淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1907200511073400
中文論文名稱 電腦輔助預測圓杯引伸預成形最佳化料片之研究
英文論文名稱 A Study of Computer Aided Prediction of Optimum Blank for Cylindrical Cup Drawing
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 林宜暉
研究生英文姓名 I-Hui Lin
學號 692340044
學位類別 碩士
語文別 中文
口試日期 2005-06-15
論文頁數 92頁
口試委員 指導教授-葉豐輝
委員-盧永華
委員-蔡國忠
委員-李經綸
委員-蔡慧駿
中文關鍵字 適應性網路模糊推論系統  有限元素  圓杯引伸最佳化料片 
英文關鍵字 ANFIS  SLM  Finite Element  Cylindrical Cup Drawing Optimum blank 
學科別分類 學科別應用科學機械工程
中文摘要 本文係探討如何預測板金成形製程最佳化料片之外形輪廓,以改善冷軋鋼板之異向性在圓杯引伸製程所引起之耳緣現象。本文使用流線法、應變法及適應性網路模糊推論系統,配合顯性有限元素法進行最佳化料片之外形預測,藉此不僅改善耳緣現象,並且節省以往試誤法及反覆實驗所浪費的時間,本文亦進一步比較三種預測方法之優劣。為求理論之驗證,本文設計一組圓杯引伸模具,進行圓杯凸緣及圓杯貫穿實驗,以驗證有限元素模擬與最佳化料片之可信度,其中圓杯貫穿製程成品之目標杯高為37mm;圓杯凸緣製程成品的目標杯高為30mm及凸緣直徑為80mm。
由數值分析結果顯示,流線法須配合修正預測杯高之計算方法,方能確實改善假想沖頭所造成之誤差,且三種方法以適應性網路模糊推論系統所預測之最佳化料片,其所改善耳緣現象之效果最好。最後經由數值分析與實驗結果比較得知,顯性有限元素分析可正確模擬成形過程中及成形後料片之變形狀況,且最佳化料片不僅可降低冲頭負荷,亦可減少二次加工所浪費之成本。
英文摘要 The major object of this thesis is to explore how to prediction the optimum blank shape to reduce the ear configuration, due to the anisotropic properties of sheet blank, in the cylindrical cup process. Stream Line Method (SLM), Strain Method and Adaptive-Network-based Fuzzy Inference System (ANFIS) are used to predict the shape of optimum blank with explicit dynamic finite element method in this thesis. With this way, it will not only reduce the ear configuration, but also save a lot of time than using "Try and Error" and repeating experiments. In the thesis, the effect of improvement of ear configuration are also compared between these methods. In order to verify the theory be correct, a set of cylindrical cup drawing die is designed for experiment of flange cylindrical cup process and cylindrical cup process to prove the reliability of finite element method and optimum blank. The finished products in cylindrical cup process, the objective cup's height is 37mm. The finished products in flange cylindrical cup process the objective cup's height is 30mm, and the diameter of flange is 80mm.
From numerical analysis result, Streamline method with modify cup’s height method really could reduce the errors by an imaginary punch, and ANFIS performed the best effect in improving ear configuration of the optimum blank in three kinds of methods. Finally, The result shows that explicit dynamic finite element method could correctly simulation of situation during forming process of blank form comparing numerical analysis data and experimental data. Furthermore, the optimum blank can reduce the punch load and cost in the secondary processing.
