§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1907200710344400
DOI 10.6846/TKU.2007.00573
論文名稱(中文) 聯吡啶硫醇修飾奈米金水溶液的汞離子感測研究
論文名稱(英文) SELECTIVE SENSING OF MERCURY(II) ION IN AQUEOUS SOLUTIONS USING BIPYRIDINYL-ALKYL-THIOL FUNCTIONALIZED GOLD NANOPARTICLES
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 陳英旨
研究生(英文) Ying-Jr Chen
學號 694170142
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-07-14
論文頁數 61頁
口試委員 指導教授 - 王文竹(wjw@mail.tku.edu.tw)
委員 - 林志彪
委員 - 鄧金培
關鍵字(中) 金奈米粒子
汞離子
金屬離子感測
關鍵字(英) gold nanoparticle
sensor
第三語言關鍵字
學科別分類
中文摘要
我們設計具功能性的金奈米粒子,在感測金屬離子上的應用。金奈米粒子的合成是根據文獻,以檸檬酸還原金氯酸鹽(HAuCl4)。粒子大小及分布藉由穿透式電子顯微鏡(TEM)及掃描式電子顯微鏡(SEM)來觀察。而此功能性的金奈米粒子,我們利用合成出的聯吡啶硫醇分子HSC12EBiox [2,2’-bipyridinyl-3,3’-dicarboxylic acid bis-(12-mercapto-dodecyl) ester]及混和長鏈硫醇(decane-1-thiol),在金奈米粒子表面做修飾。因為聯吡啶具有好的鉗合能力,加上金奈米粒子的靈敏的光學性質,所以可以用來偵測水中低濃度的金屬離子。
    在過渡金屬離子(Zn2+, Cd2+, Hg2+, Cu2+, Pb2+)偵測時我們發現,當加入汞離子時,會造成SC12EBiox-GNPs的聚集,溶液顏色會由紅變紫。藉由吸收光譜的變化,我們可以看到Hg2+造成SC12EBiox-GNPs聚集的過程。
英文摘要
Surface functionalization of gold nanoparticles has been recognized as fundamental elements in the design of receptor-based sensor applications. We report herein the development of a functionalized gold nanoparticles (AuNPs) that allowed to be utilized for metal ion sensing. Gold nanoparticles were prepared by citric acid reduction of HAuCl4 according to published procedures. The particle size of AuNPs was confirmed by scanning electron microscope, scanning probe microscope and transmission electron microscopy. Functionalized gold nanoparticles were prepared by capping HSC12Ebiox, [2,2’-bipyridinyl-3,3’-dicarboxylic acid bis-(12-mercapto-dodecyl) ester], onto the surface of AuNPs along with decane-1-thiol. The well-documented chelating properties of bipyridine and the sensitivity of the optical properties of AuNPs have been employed to detect low concentration of metal ions in water. Upon addition of mercury(II) ion to the SC12EBiox-capped AuNPs, the aggregation of SC12EBiox-AuNPs was visualized by changing color from red to deep purple. UV-vis absorption spectrometer was employed to investigate the aggregation process. Isosbestic point was observed for each case.
