淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-1907200613205000
中文論文名稱 迴路式虹吸熱管之增強沸騰結構
英文論文名稱 Enhanced Boiling Structure of Loop Thermosyphon
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 謝志昇
研究生英文姓名 Chih-Sheng Hsieh
電子信箱 693340357@s93.tku.edu.tw
學號 693340357
學位類別 碩士
語文別 中文
口試日期 2006-07-14
論文頁數 129頁
口試委員 指導教授-康尚文
共同指導教授-顏政雄
委員-陳志臣
委員-夏曉文
委員-顏政雄
委員-楊龍杰
委員-康尚文
中文關鍵字 迴路式虹吸熱管  增強沸騰結構  銅燒結 
英文關鍵字 Loop Thermosyphon  Enhanced Boiling Structure  Sintered Copper 
學科別分類 學科別應用科學機械工程
中文摘要 本研究所設計的迴路式虹吸熱管包含蒸發室(內徑25mm,高度25mm)、冷凝區、汽相流道(外徑6mm)與液相流道(外徑4mm)四個部分,以銅銀硬銲的方式接合。冷凝區的設計包含七個平滑的垂直管(外徑4 mm, 長80mm),其外部尺寸為80mm x 12mm x 104mm。採用三種增強沸騰結構,分別為無燒結結構、厚度1mm與4mm的燒結結構,其長寬尺寸為17.3mm x 17.3mm,銅粉末平均粒徑與孔隙率分別為185.5μm與53.7%,使用甲醇與去離子水為工作流體。探討充填量與增強沸騰結構對於性能影響,經由實驗獲得以下的結論:
1.在各組實驗測試中,甲醇與去離子水的最佳充填率分別為10%與30%。甲醇比去離子水呈現較低的加熱面溫度。
2.工作流體為甲醇時,較佳的效能為燒結厚度1mm,充填量為最佳的10%,與無燒結結構比較,其有效降低加熱面溫度平均為9.21℃。
3.工作流體為去離子水時,較佳的效能為燒結厚度1mm,充填量為最佳的30%,但是厚度4mm的燒結結構與之無太大的差異,與無燒結結構比較,其有效降低加熱面溫度平均為3.50℃。
4.由實驗結果顯示冷卻水溫度越低,真空度越高其散熱性能越好。
英文摘要 Abstract:
The loop thermosyphon in this research paper is consisting of an evaporator (inner diameter 25mm, height 25mm), a condenser, riser (outer diameter 6mm) and downcomer (outer diameter 4mm) are investigated experimentally. All parts are made of copper, and welded together. And most importantly the condenser consists of 7 vertical smooth copper tubes (4 mm OD, 80mm length), and the outer dimensions (90mm x 19mm x 106mm). The experimented shows that there are three types of enhanced boiling structures. The first type evaporator is flat with smooth boiling surface. The others are 17.3mm square, 1mm and 4mm thickness of sintered copper. The average diameter of copper powder and the porosity is 185.5μm and 53.7% respectively while obviously using D.I. water and methanol as working fluid. The experiment was investigated to evaluate the optimum filling ratio of working fluid and the performance of the enhanced boiling sintered copper structure. The results of the successful performance are as follows:
1.The optimum filling ratio of methanol and D.I. water are 10% and 30% respectively in each experimental test. Methanol always shows a lower Die temperature than D.I. water.
2.The better performance for using methanol is 1mm thickness sinter with 10% filling ratio. Comparing with the smooth plate and the effect of 1mm sintered copper for temperature of Die, the average reduction was shown 9.21°C with methanol.
3.The better performance for using D.I. water is used 1mm thickness sinter with 30% filling ratio. Comparing with the smooth plate and the effect of 1mm sintered copper for temperature of Die, the average reduction was indicated 3.50°C with D.I. water. But the performance of 4mm thickness sinter is nearly to 1mm thickness sinter.
4.The lower the temperature of cooling water and the higher vacuum, which causes to lead the higher performance.
論文目次 總 目 錄

中文摘要---------------------------------------------------------------------------- I
英文摘要---------------------------------------------------------------------------II
總目錄-----------------------------------------------------------------------------III
圖目錄----------------------------------------------------------------------------VI
表目錄--------------------------------------------------------------------------XIII
符號說明-----------------------------------------------------------------------XIV

第一章 緒論
1-1 研究動機----------------------------------------------------------------1
1-2 文獻回顧----------------------------------------------------------------4
1-3 研究目的--------------------------------------------------------------30

