淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-1907200509571200
中文論文名稱 快速微影製作次微/奈米金屬模仁暨UV膠壓印成型
英文論文名稱 Fast lithography for fabricating metallic sub-micro/nano-stamps and forming of UV resins using imprinting method
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 鄭寶佑
研究生英文姓名 Pao-Yu Cheng
電子信箱 692340309@s92.tku.edu.tw
學號 692340309
學位類別 碩士
語文別 中文
口試日期 2005-06-17
論文頁數 149頁
口試委員 指導教授-林清彬
委員-林仁輝
委員-蔡哲正
委員-林清彬
中文關鍵字 奈米壓印  相變化  飛秒雷射脈衝  光熔化  蝕刻  田口實驗法 
英文關鍵字 Nanoimprint  Phase change  Femtosecond laser pulse  Photomelting  Etching  Taguchi method 
學科別分類 學科別應用科學機械工程
中文摘要 本研究提出一種新穎的製程以製作大面積之微/奈米金屬模仁,其做法係在矽基板上以直流式真空濺鍍一層厚度為400nm及表面粗糙度為0.87nm之Ge2-Sb2-Te5相變化薄膜。利用飛秒雷射脈衝進行曝光,經由穿透光罩到該相變化薄膜表面上,使其產生結晶與非結晶的相變化區域,其中熱擴散長度小於1nm,之後得到二維結晶區的微/奈米不同幾何圖案。由於結晶區與非結晶區之物理與化學性質差異,藉由蝕刻方式將結晶區給予溶蝕,因而製得微/奈米模仁,其最小圖案尺寸與最大蝕刻深度分別為600nm與140nm。其中硝酸及乙醇混合液蝕刻後所得到模仁之表面形態,其圖案輪廓完整成形,於模仁溝槽處的側壁有良好的垂直度,且模仁表面與溝槽處的表面粗糙度均於5nm以下,在溝槽底部趨近平整。此外,應用田口實驗計劃法尋找在降低表面粗糙度的條件下,所獲得最佳化蝕刻參數為:曝光時間1min、腐蝕濃度30%及腐蝕時間1min。最後將SU-8光阻塗佈於Ge2-Sb2-Te5微/奈米模仁上,以轉印方式成功複製高分子圖案。
英文摘要 We proposed a novel method to fabricate metallic micro/nano-stamp with large area for nanoimprinting in this study. First thin films of Ge2Sb2Te5 with 400nm thickness and 0.87nm surface roughness were deposited at room temperature on silicon substrates by DC sputtering system. Surface of the phase change film is then irradiated with femtosecond laser pulse through the photomask to induce the crystalline mark and amorphous area, and the thermal diffusion length of GST film is less than 1nm. Then we get 2D crystalline micro/nano patterns with different geometric shapes. As the variance of physical and chemical properties between the amorphous area and crystalline mark, micro/nano stamps whose crystalline mark be etched can be generated by adapting etching process, which the smallest size is 600nm and the deepest etching depth is 140nm. The surface morphology of the mold etched with etchant of nitric acid and ethanol, it can be observed that shape of the patterns formed completely, the side wall of trench shown is fairly vertical. The observed roughness of surface and bottom of the mold by AFM cross section is under Ra 5nm, and the bottom of the trench is fairly smooth. Under the condition of reducing surface roughness, by using Taguchi methods optimized etching parameters were found to be exposing time of 1min, etching concentration of 30%, and etching time of 1min.Finally, SU-8 resist is spin coated on micro/nano stamps of Ge2Sb2Te5, and the polymeric patterns were successful replicated by imprinting.