第三語言摘要
論文目次
目錄

第一章	緒論 …………………………………………………………………………….1

第二章	實驗 …………………………………………………………………………….11
   2-1 試劑 ……………………………………………………………………..............11
   2-2 物理鑑定儀器 …………………………………………………………..............11
   2-3 合成步驟 ………………………………………………………………..............13
   2-4 奈米金粒子的製備及計算 ……………………………………………..............15
   2-5 SC12EBiox-AuNPs的製備 …………………………………………………….19

第三章	結果與討論 …………………………………………………………………….20
   3-1 HSC12EBiox之合成與鑑定 …………………………………………………...20
   3-2 奈米金粒子之合成與鑑定 ……………………………………………..............24
   3-3 用Biox修飾金奈米粒子(Biox-AuNPs)及對鹼金族陽離子的感測…………...27
      3-3-1 Biox修飾金奈米粒子……………………………………………………...27
      3-3-2 Biox-AuNPs對鹼金族離子的感測………………………………......……28
   3-4 金奈米粒子之硫醇表面修飾……………………………………………………38
      3-4-1 SC12EBiox-AuNPs之製備………………………………………………...38
      3-4-2 SC12EBiox-AuNPs標準液之鑑定………………………………………...43
      3-4-3 SC12EBiox-AuNPs之構造………………………………………………...44
   3-5 SC12EBiox-GNPs之金屬離子感測 ……………………………………………45

第四章	結論 ……………………………………………………………………………. 51

第五章	參考文獻 ………………………………………………………………………. 52

第六章	附錄 ……………………………………………………………………………. 54

圖目錄
Figure 1-1. Synthetic method for preparing Au particles………………………………… 1
Figure 1-2. Schematic representation of electrostatic stabilization of metal colloid
particles………………………………………………………………….......... 1
Figure 1-3. UV-vis absorption spectra of 9, 22, 48, and 99 nm gold nanoparticles in
water.………………………………………………………………………...... 3
Figure 1-4. Left: Experimental UV-vis absorption spectrum of a gold nanorod sample
with an average aspect ratio of 3.3.
Right: TEM image of the same solution………………………………............ 4
Figure 1-5. Surface functionalization of gold nanoclusters using (a) organic molecules
or polymers, (b) quaternary ammonium salts, and (c) alkanethiols................... 4
Figure 1-6. Schematic representation of the aggregation had been driven by heavy-metal
ion recognition and binding……………………………………………………5
Figure 1-7. Detection scheme for Li+ with functionalized gold nanoparticles………........ 5
Figure 1-8. Proposed structures of the crown moiety preorganized due to the neighboring
molecules of thioctic acid…………………………………………………….. 6
Figure 1-9. Design Strategy for Luminescent Nanomaterials…………………………..... 6
Figure 1-10. (Top) Photographic images of the colors and (bottom) Ex650/520 differences of
the MPA-AuNPs in the absence and presence of PDCA (1.0 mM) after the
addition of 100 mM metal ions in 50 mM Tris–borate solutions (pH 9.0) ….7
Figure 1-11. Mercury Sensors 1(MS1)、2 (MS2)、3 (MS3) and 4 (MS4)………............ 8
Figure 1-12. A schematic representation of the hairpin structure induced in D-ODN-F by
HgII ion-mediated T–Hg–T pair formation, which results in the quenching of
fluorescence from F6……………………………………………......................8
Figure 1-13. Indicator 1 senses mercury through subsequent regulation of its ability to
undergo charge transfer………………………………………………............. 9
Figure 1-14. ligand L1 containing an open-chain binding site and L2 incorporating a
macrocycle……………………………………………………………..............9
Figure 2-1. TEM images of 20 nm AuNPs placed on carbon-coated copper grid at two
different magnifications………………………………………………….…16
Figure 2-2. The corresponding size distribution histogram of 20 nm AuNPs…………...17
