§ 瀏覽學位論文書目資料
系統識別號 U0002-1907200714173200
DOI 10.6846/TKU.2007.01145
論文名稱(中文) 逆洗對沈浸式薄膜過濾性能之影響
論文名稱(英文) Effect of backwash on the performance of submerged membrane filtration
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 詹智勝
研究生(英文) Chih-Sheng Chan
學號 694360412
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-06-28
論文頁數 131頁
口試委員 指導教授 - 黃國楨(kjhwang@mail.tku.edu.tw)
委員 - 李篤中
委員 - 莊清榮
委員 - 童國倫
委員 - 鄭東文
關鍵字(中) 沈浸式薄膜過濾
微過濾
薄膜阻塞
過濾性能
逆洗
關鍵字(英) submerged membrane filtration
microfiltration
filtration performance
backwash
第三語言關鍵字
學科別分類
中文摘要
本研究旨在探討逆洗的操作條件對沈浸式薄膜過濾效能的影響。以平均孔徑為5.6μm之薄膜過濾粒徑為5μm之聚甲基丙烯酸甲酯(PMMA)粒子為例,探討逆洗時間、逆洗頻率及逆洗通量等操作條件對濾速恢復與逆洗效率的影響。研究結果顯示:在過濾初期,過濾阻力之主要來源是薄膜的阻塞,等到過濾500秒後,則轉變成濾餅過濾模式,但薄膜孔洞阻塞之阻力仍佔總阻力之50%以上。操作在低逆洗通量時,長時間的逆洗比短時間的逆洗更能去除內部阻塞約達23%。比較第一次逆洗的濾速回升率,則在低逆洗通量下,可將濾速提升約39%,高逆洗通量則可將濾速提升約56%。而高逆洗通量對於附著在薄膜孔道內的粒子具有良好的沖刷效果,並可以有效的去除薄膜表面上的濾餅,故更能讓濾速提升;因此在長時間且高通量的逆洗條件之下,效率值平均可達40%,可以比低通量的逆洗高出2倍的效率值。
英文摘要
The effects of backwash conditions, such as filtration time, backwash duration, backwash flux, on the filtration rate recovery and membrane blocking in submerged membrane filtration are studied. A ceramic membrane with a mean surface pore size of 5.6 μm is used to filter 5 μm PMMA particles. The experimental results show that the filtration resistances due to cake formation and membrane blocking play the major roles on the overall filtration resistance, but the latter one is always dominant. The filtration rate can be increased by increasing backwash flux and backwash duration because of the reduction of membrane internal fouling. In the first backwash cycle, the filtration rate can be recovered reaching about 39% and 56% of the original under the low and high backwash fluxes, respectively. It is because the particles blocked in the membrane pores can be washed out causing by shear stress and the cake formed on the membrane surface can be scoured out. It can be concluded that to operate under the conditions of long backwash duration and high backwash flux is optimum. In such conditions, the overall filtration efficiency can be increased as high as 40%. A higher backwash flux may make a 2-fold efficiency than a lower one would be under the same backwash duration.