論文目次 總目錄
總目錄………………………………………………………………I
圖目錄………………………………………………………………V
表目錄………………………………………………………………X
符號說明……………………………………………………………XI
壹、導論……………………………………………………………1
1-1前言………………………………………………………………1
1-2文獻回顧…………………………………………………………2
1-2.1奈米轉印微影技術及應用……………………………………2
1-2.2奈米轉印微影製程……………………………………………3
1-2.2.1熱壓成形式奈米轉印微影技術……………………………3
1-2.2.2步進光感成形式奈米轉印技術……………………………4
1-2.2.3可撓性奈米轉印技術………………………………………4
1-2.2.4雷射成形式直接奈米轉印技術……………………………4
1-2.3奈米轉印模仁之製造方法 ……………………………………5
1-2.3.1奈米結構硬模仁之製作……………………………………6
1-2.3.2奈米結構軟模仁之製作……………………………………7
1-2.4飛秒雷射脈衝原理及應用……………………………………7
1-2.4.1超快雷射原理………………………………………………7
1-2.4.2啾頻脈衝再生能量放大技術之原理………………………8
1-2.4.3光學參數放大器原理………………………………………12
1-2.4.4飛秒雷射的應用……………………………………………13
1-2.5相變化材料原理及應用………………………………………14
1-2.5.1相變化材料之原理…………………………………………14
1-2.5.2相變化材料之應用…………………………………………14
1-2.5.3 Ge-Sb-Te材料特性…………………………………………15
1-2.6蝕刻技術………………………………………………………16
1-2.6.1濕蝕刻與乾蝕刻……………………………………………16
1-2.6.2田口法之最佳化蝕刻參數…………………………………18
1-3研究範疇…………………………………………………………22
貳、實驗設計…………………………………………………………48
2-1實驗設備與材料…………………………………………………48
2-1.1 實驗原料………………………………………………………48
2-1.2 實驗設備………………………………………………………48
2-2相變化薄膜製作、尺寸量測及定量分析………………………50
2-2.1矽晶片預備……………………………………………………50
2-2.2相變化薄膜之製作……………………………………………50
2-2.2.1相變化薄膜之濺鍍…………………………………………50
2-2.2.2 GST薄膜厚度及均勻性之觀察與量測……………………51
2-2.2.3 GST薄膜定量成份分析……………………………………51
2-3微/奈米光罩製備……………………………………………… 51
2-3.1微米光罩………………………………………………………51
2-3.2奈米光罩………………………………………………………52
2-4飛秒雷射之架設…………………………………………………52
2-5光熔化引發相變化………………………………………………55
2-5.1雷射能量之控制………………………………………………55
2-5.2微米級結構微影………………………………………………55
2-5.2.1雷射聚焦照射實驗…………………………………………55
2-5.2.2雷射直接照射實驗…………………………………………56
2-5.3奈米級結構微影………………………………………………57
2-6顯影………………………………………………………………57
2-6.1硝酸與去離子水之濕式腐蝕…………………………………57
2-6.2硝酸與乙醇之濕式腐蝕與田口法實驗設計…………………58
2-7微/奈米壓印……………………………………………………60
2-7.1光阻塗佈及軟烤………………………………………………60
2-7.2曝光顯影及轉印成形…………………………………………60
參、結果與討論………………………………………………………76
3-1相變化薄膜厚度及表面粗糙度…………………………………76
3-2相變化薄膜之成份分析結果……………………………………76
3-3結晶區與非結晶區表面形態……………………………………76
3-3.1熔蝕區成形……………………………………………………76
3-3.2結晶區之微米級結構成形……………………………………80
3-3.2.1雷射聚焦曝光………………………………………………80
3-3.2.2雷射直接照射曝光…………………………………………81
3-3.3結晶區之奈米結構曝光………………………………………82
3-4結晶區之不同光學特性圖案 ……………………………………83
3-4.1光學繞射………………………………………………………83
3-4.2非正交照射及邊界效應之結晶區圖案………………………84
3-5腐蝕加工後金屬模仁表面形態觀察……………………………86
3-5.1微米級金屬模仁………………………………………………86
3-5.2以田口法蝕刻之微米級金屬模仁……………………………87
3-5.3非正交及邊界效應之微米級金屬模仁………………………89
3-5.4奈米級金屬模仁………………………………………………89
3-6轉印後高分子表面形態觀察……………………………………90
肆、結論……………………………………………………………135
