淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1907200703560200
中文論文名稱 丁基乳膠奈米黏土複合材料之製備與物性探討
英文論文名稱 A study on preparation and properties of Butyl Latex/Nano-clay Composites
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 趙之晟
研究生英文姓名 Chiz-Cheng Chao
電子信箱 d8805036@yahoo.com.tw
學號 693361338
學位類別 碩士
語文別 中文
口試日期 2007-06-25
論文頁數 92頁
口試委員 指導教授-林國賡
委員-薛敬和
委員-董崇民
委員-林國賡
中文關鍵字 丁基乳膠  奈米球磨機  奈米丁基橡膠複合材料  矽酸鹽層黏土  乳化摻混  共凝聚法 
英文關鍵字 Isobutylene-isoprene rubber latex  nanocomposites  silicates  emulsion blending  co-coagulating 
學科別分類
中文摘要 本研究對丁基乳膠摻混奈米級黏土,使奈米黏土於橡膠機材中,達到奈米級分散即剥層(exfoliation)或插層(intercalation)之結構,故將利用奈米球磨機先將奈米黏土乳化分散再分別以乳膠法(Emulsion)與共凝聚法(Co-coagulation)的方式製備丁基橡膠之奈米黏土複合材料,最後將複材進行加硫得到奈米橡膠成品。
研究之基材為丁基橡膠,運用丁基橡膠乳膠進行乳化摻混實驗,再以XRD、TEM分析黏土之分散性,發現乳膠法與共凝聚法所得之複材結構不同,另以DMA、TGA測定其在不同黏土與相容劑比例下的熱性質改變,再利用透氣性分析儀分析阻氣性提升率,其中以乳膠法制備丁基橡膠複材(EmR-5)於DMA檢測Tg為-24.76oC,下降約 3 oC是由界面活性劑造成潤滑作用,熱分解溫度為(Td) 342 oC,Td值上升19oC可歸咎於黏土分散性佳,阻絕氧氣進入材料之入徑,而以共凝聚法製備上,其Tg及Td並無顯著改變顯示出黏土分散性不佳。最後,利用萬能拉力機比較各樣品機械性質的提升,以乳膠法製備之奈米橡膠其硬度測試較純料提高20%,而拉力提升約2倍。
英文摘要 Isobutylene–isoprene rubber (IIR) latex and layer silicate (Na+-MMT) were prepared by latex and co-coagulating methods. The mode of dispersion of layered silicates in these nanocomposites was investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM images demonstrate partially exfoliated and intercalated via latex method, and purely intercalated via co-coagulating method. Furthermore, the surfactant played an important role for interlayer distance in IIR via latex method. Especially, nanocomposites prepared via latex method could increase the interlayer d-spacing after curing process.

In addition, the tensile and thermal properties of IIR/silicates nanocomposites were much higher than that of the neat IIR. And, the tensile properties and decomposition temperature of the IIR/silicates nanocomposites (EmR-5) increased by 200% and 20oC, respectively. The gas barrier properties of the nanocomposites (EmR-10) decreased by 50%. Finally, a remarkable improvement of the tensile properties was observed for the IIR/clay nanocomposites (via co-coagulating method) only if the loading of the silicate is greater than 10 phr.
論文目次 總目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖目錄 Ⅶ
表目錄 Ⅹ
目錄

第一章 緒論...........................................1
1-1 研究背景..........................................1
1-2 研究目的..........................................7