第三語言摘要
論文目次
目 錄
頁次
中文摘要………………………………………………………………	I
英文摘要………………………………………………………………	II
目 錄…………………………………………………………………..	IV
圖目錄………………………………………………………………	VII
表目錄………………………………………………………………	XI
第一章 緒論…………………………………………………………..	1
	1-1前言..………………………..………………………..……..	1
	1-2薄膜分離……………………………………..……………..	2
	1-3薄膜生物技術的發展………………………………………	5
	1-4廢水處理上之應用…………………………………………	7
	1-5本研究之目標………………………………………………	9
第二章 文獻回顧……………………………………………………..	10
	2-1薄膜生物反應的特性………………………..……………..	10
	2-2薄膜生物反應器的種類……………………………………	14
	2-3 SMBR污水處理設備的原理………………………………	18
	2-4 SMBR與傳統活性污泥法的比較…………………………	19
	2-5薄膜積垢、結垢與濃度極化現象…………………………	22
	2-6薄膜過濾的特性……………………………………………	35
	2-6-1濾餅過濾(dead-end filtration) ………………………	36
	2-6-2掃流過濾(crossflow filtration) ……………………...	36
	2-7提高濾速的方法……………………………………………	38
第三章 理論.…….…….…….…….…….…….…….…….…….…	48
	3-1粒子在濾面上之附著機構……………………………..	48
	3-1-1粒子在濾面上之附著機構……..…………………..	48
	3-1-2粒子之黏著機構………………..…………………..	53
	3-2粒子之結垢模式……………………………………………	54
	3-3阻力串聯模式………………………………………………	56
	3-4逆洗效率之分析……………………………………………	58
	3-4-1可逆阻力與不可逆阻力之計算……..……………..	58
	3-4-2產率之計算…..……………………………………..	58
     3-4-3效率值之計算…..…………………………………..	59
第四章 實驗裝置與步驟……………………………………………..	60
	4-1實驗物料………………………………………………..	60
	4-2濾材…………..………………………………………..	60
	4-3實驗裝置 ………………………………………………….	61
	4-4分析儀器……………………………………………………	62
	4-5實驗步驟 …………………………………………………	63
第五章 結果與討論…………………………………………………..	67
     5-1不同逆洗時間的影響…………………………..…………..	68
     5-2不同逆洗週期的影響………………………………………	88
	5-3逆洗對阻力值的影響………………….……………..	97
	5-4逆洗對產率的影響……………………………………	102
	5-5效率值的探討………………………………………………	106
	5-6逆洗時間、週期、通量的選擇………………………………	109
第六章 結論…………………………………………………………..	110
符號說明……………………………………………………..………..	112
參考文獻…………………………………………………………..…..	115
附錄………………………………………..…………………………..	125
      附錄A實驗物料之種類及物性………………………………	125
      附錄B實驗數據計算公式……………………………………	131
















圖 表 目 錄
 頁次
圖目錄
第一章
Fig.1-1 Application of membrane separation………………………………………………3
Fig.1-2 Separation spectrum under different particle size………………..……………4
第二章
Fig.2-1 A comparison of equipment between conventional and novel process for water treatment.………………………………………………..……………………………13
Fig.2-2 Submerged membrane bioreactor……………………………………………...…15
Fig.2-3 External membrane bioreactor……………………………………………………16
Fig.2-4 Comparison of the smbr system and activated sludge system…………………18
Fig.2-5 Effect the main membrane fouling factor……………..…………………………28
Fig.2-6 A schematic of the concentration polarization of solute on the membrane surface…………………………………………………………………………………32
Fig.2-7 Four kinds of blocking phenomena in the membrane……………………..……34
Fig.2-8 A schematic diagram of membrane separation……………………….…………35
Fig.2-9 Schematics of filtration.(a)dead-end filtration and (b)cross-flow filtration...36
Fig.2-10 Typical methods to reduce concentration polarization and fouling in pressure driver membrane processes…………………………………………..…39


第三章
Fig.3-1 Forces exerted on a depositing particle in a submerged micro-filtration.….50
Fig.3-2 Interaction energy of Van der Waals force and electrical double layer repulsive force under different distance…………………………………………..52
Fig.3-3 Overview of various types of resistance in membrane…………………………57
第四章
Fig.4-1 A schematic diagram of Submerged filtration system………….……………....62
第五章
Fig.5-1 Time courses of filtration rates during submerged micro-filtration by changing backwash durations……………………………………………………..68
Fig.5-1-1 An enlarge plot in Fig 5-1…………………………………………………….....68
Fig.5-2 Resistance percentage of the 0.45μm membrane after 18000s operation……72
Fig.5-3 Membrane resistance percentage of the different backwash durations………73
Fig.5-4 Comparison of the fouling resistance in submerged micro-filtration under different backwash durations………………………………………………………74