第二章 理論基礎
2-1 熱管介紹--------------------------------------------------------------31
2-2 虹吸熱管介紹--------------------------------------------------------34
2-3沸騰理論介紹---------------------------------------------------------38

第三章 設計與製程
3-1 迴路式虹吸熱管結構設計-----------------------------------------45
3-2 增強沸騰結構設計與製作-----------------------------------------54
3-3 粉末燒結--------------------------------------------------------------58
3-4 脫氣充填--------------------------------------------------------------65

第四章 性能測試
4-1 測試設備--------------------------------------------------------------68
4-2 熱電偶線位置及校正-----------------------------------------------71
4-3 測試項目--------------------------------------------------------------73
4-4 測試步驟--------------------------------------------------------------74
4-5 性能分析--------------------------------------------------------------75

第五章 實驗結果與討論
5-1 無燒結結構-充填量比較-------------------------------------------76
5-2 厚度1mm銅粉末燒結-充填量比較------------------------------79
5-3 厚度4mm銅粉末燒結-充填量比較------------------------------81
5-4 冷卻水溫的影響-----------------------------------------------------83
5-5 真空度的影響--------------------------------------------------------84
5-6 分析與探討-----------------------------------------------------------85

第六章 結論
6-1 總結--------------------------------------------------------------------93
6-2 未來建議--------------------------------------------------------------96
參考文獻------------------------------------------------------------------------97

APPENDIX A 實驗測試數據-----------------------------------------------102
APPENDIX B 去離子水性質表--------------------------------------------125
APPENDIX C 甲醇性質表--------------------------------------------------127
APPENDIX D 充填量誤差值-----------------------------------------------129

圖目錄

圖1-1 莫爾定律[1] --------------------------------------------------------------2
圖1-2 中央處理器(CPU)效能與發熱量關係圖[1] ------------------------3
圖1-3 C. Ramaswaniy 實驗架設圖[2] -------------------------------------4
圖1-4 柵形結構 上視圖與側視圖[3] ---------------------------------------5
圖1-5不同孔隙的性能比較[3] ------------------------------------------------5
圖1-6矽與銅性能比較[3] ------------------------------------------------------5
圖1-7 虹吸熱管之質量、動量與能量平衡流程圖[4] ----------------------6
圖1-8 氣泡成長過程[5] --------------------------------------------------------6
圖1-9柵形結構[6] ---------------------------------------------------------------7
圖1-10安裝於電腦作性能測試[6] -------------------------------------------7
圖1-11 設備示意圖[7] ---------------------------------------------------------7
圖1-12 冷凝區高度與熱阻關係[7] ------------------------------------------7
圖1-13 孔隙大小與熱通量關係[8] ------------------------------------------8
圖1-14 孔隙間距與熱通量關係[8] ------------------------------------------8
圖1-15 堆疊高度與熱通量關係[8] ------------------------------------------8
圖1-16 垂直孔之迴路虹吸式熱管[9] ---------------------------------------9
圖1-17 理論壓降與實驗比較[9] ---------------------------------------------9
圖1-18 平滑管與螺紋管之比較[10] -----------------------------------------9
圖1-19 平滑管與螺紋管之對流係數比較[10] -----------------------------9
圖1-20 理論與實驗之熱對流係數比較[10] ------------------------------10
圖1-21 脫氣程度與溫差關係[11] ------------------------------------------10
圖1-22 Cooper理論與實驗之熱對流係數比較[11] -------------------10
圖1-23 LW理論與實驗之熱對流係數比較[11] ------------------------11
圖1-24 強制對流與自然對流性能比較[12] ------------------------------11
圖1-25 不同管徑對於質量流率與散熱性能的模擬關係[13] ---------12
圖1-26 不同管徑對於蒸汽比例與散熱性能的模擬關係[13] ---------12
圖1-27 在不同管徑比較實驗與理論的壓力降[14] ---------------------12
圖1-28 實驗架設示意圖[15] ------------------------------------------------13
圖1-29 增強沸騰結構示意圖[15] ------------------------------------------13
圖1-30 充填量與熱阻關係[15] ---------------------------------------------13
圖1-31 風量與熱阻關係[15] ------------------------------------------------13
圖1-32 實驗架設示意圖[16] ------------------------------------------------14
圖1-33 增強沸騰結構示意圖[16] ------------------------------------------14
圖1-34 實驗架設示意圖[17] -------------------------------------------------14
圖1-35 冷凝區結構示意圖[17] ----------------------------------------------14
圖1-36 蒸發區結構示意圖[17] ----------------------------------------------15