Figure 2-3. TEM images of 34 nm AuNPs placed on carbon-coated copper grid and
corresponding size distribution histogram………………………………….17
Figure 3-1. 1H-NMR of TAC12EBiox in CDCl3………………………………………...21
Figure 3-2. 1H-NMR of HSC12EBiox in CDCl3………………………………………...21
Figure 3-3. ESI-MS of HSC12EBiox in CH2Cl2/MeOH………………………………..22
Figure 3-4.The calculated isotope pattern (black) and the experimental isotope Pattern
(gray) for HSC12EBiox determined by positive ion mode ESI-MS in
MeOH……………………………………………………………..…………23
Figure 3-6. Absorption spectra of (a) 20 nm AuNPs and (b) 34 nm AuNPs in H2O……. 24
Figure 3-7. TEM image of (a) ca. 20 nm AuNPs and (b) ca. 34 nm AuNPs placed on
carbon-coated copper grid and corresponding size distribution histogram….25
Figure 3-8. The particle size distribution of (a) ca. 20 nm and (b) ca. 34 nm gold
nanoparticles…………………………………………………………..……..26
Figure 3-9. Absorption spectra of 0.15 nM AuNPs in H2O upon addition of Biox ( [Biox]
= 17.2 mM )…………………………………………………………….....… 27
Figure 3-10. Absorption spectral of (a) 0.12 nM AuNPs and (b) 0.10 nM AuNPs-citrate
upon addition of LiClO4………………………………………………….... 29
Figure 3-11. Absorption spectra of 0.10 nM Biox-AuNPs upon addition of LiClO4….... 30
Figure 3-12. Plot of A630/521 of AuNPs、AuNPs-citrate and Biox -AuNPs as a function of
the [ Li+ ]………………………………………………………………........30
Figure 3-13. SEM images of Biox-AuNPs upon addition of [ Li+ ] = 8.8 μM………….. 31
Figure 3-14. (a) Absorption spectra of 0.10 nM Biox-AuNPs upon addition of LiCl. (b)
Plot of A630/521 of Biox -AuNPs as a function of the [ Li+ ]………………... 31
Figure 3-15. Absorption spectra of (a) 0.22 nM AuNPs and (b) 0.10 nM AuNPs upon
addition of NaClO4……………………………………………………….... 32
Figure 3-16. Absorption spectra of 0.12 nM Biox-AuNPs upon addition of NaClO4…...33
Figure 3-17. Plot of A640/521 of AuNPs、AuNPs-citrate and Biox-AuNPs as a function of the
[ Na+ ]…………………………………………………………………….... 34
Figure 3-18. (a) Absorption spectra of 0.10 nM Biox-AuNPs upon addition of NaCl. (b)
Plot of A640/521 of Biox-AuNPs as a function of the [ Na+ ]………………... 34
Figure 3-19. Absorption spectra of (a) 0.10 nM AuNPs and (b) 0.10 nM AuNPs-citrate
upon addition of KClO4……………………………………………….…… 35
Figure 3-20. Absorption spectral of 0.10 nM Biox-AuNPs upon addition of (a) [KClO4 ] =
0.041 mM and (b) [KClO4 ] = 4.11 mM…………………………….……...36
Figure 3-21. Plot of A630/521 of AuNPs、AuNPs-citrate and Biox-AuNPs as a function of the
[ K+ ]……………………………………………………………………..… 37
Figure 3-22. (a) Absorption spectra of 0.10 nM Biox-AuNPs upon addition of KCl. (b)
Plot of A630/521 of Biox-AuNPs as a function of the [ K+ ]…………………. 37
Figure 3-23. SEM image of Biox-AuNPs in the presence of [ K+ ] = 383 μM………...38
Figure 3-24. Absorption spectral changes in H2O of (a) 20 nm AuNPs ( [AuNPs] = 0.04
nM ) and (b) 33 nm AuNPs ( [AuNPs] = 0.06 nM) upon addition of
SHC12EBiox ( [SHC12EBiox] = 5.28 mM in MeOH/CH2Cl2 )…………... 39
Figure 3-25. Absorption spectral changes in H2O of 20 nm AuNPs ( [AuNPs] = 0.12 nM )
and upon addition of DT/SHC12EBiox ( [DT/SHC12EBiox] = 4.4 mM in
MeOH/CH2Cl2 )…………………………………………………………..... 41