Fig.5-5 Comparison of the cake resistance in submerged micro-filtration under different backwash durations…………..……………………………………..…...74
Fig.5-6(a) The view of 0.45μm membrane surface before backwash under 15 minutes filtration……………………………………………………………………………...77
Fig. 5-6(b) The view of 0.45μm membrane surface after 1minute backwash under 15   
      minutes filtration.	77
Fig. 5-7 Resistance percentage of 2 minutes backwash time under different backwash  
       cycle number.	80

Fig. 5-8 Resistance percentage of 4 minutes backwash time under different backwash 
       cycle number.	81
Fig. 5-9 Resistance percentage of 8 minutes backwash time under different backwash        
       cycle number.	82
Fig. 5-10 Time courses of filtration rates during submerged micro-filtration by 
       changing backwash fluxes.	84
Fig. 5-10-1 An enlarge plot in Fig 5-10.	85
Fig. 5-11 Membrane resistance percentage of the different backwash durations.	85
Fig. 5-12 Comparison of the fouling resistance in submerged micro-filtration under         
        different backwash durations.	86
Fig. 5-13 Comparison of the cake resistance in submerged micro-filtration under 
        different backwash durations.	86
Fig. 5-14 Time courses of filtration rates during submerged micro-filtration by 
        changing filtration times.	88
Fig. 5-15 Time courses of filtration rates during submerged micro-filtration by 
        changing filtration times.	91
Fig. 5-16 Resistance percentage of 15 minutes filtration time under different 
        backwash cycle number.	92
Fig. 5-17 Resistance percentage of 30 minutes filtration time under different 
        backwash cycle number.	93
Fig. 5-18 Resistance percentage of 60 minutes filtration time under different 
        backwash cycle number.	94
Fig. 5-19 The view of 0.45μm membrane surface after 1 hour filtration.	95
Fig. 5-20 The view of 0.45μm membrane surface after 2 hours filtration.	95
Fig. 5-21 The view of 0.45μm membrane surface after 3 hours filtration.	96
Fig. 5-22 The view of 0.45μm membrane surface after 4 hours filtration.	96
Fig. 5-23 Overview of various types of Irreversible and reversible resistance in 
        membrane filtration.	98
Fig. 5-24 Comparison of the reversible resistance in submerged micro-filtration under 
        different backwash durations.	99
Fig. 5-25 Comparison of the reversible resistance in submerged micro-filtration under 
        different filtration times.	100
Fig. 5-26 Comparison of the reversible resistance in submerged micro-filtration under 
        different filtration times.	101
Fig. 5-27 Comparison of the product in submerged micro-filtration under different 
        backwash durations.	103
Fig. 5-28 Comparison of the product in submerged micro-filtration under different 
        backwash durations.	104
Fig. 5-29 Comparison of the product in submerged micro-filtration under different 
        filtration times.	104
Fig. 5-30 Comparison of the product in submerged micro-filtration under different 
        filtration times.	105
Fig. 5-31 Comparison of the efficiency in submerged micro-filtration under different 
        backwash durations.	106
Fig. 5-32 Comparison of the efficiency in submerged micro-filtration under different 
        backwash durations.	107
Fig. 5-33 Comparison of the efficiency in submerged micro-filtration under different 
        filtration times.	108





附  錄
Fig. A.1-1 The SEM picture of PMMA power(×10KX)…………………..………….....125
Fig. A.1-2 Particle size distributions of PMMA power(MX-500)………………….....126