論文目次 目錄
摘要....................................................Ⅰ
目錄....................................................Ⅲ
圖目錄..................................................Ⅵ
表目錄..................................................Ⅸ
符號索引................................................Ⅹ
第一章 緒論..............................................1
1.1 前言.................................................1
1.2 引伸成形簡介.........................................1
1.2.1 圓杯引伸製程之應力與應變狀態.......................2
1.2.2 圓杯引伸製程易見之缺陷.............................3
1.3 文獻回顧.............................................4
1.4 最佳化方法之比較.....................................5
1.5 研究動機與目的.......................................6
1.6 論文之構成...........................................9
第二章 基本理論.........................................10
2.1 顯性有限元素法......................................10
2.2 異向性板材降伏方程式................................15
2.3 流線法理論..........................................17
2.3.1 修正杯高之流線法理論..............................21
2.4 應變法理論..........................................23
2.5 適應性網路模糊控制理論..............................27
2.5.1 模糊推論之架構....................................27
2.5.2 模糊化............................................28
2.5.3 模糊規則庫........................................30
2.5.4 模糊推論機........................................30
2.5.5 解模糊化介面......................................31
2.5.6 適應性網路模糊推論系統之架構......................32
2.5.7 複合式學習演算法..................................34
第三章 圓杯引伸成形實驗與有限元素分析...................36
3.1 圓杯引伸成形實驗....................................36
3.1.1 模具幾何尺寸......................................36
3.1.2 料片材質與參數....................................37
3.1.3 實驗流程..........................................38
3.2 有限元素分析........................................39
3.2.1 元素類型與材料參數................................40
3.2.2 接觸問題設定......................................41
3.2.3 網格規劃與邊界條件................................41
3.3 最佳化流程..........................................50
第四章 圓杯引伸實驗與有限元素分析結果數據...............52
4.1 各類型網格成形結果之比較............................52
4.2 料片成形歷程........................................54
4.3 各最佳化料片成形結果之比較..........................55
4.3.1 圓杯貫穿製程......................................55
4.3.2 圓杯凸緣製程......................................55
4.4 最佳化料片實驗與分析結果之比較......................56
4.4.1 圓杯貫穿製程......................................56
4.4.2 圓杯凸緣製程......................................59
第五章 結論與建議.......................................63
5.1 結論................................................63
5.2 未來發展與建議......................................67
參考文獻................................................68
附錄A...................................................71
附錄B...................................................73
附錄C...................................................75
附錄D...................................................77
附錄E...................................................81
附錄F...................................................85
附錄G...................................................87
附錄H...................................................89
附錄I...................................................91
附錄J...................................................93
圖目錄
圖1-1 :圓杯引伸製程各部位名稱...........................2
圖1-2 :研究流程圖.......................................8
圖2-1 :連續物體於卡式座標系統變形......................10
圖2-2 :勢能場與速度....................................17
圖2-3 :任意冲頭外形之勢能場與速度......................18
圖2-4 :控制體積極材料流動關係圖........................20
圖2-5 :流線法修正杯高示意圖............................21
圖2-6 :應變法示意圖(圓杯凸緣製程)......................24
圖2-7 :應變法示意圖(圓杯貫穿製程)......................26
圖2-8 :模糊理論推論系統................................27
圖2-9 :吊鍾形歸屬函數圖形..............................29
圖2-10:重心解模糊化法..................................32