圖1-37 充填量與溫差關係[17] ----------------------------------------------15
圖1-38 增強結構與溫差關係[17] -------------------------------------------15
圖1-39 U形管迴路虹吸熱管[18] ------------------------------------------16
圖1-40 U形管迴路式虹吸熱管 性能測試[18] -------------------------16
圖1-41 水平傳輸之迴路式虹吸熱管[18] ---------------------------------16
圖1-42 水平傳輸之迴路式虹吸熱管 性能測試(不同風速)[18] -----17
圖1-43 3M單管式虹吸熱管結構圖[19]----------------------------------17
圖1-44 熱阻與輸入功率關係[19]-------------------------------------------18
圖1-45 實驗架構示意圖[20] ------------------------------------------------19
圖1-46 發泡石墨SEM圖[20] -----------------------------------------------19
圖1-47 不同沸騰結構性能比較[20] ---------------------------------------19
圖1-48 有無溝槽沸騰結構性能比較[20] ---------------------------------20
圖1-49 充填量與性能比較[20] ---------------------------------------------20
圖1-50 FC87與FC-72性能比較[20] -------------------------------------20
圖1-51 Al2O3顆粒之臨界熱通量[21] -------------------------------------21
圖1-52 增強沸騰結構、液體溫度對於臨界熱通量的影響[22] --------22
圖1-53 鑽石顆粒之粒徑大小對於臨界熱通量的影響[23] -------------22
圖1-54 加熱面積對於臨界熱通量的影響[24] ----------------------------23
圖1-55 傾斜角度對於臨界熱通量的影響[25] ----------------------------23
圖1-56 柱的高度對於臨界熱通量的影響[25] ----------------------------24
圖1-57 壓力對於臨界熱通量的影響[25] ----------------------------------24
圖1-58 液體溫度對於臨界熱通量的影響[25] ----------------------------25
圖1-59 加熱面角度對於臨界熱通量的影響[25] -------------------------25
圖1-60 網格大小與堆疊層數對於臨界熱通量的影響[26] ------------26
圖1-61 晶片PF之SEM圖[27] ----------------------------------------------26
圖1-62 增強沸騰結構對於臨界熱通量的影響[27] ---------------------27
圖1-63 傾斜角度對於臨界熱通量的影響[28] ---------------------------27
圖1-64 銅燒結厚度1.14mm之臨界熱通量[29] -------------------------28
圖1-65 燒結厚度與平滑表面的沸騰曲線[29]----------------------------28
圖2-1 熱管作動示意圖--------------------------------------------------------33
圖2-2 熱管操作限制-----------------------------------------------------------33
圖2-3 虹吸熱管作動示意圖--------------------------------------------------34
圖2-4 單管虹吸熱管-----------------------------------------------------------35
圖2-5 迴路式平行虹吸熱管[36] --------------------------------------------36
圖2-6 迴路式虹吸熱管[36] --------------------------------------------------36
圖2-7 基本沸騰模式[37] -----------------------------------------------------39
圖2-8 過熱表面成核過程[39] -----------------------------------------------40
圖2-9 池沸騰區域加熱表面的蒸汽結構[38] -----------------------------41
圖2-10 各種不同增強沸騰表面[38] ---------------------------------------43
圖3-1 迴路式虹吸熱管示意圖----------------------------------------------44
圖3-2 原型一 尺寸圖---------------------------------------------------------46
圖3-3 原型一 完成圖---------------------------------------------------------46
圖3-4 原型二 尺寸圖---------------------------------------------------------48
圖3-5 原型二 完成圖---------------------------------------------------------48
圖3-6 原型三 尺寸圖---------------------------------------------------------50
圖3-7 原型三 完成圖---------------------------------------------------------50
圖3-8 原型四 爆炸圖---------------------------------------------------------52
圖3-9 原型四 尺寸圖---------------------------------------------------------52
圖3-10 原型四 完成圖-------------------------------------------------------53
圖3-11 可調整燒結厚度之石墨治具---------------------------------------55
圖3-12 1m銅粉末燒結完成圖---------------------------------------------56
圖3-13 4mm銅粉末燒結完成圖--------------------------------------------56
圖3-14 銅粉末燒結SEM圖(40倍)-------------------------------------------56
圖3-15 銅粉末燒結SEM圖(100倍)------------------------------------------57
圖3-16 銅粉末燒結SEM圖(100倍)------------------------------------------57
圖3-17 燒結模型---------------------------------------------------------------60
圖3-18 真空幫浦---------------------------------------------------------------67
圖3-19 真空計------------------------------------------------------------------67
圖3-20 充填管路---------------------------------------------------------------67
圖4-1 測試設備示意圖-----------------------------------------------------68
圖4-2 加熱平台示意圖-------------------------------------------------------70
圖4-3 輸入功率與實際輸入功率關係-------------------------------------70
圖4-4 熱電偶線位置----------------------------------------------------------71
圖4-5 Omega溫度擷取器---------------------------------------------------72
圖4-6 PT100與T型熱電偶線校正圖-------------------------------------73
圖5-1 無燒結結構-甲醇 充填量對於性能的影響-----------------------77
圖5-2 無燒結結構-去離子水 充填量對於性能的影響-----------------78
圖5-3 厚度1mm燒結結構-甲醇 充填量對於性能的影響-------------79
圖5-4 厚度1mm燒結結構-去離子水 充填量對於性能的影響-------80
圖5-5 厚度4mm燒結結構-甲醇 充填量對於性能的影響-------------81
圖5-6 厚度4mm燒結結構-去離子水 充填量對於性能的影響-------82
圖5-7 厚度1mm燒結結構-甲醇 冷卻水溫對於性能的影響----------83
圖5-8 厚度1mm燒結結構-甲醇 真空度對於性能的影響-------------84
圖5-9 無燒結結構 工作流體對於性能的影響---------------------------86
圖5-10 厚度1mm燒結結構 工作流體對於性能的影響---------------87
圖5-11 厚度4mm燒結結構 工作流體對於性能的影響----------------88
圖5-12 工作流體為甲醇 增強沸騰結構對於性能的影響-------------90
圖5-13 工作流體為去離子水 增強沸騰結構對於性能的影響-------91
圖5-14 燒結厚度與平滑表面的沸騰曲線[28]---------------------------92
圖5-15 銅網層數對於沸騰熱傳的影響[44]------------------------------92