第二章 文獻回顧.......................................8
2-1 相關理論基礎與介紹…………………………………………8
2-1-1 丁基乳膠之性質與應用...........................8
2-1-2 丁基乳膠之製備.................................9
2-2 乳膠配合劑之分類、性質與選擇.....................11
2-3 橡膠之硫化.......................................15
2-3-1 硫化之定義....................................15
2-3-2 硫化之測量....................................16
2-3-3 乳膠之硫化....................................18
2-3-4 丁基乳膠之硫化配方............................19
2-4 高分子奈米複合材料簡介...........................22
2-5 黏土之簡介.......................................26
2-5-1 黏土之膨潤性..................................28
2-6 乳膠法(Via Latex)製備橡膠/黏土複合材料相關文獻...29
第三章 實驗..........................................32
3-1 實驗藥品.........................................32
3-2 實驗方法.........................................33
3-3 乳膠法製備丁基橡膠/黏土複合材料(IIR/Clay)........34
3-3-1 乳膠法製備流程................................34
3-3-2 乳膠法實驗方法................................35
3-3-3 乳膠法實驗步驟................................36
3-4 共凝聚法製備丁基橡膠(IIR)/矽酸鹽層(Clay)複材.....38
3-4-1 共凝聚法製備流程..............................38
3-4-2 共凝聚法實驗方法..............................39
3-4-3 共凝聚法實驗步驟..............................39
3-5 樣品分析流程.....................................41
3-6 實驗設備.........................................42
3-7 儀器分析.........................................43
第四章 結果與討論....................................46
4-1 黏土系統研磨改質分析.............................46
4-1-1 粒徑分析......................................46
4-1-2 電位分析......................................48
4-2 X-ray繞射分析....................................50
4-2-1 黏土研磨對乳膠法製備丁基橡膠/黏土複材(IIR/Clay)..50
之結構影響
4-2-2 加硫對乳膠法製備IIR/Clay之結構影響............52
4-2-3 共凝聚法製備IIR/Clay之結構影響................58
4-2-4 加硫對共凝聚法製備IIR/Clay之結構分影響........59
4-3 TEM形態學分析....................................64
4-3-1 乳膠法製備IIR/Clay之型態分析..................64
4-3-2 共凝聚法製備IIR/Clay之型態分析................65
4-4 機械性質分析.....................................70
4-4-1 乳膠法製備IIR/Clay之拉力分析..................70
4-4-2 共凝聚法製備IIR/Clay之拉力分析................73
4-5 動態機械性質分析.................................75
4-5-1 乳膠法之動態機械性質分析......................75
4-5-2 共凝聚法之動態機械性質分析....................78
4-6 熱性質分析.......................................80
4-6-1 乳膠法熱性質分析..............................80
4-6-2 共凝聚法熱性質分析............................82
4-7 透氣性分析.......................................84
第五章 結論..........................................86
第六章 參考文獻......................................88