Fig. A.2-1 The SEM picture of clean membrane(inner pore size 0.45μm) (×40KX)..…………………………………………………………………….......127
Fig. A.2-2 The SEM picture of clean membrane (outer pore size 0.45μm)
         ( ×1KX )…...…………..………………………………………………………..128
Fig. A.2-3 Membrane of inner and outer pore size distribution………………………129
Fig. A.3-1 Turbid in different rotation rate………………………………………………130
表目錄
第三章
Table 3-1 The coefficients of blocking models……………………………….……………56
第四章
Table 4-1 The operating conditions used in this study………………………..…...….…64
第五章
Table 5-1 Resistance percentage of the cake in different backwash cycle no	76
Table 5-2 Comparison of the filtration rate enhancement under different backwash 
        cycle numbers…………….……………………………………………………….87
參考文獻
Ahn, K. H. and K. G. Song, “Treatment of Domestic Wastewater Using Microfiltration for Reuse of Wastewater”, Desalination., 126, 7(1999)
Bai, R., Leow, H.F., “Microfiltration of activated sludge wastewater-The effect of system operation parameters”, Separation and Purification Technology 29 (2), 189-198(2002)
Baker, J.S., Dudley, L.Y., “Biofouling in membrane systems - a review”, Desalination 118 (1-3), 81-90(1999)
Barker, D.J., Stuckey, D.C., “Modeling of soluble microbial products in anaerobic digestion: The effect of feed strength and composition”, Water Environment Research 73 (2), 173-184(2001)
Belfort, G.,J. M. Pimbley, A. Greiner and K. Y. Chung, “Diagnosis of Membrane Fouling Using Rotating Annular Filter. 1. Cell Culture Media”, J. Membrane Sci., 77, 1-22 (1993)
Benitez, J.; Rodriguez, A., Malaver , R. “Stablization and dewatering of wastewaterusing hollow fiber membranes”, Wat. Res., 29(10), 2281
(1995)
Bouhabila, E. H., R. B. Aı¨m and H. Buisson, “Fouling Characterisation in Membrane Bioreactors”, Separation and Purification Technology, 22-23, 123(2001)
Bowne, W. R., Calvo, J. I., and Hernandez, A. (1995). “Steps of Membrane blocking in flux decline during protein microfiltration. ”, J. Membr. Sci., 101, 153-165(1995)
Chang, I. S., and C. H. Lee, “Membrane Filtration Characteristics in Membrane Coupled Activated Sludge System-the Effect of Physiological States of Activated Sludge on Membrane fouling”, Desalination, 120, 221(1998) 
Chang, I. S., S. O. Bag ,and C. H. Lee, “Effects of Membrane Fouling on Solute Rejection during Membrane Filtration of Activated Sludge”, Process Biochemistry, 36, 855(2000)
Chang, S. and A. G. Fane, “Filtration of Biomass with Laboratory-scale Submerged Hollow Fiber Modules-effect of Operating Conditions and Module Configuration.”, J. Chem Tech Biotechnol., 77, 1030 (2002)
Chiemchaisri, C., Wong, Y.K., Urase, T., Yamamoto, K., “Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment.”, Water Science and Technology 25 (10), 231-240(1992)
Chio, J. G., T. H. Bae, J. H. Kim, T. M. Tak, and A. A. Randall, “The Behavior of Membrane Fouling Initiation on the Crossflow Membrane Bioreactor System”, Journal of Membrane Science, 203, 103(2001)
Choo, K.-H., Stensel, H.D., “Sequencing batch membrane reactor treatment: Nitrogen removal and membrane fouling evaluation.”, Water Environment Research 72 (4), 490-498(2000)
Cote, P., H. Buisson, C. Pound and G. Arakaki, “Immersed Membrane Activated Sludge for the Reuse of Municipal Wastewater”, Desalination., 113, 189(1997)
Defrance, L., Jaffrin, M.Y.; Gupta, B.; Paullier, P.; Geaugey, V. “Contribution of various constituents of activated sludge to membrane bioreactor fouling”, Bioresource Technol. 73, 105-112(2000)