表目錄

表1-1 測試條件[12]------------------------------------------------------------11
表1-2 測試條件[17]------------------------------------------------------------15
表1-3 測試條件及結果--------------------------------------------------------18
表1-4銅粉燒結之條件[29]----------------------------------------------------28
表1-5 增強沸騰結構文獻整理-----------------------------------------------29
表3-1 本研究燒結體性質-----------------------------------------------------64
表5-1 實驗操作參數-----------------------------------------------------------76
表5-2 各組最佳充填量加熱表面溫度-------------------------------------85
表5-3 去離子水與甲醇於70℃ 液體狀態 性質比較表----------------89
表5-4 去離子水與甲醇於70℃ 蒸汽狀態 性質比較表----------------89
表5-5 工作流體為甲醇 有效降低加熱表面溫度比較------------------90
表5-6 工作流體為去離子水 有效降低加熱表面溫度比較------------91


符號說明

Cp:水之比熱係數 Tc:加熱表面溫度
f:阻力係數 Ta:環境溫度
Fr充填率 TL:鋁棒下端溫度
keff:有效熱傳導係數 TU:鋁棒上端溫度
kl:工作流體熱傳導係數 Tout:冷卻水出口溫度
ks:燒結體材料的熱傳導係數 Tin:冷卻水進口溫度
K:滲透率 Twall:壁溫
pr:脫氣程度 Tsat:飽和溫度
Qinput:輸入功率 ΔTsat:Twall - Tsat
Qw:冷卻水散熱量 Vall:腔體內容積
Qactual:實際加熱功率 Vfluid:注入流體體積
rc:有效毛細半徑 Vp:燒結試片的體積
rs:燒結顆粒的平均半徑 Wp:燒結試片重量
rh:水力半徑 m:冷卻水質量流率
Re:雷諾數 ρ:材料之本質密度
Ractual:冷卻器實際熱阻 ε:孔隙率
Rsystem:系統熱阻

參考文獻 參考文獻

[1] http://www.big5.tomshardware.com

[2] C. Ramaswamy, Y. Joshi and W. Nakayama, “Combined Effects of Sub-Cooling and Operating Pressure on The Performance of a Two-Chamber Thermosyphon”, IEEE Intersociety Conference on Thermal Phenomena, pp.349-355, 1998.