圖目錄
圖(2-1) 丁基橡膠結構圖................................8
圖(2-2) 硫化前後的橡膠分子聚合物鏈...................15
圖(2-3) 定伸強度與斷裂伸長率在不同程度交聯下的關係...16
圖(2-4) 橡膠之硫化曲線...............................17
圖(2-5) 高分子/黏土複合材料之混成結構................26
圖(2-6) Smectite Clay 的理論結構式...................28
圖(2-7) 不同比例下黏土溶於水中之X-ray繞射圖..........29
圖(2-8) 以X-ray、TEM判別黏土分散之型式...............31
圖(2-9) 不同極性之乳膠與黏土摻混之TEM圖..............31
圖(3-1) 乳膠法製備流程...............................34
圖(3-2) 黏土系統球磨改質過程.........................35
圖(3-3) 黏土系統與乳膠系統摻混機制...................35
圖(3-4) 共凝聚法製備流程.............................38
圖(3-5) 共凝聚法製備機制.............................39
圖(3-6) 橡膠奈米複材樣品分析流程.....................41
圖(4-1) 黏土研磨後粒徑分析...........................47
圖(4-2) IIR/Clay加硫後(黏土系統經研磨改質)之X-ray繞射圖形...53
圖(4-3) IIR/Clay加硫後之X-ray繞射圖形(黏土系統未研磨改質)...53
圖(4-4) IIR/Clay加硫前之X-ray繞射圖形(黏土系統經研磨改質)...54
圖(4-5) IIR/Clay之黏土系統研磨改質與未研磨改質之X-ray比較...54
圖(4-6) IIR/Clay之黏土系統研磨改質與未研磨改質之X-ray比較...55
圖(4-7) IIR/Clay之黏土系統研磨改質與未研磨改質之X-ray比較...55
圖(4-8) 乳膠法之IIR/Clay加硫前後X-ray繞射圖形........56
圖(4-9) 乳膠法之IIR/Clay加硫前後X-ray繞射圖形........56
圖(4-10) 共凝聚法製程IIR/Clay之機制..................59
圖(4-11) 共凝聚法未加硫前IIR/Clay之x-ray繞射圖.......60
圖(4-12) 共凝聚法加硫後IIR/Clay之x-ray繞射圖.........60
圖(4-13) 共凝聚法加硫前後IIR/Clay之X-ray繞射圖形.....61
圖(4-14) 共凝聚法加硫前後IIR/Clay之X-ray繞射圖形.....61
圖(4-15) 共凝聚法加硫前後IIR/Clay之X-ray繞射圖形.....62
圖(4-16) 共凝聚法加硫前後IIR/Clay之X-ray繞射圖形.....62
圖(4-17) 乳膠法製備IIR/Clay之TEM圖(黏土經研磨改質)...66
圖(4-18) 乳膠法製備IIR/Clay之TEM圖(黏土經研磨改質)...67
圖(4-19) 乳膠法製備IIR/Clay之TEM圖(黏土未經研磨改質).68
圖(4-20) 共凝聚法製備IIR/Clay之TEM圖.................69
圖(4-21) 乳膠法製備IIR/Clay之應力應變曲線圖..........71
圖(4-22) 乳膠法製備不同比例黏土IIR/Clay之斷裂點強度..72
圖(4-23) 共凝聚法黏土插層示意圖......................73
圖(4-24) 乳膠法製備IIR/Clay之應力應變曲線圖..........74
圖(4-25) 共凝聚法製備不同比例黏土IIR/Clay之斷裂點強度74
圖(4-26) IIR/Clay之儲存模數對溫度圖形...............77
圖(4-27) IIR/Clay之Tan δ對溫度圖形.................77
圖(4-28) IIR/Clay之儲存模數對溫度圖形...............79
圖(4-29) IIR/Clay之Tan δ對溫度圖形.................79
圖(4-30 ) 乳膠法IIR/Clay之熱重分析(研磨改質).........81
圖(4-31 ) 乳膠法IIR/Clay之熱重分析(未研磨改質).......81
圖(4-32) 共凝聚法IIR/Clay之熱重損失分析..............83
圖(4-33) 乳膠法製備IIR/Clay之氣體穿透示意圖..........85
圖(4-34) 乳膠法IIR/Clay之透氧率......................85

表目錄
表(1-1) 天然黏土分類表................................6
表(2-1) 橡膠氣體透過率................................9
表(2-2) 丁基乳膠製作配方.............................11
表(2-3) 一般乳膠專用之分散劑.........................13
表(2-4) 一般丁基橡膠硫化劑種類.......................19
表(2-5) 一般丁基橡膠硫化促進劑種類...................20
表(2-6 ) 丁基乳膠加硫配方............................22
表(3-1) 黏土系統與乳膠摻混比例.......................37
表(3-2) 黏土系統配方.................................37
表(3-3) 黏土系統與乳膠摻混比例 ......................37
表(3-4) 乳化摻混法之加硫系統.........................37
表(3-5) 共凝聚法之凝聚劑配方.........................40
表(3-6) 共凝聚法之加硫系統...........................40
表(3-7) 共凝聚法之黏土與橡膠比例.....................41
表(4-1) 黏土系統研磨製程條件.........................49
表(4-2) 黏土系統配方.................................49
表(4-3) 不同大小之鋯珠研磨黏土系統之粒徑大小.........49
表(4-4) 黏土系統球磨後之界面電位.....................50
表(4-5) 乳膠法加硫後IIR/Clay之層間距.................57
表(4-6) 乳膠法加硫前後IIR/Clay之層間距...............57
表(4-7) 共凝聚法未加硫前IIR/Clay母膠之層間距.........63
表(4-8) 共凝聚法加硫後IIR/Clay之層間距...............63
表(4-9) 共凝聚法加硫前後IIR/Clay之層間距.............63
表(4-10) 乳膠法製備IIR/Clay之硫化後機械性質比較......72
表(4-11) 共凝聚法製備IIR/Clay之硫化後機械性質比較....75
表(4-12) IIR/Clay之動態機械性質.....................78
表(4-13) 乳膠法IIR/Clay之熱裂解溫度..................82
表(4-14) 共凝聚IIR/Clay之法熱裂解溫度................84
參考文獻 [1] A. Usuki, M. Kawasum, Y. Kojima, Y. Fukushima, A. Okada,; T.
Kurauchi, O. Kamigaito, J. Mater 1993; 8: 1179.