Dufrance, R., H. C. Lavallee, R. E. Lebrun and S. O. Lo, “Comparison of Performance between Membrane Bioreactor and Activated Sludge System for the Treatment of Pulping Process Wastewaters.”, Tappi J., 81, 131(1998)
Fane, A. G., “Membranes for water production and wastewater reuse. ”, Desalination, 106, 1-9.(1996)
Fang, H. H. P. and X. Shi, “Pore Fouling of Micofiltration Membrane by Activated Sludge”, Journal of Membrane Science , 264 , 161(2005)
Gander, M., B. Jefferson and S. Judd, “Aerobic MBRs for Domestic Wastewater Treatment: A Review with Cost Considerations”, Separation and Purification Technology, 18, 199(2000)
Harada, H., K. Momonoi, S. Yamazaki and S. Takizawa, “Application of Anaerobic UF Membrane Reactor for Treatment of a Wastewater Containing High Strength Particulate Organics”, Wat. Sci. Tech., 30, 307(1994)
Hardt, F. M., and L. S, Clesceri, “Solids Separation by Ultrafiltration for Concentrated Activated Sludge”, J. Wat. Pollut., 42, 2145(1970)
Hermans Jr., J., Hermans, J.J., “Solution properties of desoxyribonucleic acid (DNA). I. Hydrodynamic behavior.”, Journal of Physical Chemistry 63 (2), 170-175(1959)
Hong, S. P., T. H. Tak, S. Hong, and A. Randallb, “Fouling Control in Activated Sludge Submerged Hollow Fiber Membrane Bioreactors”, Desalination, 143, 209(2002)
Howell, J.A., Chua, H.C., Arnot, T.C., “In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history. ”, Journal of Membrane Science 242 (1-2), 13-19(2004)
Jia, X. S., “Extracellular Polymers of Hydrogen-utilizing Mechanogenic and Slulfate-reducing Sludges”, Wat. Res., 30, 1439(1996)
Jefferson, B., A. L. Laine, T. Stephenson and S. L. Judd, “Advanced Biological Unit Process for Domestic Water Recycling.”, Water. Science and Technology, 43, 211(2001)
Kang, I. J., S. H. Yoon and C.H. Lee, “Comparison of the Filtration Characteristics of Organic and Inorganic Membranes in a Membrane-coupled Anaerobic bioreactor”, Water Research, 36, 1803 (2002)
Karapang, N. K., “Extraction and Characterization of Extracellular Polymers in Digester Sewage Sludge”, J. Chem. Tech., Biotechnol, 44, 107(1993)
Kishino, H., Ishida, I., and Nakano, I. Domestic., “Wastewater reuse sing a submerged membrane bioreactor.”, Desalination, 106, 115-119 (1996).
Kim, J., Cho, J., Ryba, E., Bai, J., “Interfacial Structures of Polyurethane Thin Films on Various Substrate Materials. ”, Polymer Journal 35 (12), 929-937(2003)
Kim, J. S., C. H. Lee and I. C. Chang, “Effect of Pump Shear on the Performance of a Crossflow Membrane Bioreactor”, Wat. Res., 35, 2137(2001)
Kim, S. H., S. Y. Moon, C. H. Yoon, S. K. Yim and J. W. Cho, “Role of Coagulation in Membrane Filtration of Wastewater for Reuse”, Desalination, 173, 301(2004)
Knoblock, M.D., Sutton, P.M., Mishra, P.N., Gupta, K., Janson, A, “Membrane biological reactor system for treatment of oily wastewaters.”, Water Environment Research 66 (2), 133-139(1994)
Koyuncu, I., E. Kural and D. Topacik, “Pilot Scale Nanofiltration Membrane Sepration for Waste Management in Textile Industrial.”, Water Science and Technology, 43, 233(2001)
Lee, J., W. Y. Ahn and C. H. Lee, “Comparison of the Filtration Characteristics Between Attached and Suspended Growth Microorganisms in Submerged Membrane Bioreactor.”, Wat. Res.35, 2435(2000)
Leow, H. F. and Bai, R. B., “Nylon screen incorporated into Hollow fiber microfiltration system for wastewater treatment.”, Water Sci. Techno. 1, 131. (2001)
Lim, A.L., Bai, R., “Membrane fouling and cleaning in microfiltration of activated sludge wastewater.”, Journal of Membrane Science 216 (1-2), 279-290(2003)
Liu, R., X. Huang, C. Wang, L. Chen andY. Qian, “Study on Hydraulic Characteristics in a Submerged Membrane Bioreactor Process”, Process Biochemistry, 36, 249(2000)