[3] C. Ramaswamy, Y. Joshi, W. Nakayama and W. B. Johnson,” Compact Thermosyphon Employing Microfabricated Components”, Microscale Thermophysical Engineering, Vol.3, pp.273-282, 1999.

[4] S. I. Haider, Y. Joshi and W. Nakayama,” A Natural Circulation Model of the Closed Loop, Two-Phase Thermosyphon for Electronics Cooling”, Journal of Heat Transfer, Vol.124, pp.881-890, 2002.

[5] C. Ramaswamy, Y. Joshi, W. Nakayama and W.B. Johnson, “High-Speed Visualization of Boiling from an Enhanced Structure”, International Journal of Heat and Mass Transfer ,Vol.45, pp.4761–4771, 2002.

[6] M. H. Beitelmal and C. D. Patel,” Two-Phase Loop: Compact Thermosyphon”, Internet Systems and Storage Laboratory HP Laboratories Palo Alto, 2002.

[7] L. Yuan, Y. Joshi and W. Nakayama,” Effect of Condenser Location and Imposed Circulation on the Performance of a Compact Two-Phase Thermosyphon”, Microscale Thermophysical Engineering, Vol.7, pp.163–179, 2003.

[8] C. Ramaswamy, Y. Joshi, W. Nakayama and W.B. Johnson,” Effects of Varying Geometrical Parameters on Boiling From Microfabricated Enhanced Structures”, Journal of Heat Transfer, Vol. 125,pp.103-109, 2003.

[9] Rahmatollah Khodabandeh and Björn Palm,” An Experimental and Numerical Investigation of Pressure Drop in a Closed Loop Two Phase Thermosyphon System”, IEEE Inter Society Conference on Thermal Phenomena, pp.333-339, 2000.

[10] Rahmatollah Khodabandeh and Björn Palm,” An Experimental Investigation of The Influence of Threaded Surface on The Boiling Heat Transfer Coefficients in Vertical Narrow Channels ”, Microscale Thermophysical Engineering, Vol.6, pp.131-139, 2002.

[11] Rahmatollah Khodabandeh and Björn Palm,” Influence of System Pressure on The Boiling Heat Transfer Coefficient in a Closed Two-Phase Thermosyphon Loop”, International Journal of Thermal Sciences, Vol.41, pp.619-624, 2002.

[12] Rahmatollah Khodabandeh,” Thermal Performance of a Closed Advanced Two-Phase Thermosyphon Loop for Cooling of Radio Base Stations at Different Operating Conditions”, Applied Thermal Engineering, Vol.24, pp.2643-2655, 2004.

[13] Rahmatollah Khodabandeh, “Heat transfer in the evaporator of an advanced two-phase thermosyphon loop”, International Journal of Refrigeration, Vol.28, pp.190–202, 2005.

[14] Rahmatollah Khodabandeh, “Pressure drop in riser and evaporator in an advanced two-phase thermosyphon loop”, International Journal of Refrigeration, Vol.28, pp.725–734, 2005.

[15] R.C. Chu, R.E. Simons, and G.M. Chrysler, “Experimental Investigation of an Enhanced Thermosyphon Heat Loop for Cooling of a High Performance Electronics Module”, 14th IEEE SEMI-THERM Symposium, pp.1-9, 1999.

[16] Min-Kyun Na, Jin-Seok Jeon, Ho-Young Kwak and Sang-Sig Nam,” Experimental Study on Closed-Loop Two-Phase Thermosyphon Devices for Cooling MCMs, ” Heat Transfer Engineering, Vol.22, pp.29–39, 2001.

[17] Satoru Gima, Takashi Nagata, Xing Zhang, and Motoo Fujii,” Experimental Study on CPU Cooling System of Closed-Loop Two-Phase Thermosyphon”, Heat Transfer—Asian Research, Vol.34, pp.147-159, 2005.

[18] Dmitry Khrustalev,” Loop Thermosyphons for Cooling of Electronics”, 18th IEEE SEMI-THERM Symposium, pp.145-150, 2002.


[19] Phil E. Tuma and Hamid R. Mortazavi,”Indirect Thermosyphons for Cooling Elecyronic Devices”, Electronics Cooling, Volume12, Number 1, pp.26-32, 2006.

[20] J.W. Klett and M. Trammell,” Parametric Investigation of a Graphite Foam Evaporator in a Thermosyphon With Fluorinert and a Silicon CMOS Chip”, IEEE Transactions on Device and Materials Reliability, Vol. 4, pp.626-637, 2004.