Figure 3-26. Absorption spectral changes in H2O of 20 nm AuNPs ( [AuNPs] = 0.11 nM )
and upon addition of DT/SHC12EBiox ( [3DT/SHC12EBiox] = 2.08 mM in
MeOH/CH2Cl2 )……………………………………………………………. 41
Figure 3-27. Absorption spectral changes in H2O of 20 nm AuNPs ( [AuNPs] = 0.15 nM )
and upon addition of DT/SHC12EBiox ( [9DT/SHC12EBiox] = 2.56 mM in
MeOH/CH2Cl2 )……………………………………………………………. 42
Figure 3-28. (a) Absorption spectra of 20 nm SC12EBiox-AuNPs. (b) Absorption spectra
of HSC12EBiox in MeOH ( dash line ) and 34 nm SC12EBiox-AuNPs in
H2O ( solid line )……………………………………………………...….. 43
Figure 3-29. TEM images of (a) 20 nm SC12EBiox-AuNPs and (b) 34 nm
SC12EBiox-AuNPs…………………………………………………….….. 44
Figure 3-30. Proposed scheme for the SC12EBiox-AuNPs………………………….…. 44
Figure 3-31. Absorption spectra of SC12EBiox-AuNPs ([SC12EBiox-AuNPs] = 0.034
nM) in H2O upon addition of ZnⅡ ( [ Zn(NO3)2 ] = 10.3 mM )…………...45
Figure 3-32. Absorption spectra of SC12EBiox-AuNPs ([SC12EBiox-AuNPs] = 0.030
nM) in H2O upon addition of CdⅡ ( [ Cd(NO3)2 ] = 2.45 mM )………..….. 46
Figure 3-33. Absorption spectra of SC12EBiox-AuNPs ([SC12EBiox-AuNPs] = 0.034
nM) in H2O upon addition of HgⅡ ( [ Hg(NO3)2 ] = 2.92 mM )……….…...46
Figure 3-34. Absorption spectra of SC12EBiox-AuNPs ([SC12EBiox-AuNPs] = 0.039
nM) in H2O upon addition of PbⅡ ( [ Pb(NO3)2 ] = 6.6 mM )…………...... .47
Figure 3-35. Absorption spectra of SC12EBiox-AuNPs ([SC12EBiox-AuNPs] = 0.030
nM) in H2O upon addition of CuⅡ ( [ Cu(NO3)2 ] =5.8 mM )………..……. 48
Figure 3-36. Plot of A760/535 of SC12EBiox-AuNPs as a function of the [ M2+ ] (μM) where
the metal ions are Cd2+ . Zn2+ . Cu2+ . Pb2+ and Hg2+…………………….... 48
Figure 3-37. Plot of A700/535 of SC12EBiox-AuNPs as a function of the [ M2+ ] (μM) where
the metal ions are Cd2+ . Zn2+ . Cu2+ . Pb2+ and Hg2+…………………........ 49
Figure 3-38. SEM images of SC12EBiox-AuNPs (left) and SC12EBiox-AuNPs in the
presence of HgⅡ ( 38.9 μM )….……………………………………….…... 50
附圖目錄
附圖 1. ESI-MS/MS spectrum of HSC12EBiox ( m/z = 1286 )………………………..53
附圖 2. Tapping-mode AFM image of 20 nm AuNPs………………………………..…54
附圖 3. Tapping-mode AFM image of 34 nm AuNPs………………………..………… 55
附圖 4. Absorption spectra of 20 nm SC12EBiox-AuNPs ([SC12EBiox-AuNPs] = 0.018
nM) in H2O upon addition of ZnⅡ ( [ Zn(NO3)2 ] =1.03 mM )………………... 56
附圖 5. Absorption spectra of 20 nm SC12EBiox-AuNPs ([SC12EBiox-AuNPs] = 0.027
nM) in H2O upon addition of CdⅡ ( [ Cd(NO3)2 ] =2.54 mM )…………..…..... 57
附圖 6. Absorption spectra of 20 nm SC12EBiox-AuNPs ([SC12EBiox-AuNPs] = 0.030
nM) in H2O upon addition of HgⅡ ( [ Hg(NO3)2 ] =0.68 mM )…………..….... 58
附圖 7. Absorption spectra of 20 nm SC12EBiox-AuNPs ([SC12EBiox-AuNPs] = 0.050
nM) in H2O upon addition of PbⅡ ( [ Pb(NO3)2 ] =0.48 mM )……………....... 59
附圖 8. Absorption spectra of 20 nm SC12EBiox-AuNPs ([SC12EBiox-AuNPs] = 0.050
nM) in H2O upon addition of CuⅡ ( [ Cu(NO3)2 ] =5.8 mM )……………….... 60
附圖 9. Plot of A650/534 of SC12EBiox-AuNPs as a function of the [ M2+ ] (μM) where the
metal ions are Zn2+ . Cd2+. Pb2+. Cu2+and Hg2+……………………………….. 61
表目錄
Table 3-1. ESI-MS data for HSC12EBiox……………………………………….......…. 23
參考文獻
(1)	馬振基主編 奈米材料科技原理與應用; 全華科技圖書公司: 臺北, 2004.