圖2-11:適應性網路模糊推論系統之架構示意圖..............33
圖3-1 :圓杯引伸成形實驗用模具..........................36
圖3-2 :圓杯引伸成形模具重要尺寸........................37
圖3-3 :圓杯成形料片圖..................................38
圖3-4 :殼元素示意圖....................................40
圖3-5 :罰函數法修正節點穿透示意圖......................41
圖3-6 :完整模型沖頭網格圖..............................42
圖3-7 :完整模型壓料板網格圖............................43
圖3-8 :完整模型母模網格圖..............................43
圖3-9 :完整模型料片網格圖..............................44
圖3-10:1/2模型沖頭網格圖...............................45
圖3-11:1/2模型壓料板網格圖.............................45
圖3-12:1/2模型母模網格圖...............................46
圖3-13:1/2模型料片網格圖...............................46
圖3-14:1/4模型沖頭網格圖...............................47
圖3-15:1/4模型壓料板網格圖.............................47
圖3-16:1/4模型母模網格圖...............................48
圖3-17:1/4模型料片網格圖...............................48
圖3-18:1/2模型料片邊界條件示意圖.......................49
圖3-19:1/4模型料片邊界條件示意圖.......................50
圖4-1 :各類型網格規劃在圖4-2之編號方式及顏色...........52
圖4-2 :各種網格規劃在成形後杯高比較圖..................53
圖4-3 :不同網格規劃所需分析時間圖......................53
圖4-4 :圓杯引伸變形歷程圖..............................54
圖4-5 :各最佳化料片與目標杯高之比較圖(圓杯貫穿製程)....55
圖4-6 :各最佳化料片與目標半徑比較圖(圓杯凸緣製程)......56
圖4-7 :成形負荷比較圖(圓杯貫穿製程)....................57
圖4-8 :實驗及分析與目標杯高比較圖(圓杯貫穿製程)........57
圖4-9 :直筒圓杯實體圖(圓杯貫穿製程)....................58
圖4-10:有限元素分析圓杯成形後網格圖(圓杯貫穿製程)......58
圖4-11:有限元素分析圓杯成形後應力分佈(圓杯貫穿製程)....59
圖4-12:成形負荷比較圖(圓杯凸緣製程)....................60
圖4-13:實驗及分析與目標半徑值比較圖(圓杯凸緣製程)......61
圖4-14:凸緣圓杯實體圖(圓杯凸緣製程)....................61
圖4-15:有限元素分析圓杯成形後網格圖(圓杯凸緣製程)......62
圖4-16:有限元素分析圓杯成形後應力分佈(圓杯凸緣製程)....62
圖5-1:流線法有無修正杯高之比較圖(圓杯貫穿製程).........64
圖5-2:流線法有無修正杯高之比較圖(圓杯凸緣製程).........65
圖5-3 :圓杯凸緣製程最佳化料片效果比較圖(凸緣部份)......65
圖5-4 :圓杯凸緣製程最佳化料片效果比較圖(杯高部份)......66
圖5-5 :圓杯貫穿製程最佳化料片效果比較圖................66
圖5-6 :料片輪廓誤差示意圖..............................67
表目錄
表1-1:最佳化方法之比較..................................6
表2-1:複合式學習演算法.................................35
表3-1:SPCC成形加工用軟鋼材料參數表.....................37
表3-2:最佳化成品幾何尺寸...............................50
表A :流線法最佳化料片外形輪廓..........................71
表B :應變法最佳化料片外形輪廓..........................73
表C :ANFIS之最佳化料片外形輪廓.........................75
表D1:ANFIS之X座標訓練資料(圓杯貫穿製程)................77
表D2:ANFIS之Y座標訓練資料(圓杯貫穿製程)................78
表D3:ANFIS之X座標訓練資料(圓杯凸緣製程)................79
表D4:ANFIS之Y座標訓練資料(圓杯凸緣製程)................80
表E :各種網格化規劃成形杯高之比較表....................81
表F:各最佳化料片與目標杯高37mm比較表(圓杯貫穿製程).....83
表G:最佳化料片與目標半徑40mm比較表(圓杯凸緣製程).......85
表H:實驗與分析杯高比較表(圓杯貫穿製程).................87
表I:實驗與分析杯高比較表(圓杯凸緣製程).................89
表J:未最佳化料片實驗值表...............................91
參考文獻 參考文獻
1. L. A. Zadeh,“Fuzzy Sets,” Information and Control, Vol. 8, pp.338-353, 1965.
2. C. C. Lee,“Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part Ⅰ,”IEEE Transactions on System, Man, and Cybernetic, Vol. 20, No. 2, pp.404-418, 1990.
3. D. W. Lin, D. Daniel and J. J. Jonas,“Simulation of Earing in Texture Materials,”Materials Science and Engineering A, Vol. 131, pp.161-170, 1991.
4. J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, No. 3, pp.665-685, 1993.
5. J. S. R. Jang and C. T. Sun, “Neuro-fuzzy Modeling and Control,” IEEE of the Proceedings, Vol. 83, No. 3, pp.378-406, 1995.
6. D. W. Jung, I. S. Song and D. Y. Yang, ”An Improve Method for the Application of Blank-Holding Force Considering the Sheet Thickness in the Deep-Drawing Simulation of Planar Anisotropy Sheet”, Journal of Materials Processing Technology, Vol. 52, pp.472-188, 1995.
7. M. T. Hagan, H. B. Demuth and Mark Beale, Neural Network Design, Boston : PWS Publishing Company, 1995.
8. M. Kawka and A. Makinouchi, “Plastic Anisotropy in FEM Analysis Using Degenerated Solid Element,” Journal of Materials Processing Technology, Vol. 60, pp.239-242, 1996.