Lubbecke, S., A. Vogelpohl and W. Dewjanin, “Wastewater Treatment in a Biological High-performance System with High Biomass Concentration”, Wat. Tes., 29, 793(1995)
Mattiasson, B., Ramstorp, M., Wideback, K., Kronvall, G., “Affinity chromatography using immobilized bacterial cells with receptors for human serum proteins. ”, Journal of Applied Biochemistry 2 (4), 321-335(1980)
Michaels, A. S., “New Separation Technique for the CPI ”, Chem. Eng Prog., 64, 31(1968)
Morgan, J. W., “A Comparative Study of the Nature of Biopolymers Extracted from Anaerobic and Activated Sludge”, Wat. Res., 24, 743(1990)
Mueller, J., “Basic Principles of Membrane Technology”, Kluwer Aacademic Publisher, 309(1991)
Mutlu, S. H., U. Yetis, T. Gurkan and L.Yilmaz, “Decolorization of Wastewater of a Baker’s Yeast Plant by Membrane Processes”, Water Research , 36, 609(2002)
Nagaoka, H., S. Ueda, A. Miya, “Influence of Bacterial Extracellular Polymers on the Membrane Separation Sludge Process”, Wat. Sci. Tech., 34, 165(1996)
Nijhuis, H.H., Mulder, M.H.V., Smolders, C.A., “Removal of trace organics from aqueous solutions. Effect of membrane thickness. ”, Journal of Membrane Science 61, 99-111(1991)
Noguera, D.R., Araki, N., Rittmann, B.E., “Soluble microbial products (SMP) in anaerobic chemostats. ”, Biotechnology and Bioengineering 44 (9), 1040-1047(1994)
Nuengjamnong, C., J. H. Kweon, J. Cho, K. H. Ahn, and C. Polprasert, “Influence of Extracellular Polymeric Substances on Membrane Fouling and Cleaning in a Submerged Membrane Bioreactor. ”, Colloid. Journal, 67, 251(2004)
Nuengjamnong, C., J. H. Kweon , J. Cho, C. Polprasert, K. H. Ahn, “Membrane Fouling Caused by Extracellular Polymeric Substances during Microfiltration Processes”, Desalination., 179, 117 (2005)
Ogoshi, M. and Y. Suzuki, “Application of Membrane Separation to An Easily Installed Municipal Wastewater Treatment Plant. ” International Specialized Conference on Membrane Technology in Environmental Management, Tokyo, Janpan, November 1-4, 250(1999)
Parameshwaran, K. Fane, A. G. Cho, B. D. and Kim, K. J. “Analysis of microfiltration performance with constant flux processing of secondary effluent. ”, Water Res. 35 4349(2001)
Ping Gui, Xia Huang, Ying Chen and Yi Qian , “Effect of Operational Parameters on Sludge Accumulation on Membrane Surfaces in a Submerged Membrane Bioreactor.,” Desalination, 151, 185(2002)
Pierre, C., B. Herve and P. Matthieu, “Immersed Membranes Activated Sludge Process Applied to the Treatment of Municipal Wastewater ”, Wat. Sci. Tech., 38, 437(1998)
Psoch, C., and S. Schiewer, “Long-term Study of an Intermittent Air Sparged MBR for Synthetic Wastewater Treatment”, Journal of Membrane Science , 260 ,56(2005)
Rishi, S and R. Bhave, “Role of Backpulsing in Fouling Minimization in Crossflow Filtration with Ceramic Membranes.”, J. Membrane Sci., 186,41(2001)
Schulz, G., Ripperger, S., “Concentration polarization in crossflow microfiltration. ”, Journal of Membrane Science 40 (2), 173-187(1989)
Seo, G.T., Moon, B.H., Park, Y.M., Kim, S.H., “Filtration characteristics of immersed coarse pore filters in an activated sludge system for domestic wastewater reclamation. ”, Water Science and Technology 55 (1-2), 51-58( 2007)
Seung-Hwa, B., Kim, J.-H., Kim, H.-A., Lee, S.-M., Lee, C.-Y., Kho, Y.-H., Lee, C.-H., “Melanin biosynthesis inhibitory activities of coumarins isolated from Angelica polymorpha MAXIM. ”, Korean Journal of Microbiology and Biotechnology 31 (2), 135-139(2003)