	(2)	Turkevitch, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55-75.
	(3)	Frens, G. Nature: Phys. Sci. 1973, 241, 20-22.
	(4)	Mirkin, C. A. Inorganic Chemistry 2000, 39, 2258-2272.
	(5)	Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757-3778.
	(6)	Wilcoxon, J. P.; Williamson, R. L.; Baughman, R. J. Chem. Phys. 1993, 98, 9933.
	(7)	Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801.
	(8)	Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212-4217.
	(9)	Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C. Langmuir 1999, 15, 701-709.
	(10)	Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073-3077.
	(11)	Thomas, K. G.; Kamat, P. V. Acc. Chem. Res. 2003, 36, 888-898.
	(12)	Kim, Y.; Johnson, R. C.; Hupp, J. T. Nano Letter 2001, 1, 165-167.
	(13)	Obare, S. O.; Hollowell, R. E.; Murphy, C. J. Langmuir 2002, 18, 10407-10410.
	(14)	Lin, S.-Y.; Chen, C.-h.; Lin, M.-C.; Hsu, H.-F. Anal. Chem. 2005, 77, 4821-4828.
	(15)	Ipe, B. I.; Yoosaf, K.; Thomas, K. G. J. Am. Chem. Soc 2006, 128, 1907-1913.
	(16)	Huang, C.-C.; Chang, H.-T. Chem. Commun., 2007, 1215-1217.
	(17)	Campbell, L. M.; Dixon, D. G.; Hecky, R. E. J. Toxicol. Environ. Health B 2003, 6, 325.
	(18)	Wang, Q.; Kim, D.; Dionysiou, D. D.; Sorial, G. A.; D., T. Environ. Pollut. 2004, 131, 323.
	(19)	Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc 2003, 125, 14270-14271.
	(20)	Nolan, E. M.; Lippard, S. J. J. Mater. Chem. 2005, 15, 2778-2783.
	(21)	Nolan, E. M.; Racine, M. E.; Lippard, S. J. Inorg. Chem. 2006, 45, 2742-2749.
	(22)	Ono, A.; Togashi, H. Angew. Chem. Int. Ed. 2004, 43, 4300-4302.
	(23)	Brummer, O.; La Clair, J. J.; Janda, K. D. Org. Let. 1999, 1, 415-418.
	(24)	Sancenón, F.; Mártinez-Mánez, R.; Soto, J. Chem. Commun. 2001, 2262-2263.
	(25)	Ipe, B. I.; Yoosaf, K.; Thomas, K. G. J. Phys. Chem. B 2004, 108, 13265-13272.
	(26)	王崇人 科學發展 2002, 9106, 48-51.
	(27)	Wallace, O. B.; Springer, D. M. Tetrahedron Letters 1998, 39, 2693-2694.
	(28)	Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Anal. Chem. 2007, 79, 4215-4221.
	(29)	Lin, S.-Y.; Tsai, Y.-T.; Chen, C.-C.; Lin, C.-M.; Chen, C.-h. J. Phys. Chem. B 2004, 108, 2134-2139.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信