9. J. S. R. Jang, C. T. Sun and E. Mizutani, Neuro-Fuzzy and Soft Computing, London : Prentice-Hall International, 1997.
10. K. Manabe, M. Yang and S. Yoshihara, “Artificial Intelligence Identification of Process Parameters and Adaptive Control System for Deep-drawing Process,” Journal of Materials Processing Technology, Vol.80-81, pp.421-426, 1998.
11. A. M. Zaky, A. B. Nassr and M. G. El-Sebaie, “Optimum Blank Shape of Cylindrical Cups in Deep Drawing of Anisotropic Sheet Metals,” Journal of Materials Processing Technology, Vol. 76, No. 1/3, pp.203-211, 1998.
12. D. H. Kim, D. J. Kim and B. M. Kim, “The Application of Neural Networks and Statistical Methods to Process Design in Metal Forming Processes,” International Journal of Advanced Manufacturing Technology, Vol. 15, pp.886-894, 1999.
13. J. Y. Kim, N. Kim and M. S. Huh, “Optimum Blank Design of an Automobile Sub-frame,” Journal of Materials Processing Technology, Vol. 101, pp.31-43, 2000.
14. T. W. Ku, H. J. Lim, H. H. Choi, S. M. Hwang ,B. S. Kang, “Implementation of Backward Tracing Scheme of the FEM to Blank Design in Sheet Metal Forming,” Journal of Materials Processing Technology, Vol. 111, pp.90-97, 2001.
15. Y. H. Lu, C. L. Li and S. W. Lo, “A study of the optimum blank for square cup drawing using the streamline method,” Journal of Materials Processing Technology, Vol. 110, pp.146-151, 2001.
16. C. Y. Wu and Y. C. Hsu, “Optimal Shape Design of an Extrusion Die Using Polynomial Networks and Genetic Algorithms,” International Journal of Advanced Manufacturing Technology, Vol. 19, pp.79-87, 2002.
17. Naval Kishor and D. Ravi Kumar, “Optimization of initial blank shape to minimize earing in deep drawing using finite element method,” Journal of Materials Processing Technology, Vol. 130-131, pp.20-30, 2002.
18. Weilong Hu and Z. R. Wang, “Anisotropic characteristics of materials and basic selecting rules with different sheet metal forming processes,” Journal of Materials Processing Technology, Vol. 127, pp.374-381, 2002.
19. Y. H. Lu, F. H. Yeh, C. L. Li, M. T. Wu, C. H. Liu, “Study of Ductile Fracture and Preform Design of Upsetting Process Using Adaptive Network Fuzzy Inference System,” Journal of Materials Processing Technology, Vol. 140, pp.576-582, 2003.
20. 葉豐輝、盧永華、李經綸、林宜暉、吳銘宗,〝應用適應性網路模糊推論系統於薄板圓杯擴孔預成形設計預測之研究〞,第12屆模糊理論及其應用會議-工業應用(I),2004年。
21. John O. Hallquist, LS-DYNA THEORETICAL MANUAL, V970,1998.
22. R. Hill, The Mathematical Theory of Plasticity, Oxford : Clarendon Press, 1983.
23. 楊英魁、孫宗瀛、鄭魁香、林建德、蔣旭堂編著,模糊控制理論與技術,全華科技圖書股份有限公司,1996年。
24. 王文俊編著,認識Fuzzy,全華科技圖書股份有限公司,2000年。
25. 華建智,〝適應性類神經模糊控制系統於盲用點字印表機之應用〞,碩士論文,淡江大學機械工程學系,1998年。
26. 夏時軒,〝圓杯引伸成形之異向性分析〞,碩士論文,淡江大學機械工程學系,2001年。
27. 吳銘宗,〝應用專家系統於盲用電腦點字顯示方射出成型之研究分析〞,碩士論文,淡江大學機械與機電工程學系,2002年。
28. 蔡毅瑋,〝適應性網路模糊推論系統於方杯引伸最佳化料片之研究〞,碩士論文,淡江大學機械與機電工程學系,2004年。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-20公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-07-20起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信