[2] Y.Kojima, A.Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O.
Kamigaito, J. Polym. Sci. Part A : Polym. Chem. 1993; 31: 983.

[3] D.G. Shaw, M.G. Langlois, Catalina Coatings, Inc., Tucson, A.Z.
1995 Society of Vacuum Coaters 1995; 505/856: 7188.

[4] 工研院經濟部產業報導

[5] Y. Ikeda, S. Kohjiya, “In situ formed silica particles in rubber
vulcanizate by the sol-gel method” , Polymer 1997; 38: 4417-4423.

[6] Y. Ikeda, S. Kohjiya, Journal of Sol-Gel Sci. and Tech, “ In Situ
Formation of Particulate Silica in Natural Rubber Matrix” , by the
Sol-Gel Reaction,2003; 26: 495-498.

[7] S. Varghese, J.K. Kocsis*, “ Natural rubber-based
nanocomposites by latex compounding with layered silicates ”,
Polymer 2003; 44: 4921-4927.

[8] A.Usuki, A.Tukiguse, M. Kato, Polymer 2002; 43: 2185.

[9] Y.T. Vu, J.E. Mark, L. H. Phom, Engelhardt, M.J. Appl. Polym. Sci.
2001; 82: 1391.

[10] K.S. Kwan, D. A. Harrington, P.A. Moore, J.R. Hahn, J.V. Degroot,
G. T. Burns, Rubber Chem. Technol 2001; 74, 3, 630.

[11] Y. P.Wu, L.Q.Zhang, Y.Q. Wang, Y.Liang, D.S. Yu, J. Appl. Polym.
Sci. 2001; 82: 2842.

[12] E. Passaglia, W. Bertuccelli, F. Ciardelli, macromol. Symp 2001;
176: 299.

[13] H. Zheng, Y. Zhang, Z.L. Peng, “ Influence of clay modification on
the structure and mechanical properties of EPDM/montmorillonite
nanocomposites”, Polymer Testing 2004; 23: 217.

[14] J. Ma, J. Xu,J.H. Ren, Z.Z. Yu, Y.W. Mai, “A new approach to
polymer/montmorillonite nanocomposites ”, Polymer 2003; 44: 4619.

[15] S. Sadhu, A. K. Bhowmick, “ Preparation and properties of
styrene-butadiene rubber based nanocomposites: The influence of
the structural and processing parameters ”,J. Appl. Polym. Sci.
2004; 92: 698.

[16] Y.P. Wu, L.Q. Zhang,Y.Z. Wang,Y.Liang,D.S. Yu, J. Appl.
Polym. Sci. 2001; 82: 2842.

[17] L. Zhang, Y. Wang, Y. Wang, Y. Sui, D.S. Yu, “Morphology and
mechanical properties of clay/styrene-butadiene rubber
nanocomposites”, Journal of Applied Polymer Science 2000; 78:
1873-1878.

[18] Y.P. Wu, L.Q. Zhang, Y.Q. Wang, Y. Liang, D.S. Yu,“Structure of
carboxylated acrylonitrile-butadiene rubber (CNBR)-clay nano-
composites by co-coagulating rubber latex and clay aqueous
suspension”,Journal of Applied Polymer Science 2001; 82:
2842-2848.

[19] S. Sadhu, A. K. Bhowmick, Journal of Applied Polymer
Science 2004; 92: 698-709.

[20] Y. Wang, L. Zhang, C. Tang, D. Yu, Journal of Applied Polymer
Science 2000; 78: 1879-1883.

[21] W.G. Hwang, K.H. Weia,“Preparation and mechanical properties
of nitrile butadiene rubber/silicate nanocomposites, Polymer 2004;
45: 5729-5734.