Seyfried, A., E. Dorgeloh, E. Brand and P. Ohle, “Effect of the Membrane Technology on the Dimensioning of Municipal Wastewater Treatment Plants ”, Wat. Sci. Tech., 38, 173(1998)
Shimizu, Y., Y. I. Okuno and K. Uryu, “Filtration Characterist of Hollow Fiber Microfiltration Membrane Used in  Membrane Bioreactor for Domestic Wastewater Treatment.”, Wat. Res., 30, 2385(1996)
Shin, H. S., S. M. Lee, I. S. Seo, G. O. Kim, K. H. Lim and J. S. Song, “Pilot-Scale SBR and MF Operation for Removal of Origanic and Nitrogen Compounds from Greywater.”, Water Science and Technology, 38, 79(1998)
Shino. H., “Kubota submerged flat sheet membrane application And its future direction to be headed.”, Kubota presentation document. (2004)
Sherwood, L.M., Potts Jr., J.T., “Conformational studies of pancreatic ribonuclease and its subtilisin-produced derivatives.”, Journal of Biological Chemistry 240 (10), 3799-3805(1965)
Smith, C. V., D. D. Gregorio and R. M. Talcott, “The Use of Ultrafiltration Membrane for Activated Sludge Separation.”, 24thAnnual Purdue Industrial Waste Conference, Purdue University, Lafayette, Indiana,U.S.A.,1300(1969)
Stephenson, T., S. Judd, B. Jefferson and K. Brindle, “Membrane Bioreactors for Wastewater Treatment.”, IWA Publishing London, 4(2000)
Sur, H.W., Cui, Z.F., “Enhancement of microfiltration of yeast suspensions using gas sparging - Effect of feed conditions.”, Separation and Purification Technology 41 (3), 313-319(2005)
Tardieu, E., Grasmick, A., Geaugey, V., and Manem, J. “Hydrodynamic control of bioparticle depositionin a MBR applied to wastewater treatment. “ J. Membr. Sci., 147, 1-12(1998).
Tenno, R. and H. Paulapuro, “Removal of Dissolved Organic Compounds form Paper Machine Whitewater by Membrane Bioreactors: A Comparative Analysis”, Control Engineering Practice, 7, 1085(1999)
Tung, K.-L., Chuang, C.-J., “Effect of pore morphology on fluid flow and particle deposition on a track-etched polycarbonate membrane. ”, Desalination 146 (1-3), 129-134(2002)
Ueda, T., K. Hata and Y. Kikuoka, “Treatment of Domestic Sewage Fromrural Settlements by a Membrane Bioreactor”, Wat. Sci. Tech., 34, 189(1996)
Urbain, J. C., “Bioflocculation in Activated Sludge: An Analytic Approach.”, Wat. Res., 27,829(1993)
Wang, P. Tan, K. L. Kang, E. T. And Neoh, K. G., “Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidedefluoride) microporous membrane.”, J. Membr. Sci. 195, 103(2002)
Wisniewski, C., Grasmick, A., “Floc size distribution in a membrane bioreactor and consequences for membrane fouling. ”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 138 (2-3), 403-411(1998)
Wontae, Lee, S. Kang, H. Shin, “Sludge Characteristics and Their Contribution to Microfiltrationin Submerged Membrane Bioreactors.”, J. Membrane Sci., 216, 217 (2003)
Wummel, J.and H. Walther, “Membrane Technology in Municipal Wastewater Treatment-The Case of arkransta Dt Germany”,IWA World Water Congress, Berlin(2001)
Xing, C. H., X. H. Wen, Y. Qian and E. Tardieu, “Ultrafiltration Membrane Bioreactor for Urban Wastewater Reclamation.”, J. Membr. Sci., 177, 73(2000)
Yamamoto, K., M. Hiasa, T. Mahmood and T. Matsuo, “Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank.”, Water Science and Technology, 21 ,43(1989)
Yeom, I. T; Nah, Y. M.; Ahn K. H., “Treatment of household wastewater using an intermittently aerated membrane bioreactor. ”, Desalination, 124, 193(1999)
Youm, K. H., A. G. Fane and D. E. Wiley, “Effect of Natural Convection Instability on Membrane Performance in Dead-end and Cross-flow Ultrafiltration.”, J. Membrane Sci., 116, 229(1996)
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信