[21] S.M. You, T. W. Simon, and Avram Bar-Cohen., “A Technique for Enhancing Boiling Heat Transfer with Application to Cooling of Electronic Equipment”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol.15, No.5, pp.823-831, 1992.

[22] J.P. O'Connor, S.M. You, and D.C. Price, ”A Dielectric Surface Coating Technique to Enhance Boiling Heat Transfer from High Power Microelectronics”, IEEE Transactions On Components, Packaging, and Manufacturing Technology-Part A, Vol.18, No. 3, 1995.

[23] J.Y. Chang and S.M. You, ”Boiling heat transfer phenomena from micro porous and porous surfaces in saturated FC-72”, International Journal of Heat Transfer, Vol.40, No.18, pp.4437-4447, 1997.

[24] K.N. Rainey and S.M. You, “Effects of heater size and orientation on pool boiling heat transfer from microprous coated sufaces”, International Journal of Heat and Mass Transfer, Vol.44, pp.2589-2599, 2001.

[25] K.N. Rainey , S.M. You , S. Lee,” Effect of pressure, subcooling, and dissolved gas on pool boiling heat transfer from microporous, square pin-finned surfaces in FC-72”, International Journal of Heat and Mass Transfer, Vol.46, pp.23-35, 2003.

[26] A. Brautsch, P. A. Kew,” Examination And Visualisation of Heat Transfer Processes During Evaporation in Capillary Porous Structures”, Applied Thermal Engineering, Vol.22, pp.815-824, 2002.



[27] H. Honda, H. Takamastu, J. J. Wei, ”Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin-Fins and Submicron-Scale Roughness”, Journal of Heat Transfer, Vol.124, pp.383-390, 2002.

[28] M.S. EL-Genk, H. Bostanci,” Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip”, International Journal of Heat and Mass Transfer, Vol.46 pp.1841-1854, 2003.

[29] E.G. Merilo, T. Semenic, I. Catton,”Experimental Investigation of Boiling Heat Transfer in Bidispersed Media”,13th International Heat Pipe Conference, 2004.

[30] 陳威志,”微結構毛細虹吸式熱管之研製”,淡江大學機械與機電工程學系 碩士論文, 2004.

[31] G. P. Peterson, “An Introduction to Heat Pipe”, John Wiley & Sons, Inc., ISBN 0-471-30512-X , 1994.

[32] L. P. Perkins, and W. E. Buck, “Improvements in Devices for The Diffusion or Transference of Heat,” UK Patent No. 22,272 ,1892.

[33] F.W. Gay, “Heat Transfer Means,” U.S. Patent No. 1,725,906, 1929.

[34] R.S. Gaugler, “Heat Transfer Devices,” U.S. Patent No. 2,350,348, 1944.

[35] G.M. Grover, T.P. Cotter and G.F Erikson, “Structures of Very High Thermal Conductivity,” Journal of Applied Physics, Vol. 35, pp. 1190-1191,1964.

[36] A. Pal, Y.K. Joshi, M.H. Beitelmal, C.D. Patel and T. M. Wenger, “Components and Packaging Technologies”, IEEE Transactions on Packaging and Manufacturing Technology, Part A: Packaging Technologies, Vol.25, No.4, 2002.

[37] Navas Khan, D.Pinjala and K.C.Toh,” Pool Boiling Heat transfer Enhancement by Surface modification I Micro structures for Electronics cooling: A Review”, IEEE Electronics Packaging Technology Conference, 2004.

[38] 潘欽,”沸騰熱傳與雙相流”,國立編譯館主編,俊傑書局印行, 2001.
[39] F. Kreith, and M. S. Bohn, “Principle of Heat Transfer”, Brooks Cole, USA, 2001.

[40] 黃森良,”用於個人電腦散熱之蒸汽腔體”,淡江大學機械與機電工程學系 碩士論文, 2004.

[41] 機械月刊第二十一卷第十二期,“擴散接合技術探討”, 1995.

[42] Chi, S. W., ”Heat Pipe Theory and Practice”, McGraw-Hill, N.Y., 1976.

[43] 日本熱管技術協會編、依日光譯著,“熱管技術理論實務”,復漢出版社印行。

[44] R.Kempers, D.Ewing, C.Y.Ching, “Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes”, Applied Thermal Engineering, Vol.26, pp.589-595, 2006.
論文使用權限
  • 不同意紙本論文無償授權給館內讀者為學術之目的重製使用。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信