube Super-computer,”IEEE Micro, 1986, pp. 6-17.
[20]	Hills, W. D., The Connection Machine. MIT  Press, 1985.
[21]	Jen-Chih Lin, Tzong-Heng Chi, Huan-Chao Keh and Ay-Hwa Andy Liou, “Embedding of Complete Binary Tree with 2-expansion in a Faulty Flexible Hypercube,” Journal of Systems Architecture, Vol. 47, No. 6, 2001, pp.543-548.
[22]	Jen-Chih Lin, “Embedding Hamiltonian Cycles, Linear Arrays and Rings in a Faulty Supercube,”International Journal of High Speed Computing, Vol. 11, No. 3, 2000, pp. 189-201.
[23]	Jen-Chih Lin“Simulation of a Class of Regular Graphs in Faulty Hypercube-Derived Computers,”WSEAS Transactions on Circuits and Systems, Vol. 5, 2006, pp.530-535.
[24]	Jen-Chih Lin, “Load Balancing and Embedding Rings in Faulty Incrementally Extensible Hypercubes, WSEAS Transactions on 	Computers, Vol. 5, 2006, pp.1867-1872.
[25]	NCUBE Corp. NCUBE 6400 Processor Manual. 1990.
[26]	F.J. Provost, and R. Melhem, “A distributed algorithm for embedding trees in hypercubes with modifications for run-time fault-tolerance,” J. Parallel Distrib. Comput., Vol. 14, 1992, pp. 85-89.
[27]	Wen-Jing Hsu, “Fibonacci Cubes-A New Interconnection Topology,” IEEE Trans. Parallel and Distributed Systems, Vol.4, No.1, 1993, pp. 3-12.
[28]	W.-J. Hsu, and J.S. Liu, Fibonacci codes as formal language, Tech. Rep. CPS-91-04, 	Michigan State Unvi., May 1991.
[29]	Bhatt, S. N., Chung, F. R. K., Leighton, F. T., and Rosenberg, A. L. Efficient embeddings of trees in hypercubes. SIAM J. Comput. 21, 1992, pp.151-162
[30]	C. Chartrand and O. R. Oellermann, Applied and Algorithmic Graph Theory, McGRAW-HILL Inc. 1993.
[31]	R. Hen, Another cycle structure theorem for Hamiltonian graphs, Discrete Math. 1999, pp.237-243
[32]	M. Sohel Rahman, and M. Kaykobad “On Hamiltonian cycles and Hamiltonian paths” information Processing Letters, Volume 94, Issue 1, 15 April 2005, pp.37-41 
[33]	D.B. West, Introduction to Graph Theory, Prentice-Hall, Englewood Cliffs, NJ, 2001
[34]	Wu, A. Embedding of tree networks into hypercubes. J.Parallel Distribut. Comput. 2, 1985. pp238-249
[35]	Akers, S. B. and Krishnamurthy, B., “A Group-Theoretic Model for Symmetric Interconnection Networks,” IEEE Trans. on Computers, Vol. 38, pp. 555-565, 1989.
[36]	Hayes , J. P. and Mudge, T.N., “Hypercube supercomputing,” Proc. IEEE, Vol. 77, No. 12, pp. 1829-1842, 1989.
[37]	C. Chartrand and O. R. Oellermann, Applied and Algorithmic Graph Theory, McGRAW-HILL Inc. 1993.
[38]     Shih-Chang Wang, Yuh-Rong Leu, Sy-Yen Kuo, “Distributed Fault-Tolerant Embedding of Several Topologies in Hypercubes.” Journal of Information Science and Engineering, Vol. 20, Num 4, Jul. 2004.
[39]	Chui-Cheng Chen, “Dynamic Reconfiguration of Complete Binary Trees in Faulty Hypercubes”, Journal of Information Science and Engineering, Vol. 21, Num 1, Jan. 2005.
[40]	T. Hameenanttila, X-L. Guan, J. D. Carothers and J.-X. Chen, “The Flexible Hypercube: A New Fault-Tolerant Architecture for Parallel Computing,” J. Parallel and Distrib. Comput., Vol. 37, pp. 213-220, 1996.
[41]	F. Harary, J.P. Hayes, and H.J. Wu, “A survey of the theory of hypercube graphs”, Computers and Math. with Applications, 1988.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信