[22] 丁基橡膠應用技術

[23] 乳膠製品應用技術

[24] Aqualast Lord Techmark, Inc.

[25] 工業材料,88 年9 月,153 期

[26] A. Bhattacharyya, P.C. Chakraorti, Science and Technology of
Advanced Materials 2001; 2: 449-454

[27] y. lkeda, s. kohjiya Chem. Research Japan 1996

[28] K.E. Strawhecker, E. Manias, Chem. Mater. 2000; 12: 2943.

[29] E.A. Manias, L. Touny, K. E. Wu, B. L. Strawhecker, T. C. Chung,
Chem. Mater. 2001; 13: 3516.

[30] Y. Li, H. Ishida, Chem. Mater. 2002; 14: 1398.

[31] T. Yui, H.Yoshida, H. Tachibana, D.A. Tryk, H.Inoue, Langmuir
2002; 18: 891.

[32] M. Ganter, W. Gronski, H. Semke, T. Zilg, C. Thomann,
R.Muhlhaupt, Freiburg

[33] D.C. Lee, L.W. Jang, J. Appl. Polym. Sci. 1996; 61: 1117-1122.

[34] D.C. Lee, L.W. Jang, J. Appl. Polym. Sci. 1998; 68: 1997-2005.

[35] M.W. Noh, D.C. Lee, Synthesis and characterization of PS/clay
nanocomposite by emulsion polymerization, Polym. Bull. 1999; 42:
619-626.

[36] B.K. G. Theng, Formation and Properties of Clay-Polymer
Complexes, Elsevier Scientific, Amsterdam 1979.

[37] Y.P. Wu, Y.Q. Wang, Composites Science and Technology 2005; 65
: 1195-1202.

[38] M. Lerner, C. Oriakhi, in: A. Goldstein (Ed.), Handbook of
Nanophase Materials, Marcel Dekker, New York, 1997,p. 199.
39. G. Lagaly, Introduction: from clay mineral±polymer interactions
to clay mineral±polymer nanocomposites, Appl.Clay Sci. 1999;15.

[40] D.J. Greenland, J. Colloid Sci. 1963; 18: 647-664.

[41] S. Varghese and J. Karger-Kocsis, in Polymer Composites:
From Nano- to Macroscale, K. Friedrich, S. Fakirov, and Z. Zhang,
eds., Kluwer, Dordrecht (2004) in press.

[42] S. Varghese and J. Karger-Kocsis, Polymer 2003; 44: 4921.

[43] L. Zhang, Y. Wang, Y. Wang, Y. Sui, and D. Yu, J. Appl. Polym. Sci.
2000; 78: 1873.

[44] Y. Wang, L. Zhang, C. Tang, and D. Yu, J. Appl. Polym.Sci. 2000;
78: 1879.

[45] Y.P. Wu, L.Q. Zhang, Y.Q. Wang, Y. Liang, and D.S. Yu, J. Appl.
Polym. Sci. 2001; 82: 2842.

[46] Y.P. Wu, Q.X. Jia, D.S. Yu, and L.Q. Zhang, J. Appl. Polym. Sci.,
89, 3855 (2003).

[47] S. Varghese, K. G. Gatos, A. A. Apostolov, and J. Karger-Kocsis, J.
Appl. Polym. Sci. 2004; 92: 543.

[48] S. Varghese and J. Karger-Kocsis, unpublished work.

[49] S. Varghese and J.K. Kocsis, in Polymer Composites: From
Nano- to Macroscale, K. Friedrich, S. Fakirov, and Z. Zhang, eds.,
Kluwer, Dordrecht (2004) in press.

[50] W.G. Hwang , K.H. Wei, Polymer 2004; 45: 5729-5734.

[51] Y.P. Wu, L.Q. Zhang, Journal of Applied Polymer Science, 2001; 82:
2842–2848.

[52] D. Choi, M. A. Kader, Journal of Applied Polymer Science 2005; 98:
1688-1696.
[53] C.M. Wu, Polymer Engineer and Science 2004; 44: 6.

[54] Y. Wang, H. Zhang, Journal of Applied Polymer Science 2005; 96:
318–323.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2007-07-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-07-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信