伍、參考文獻………………………………………………………138

圖目錄
圖1-1 傳統熱壓成型法……………………………………………23
圖1-2 熱壓成形式奈米轉印微影技術…………………………24
圖1-3 步進光感成形式奈米轉印技術…………………………25
圖1-4 可撓性奈米轉印技術……………………………………26
圖1-5 雷射成形式直接奈米轉印技術…………………………27
圖1-6 熱壓成形式奈米轉印微影之模仁製作…………………28
圖1-7 第一種步進光感成形式奈米轉印之模仁製作…………29
圖1-8 第二種步進光感成形式奈米轉印之模仁製作…………30
圖1-9 可撓性奈米轉印之模仁製作……………………………31
圖1-10 振盪器之內部結構……………………………………32
圖1-11 克爾透鏡鎖模脈衝壓縮機制示意圖…………………33
圖1-12 (a)材料色散導致脈衝時寬的延長;(b)稜鏡對色散補償....34
圖1-13 啾頻脈衝再生能量放大技術…………………………35
圖1-14 伸展器之內部結構……………………………………36
圖1-15 啾頻脈衝再生能量放大原理…………………………37
圖1-16 再生放大器之內部結構………………………………38
圖1-17 壓縮器之內部結構……………………………………39
圖1-18 光學參數放大器之內部結構…………………………40
圖1-19 光學參數倍頻的示意圖………………………………41
圖1-20 相變化記錄材料之工作原理…………………………42
圖1-21 (a)GeTe-Sb2Te3之二元系統相圖;(b)相轉變溫度…43
圖1-22 Ge-Sb-Te三種不同化學組成之晶體結構……………44
圖1-23 三種不同化學組成材料之結晶化時間………………46
圖1-24 介穩相Ge2-Sb2-Te5的結構模型………………………47

圖2-1 GST薄膜上取5點掃AFM…………………………………61
圖2-2 (a)銅網格光罩;(b)微米級圖案玻璃光罩;(c)奈米級圖案光罩……………………………………………………………62
圖2-3 超快速雷射系統配置圖……….…………………63
圖2-4 自鎖模摻鈦藍寶石雷射構造圖…………………64
圖2-5 Spitfire內部結構圖…………………………………………..65
圖2-6 再生放大腔結構圖…………………………………………....66
圖2-7 脈衝波長之高斯場形……………………………67
圖2-8 TOPAS內部構造圖…………………………………68
圖2-9 光路之架設………………………………………69
圖2-10 Visual Basic程式之執行物件…………………71
圖2-11 調整雷射能量之光路架設………………………72
圖2-12 雷射直接照射之光路架設………………………73
圖3-1 GST薄膜之SEM圖 91
圖3-2 GST薄膜之AFM圖(R2點位置) 92
圖3-3 (a)二維結晶區圖案;(b)熔蝕區之圖案陣列;(c)熔蝕區之局部放大;(d)熔蝕區內之漣漪圖案 94
圖3-4 GST結晶化過程 95
圖3-5 (a)GST薄膜結晶區之微米級方形圖案陣列;(b)單一結晶區之放大圖;(c)銅網格光罩之方形圖案 96
圖3-6 GST薄膜結晶區之微米級線寬圖案陣列(a)2μm及4μm;(b) 2μm之放大圖;玻璃光罩之線寬圖案陣列;(c) 2μm及4μm (d) 2μm之放大圖..... 97
圖3-7 (a)GST薄膜結晶區之微米級矩形圖案陣列及其(b)局部放大圖;(c)玻璃光罩矩形圖案陣列及其(d)局部放大圖.... 98
圖3-8 GST薄膜大面積(5mm×5mm)結晶區微米級矩形圖案陣列 (a)-(h)成形歷程;(i)玻璃光罩矩形圖案及其(j)局部放大圖;(k)雷射脈衝繼續照射及其(l)局部放大圖 99
圖3-9 GST薄膜大面積(5mm×5mm)結晶區之微米級方形圖案陣列 (a)-(f)成形歷程;(g)玻璃光罩方形圖案及其(h)局部放大圖;(i)雷射脈衝繼續照射及其(j)局部放大圖 101
圖3-10 GST薄膜大面積(5mm×5mm)結晶區之微米級六角形圖案陣列(a)-(h)成形歷程;(i)玻璃光罩六角形圖案及其(j)局部放大圖 103
圖3-11 (a)GST薄膜結晶區之奈米級線寬圖案陣列及(b)奈米光罩線寬圖案之OM照片;(c)三維圖案及(d)截面之AFM分析….. 105
圖3-12 (a)GST薄膜結晶區之奈米級環抱圖案陣列及(b)奈米光罩環抱圖案之OM照片;(c)三維圖案及(d)截面之AFM分析…… 106
圖3-13 (a)雷射穿透銅網格光罩的繞射結晶區之方形圖案;(b)銅網格光罩方形圖案 107
圖3-14 (a)雷射穿透微米級光罩的結晶區方形圖案及其(b)局部放大圖;(c)微米級光罩方形圖案及其(d)局部放大圖 108
圖3-15 GST薄膜大面積(5mm×5mm)結晶區之微米級圓形圖案陣列 (a)完整圖形圖案及其(b)局部放大圖;(c)具非正交及邊界效應圖案及其(d)局部放大圖;(e)玻璃光罩圓形圖案及其(f)局部放大圖.… 109
圖3-16 (a)飛秒雷射正交示意圖;(b)飛秒雷射非正交示意圖 110
圖3-17 (a)(c)(e)不同間距下GST薄膜大面積(5mm×5mm)結晶區之微米級圓形圖案陣列的重覆性及邊界效應圖案及其(b)(d)(f)局部放大圖;(g)玻璃光罩圓形圖案及其(h)局部放大圖…111
圖3-18 (a)(c)不同間距下GST薄膜大面積(5mm×5mm)結晶區之微米級方形圖案陣列的重覆性及邊界效應圖案及其(b)(d)局部放大圖 113
圖3-19 GST薄膜大面積(5mm×5mm)結晶區之微米級六角形圖案陣列的(a)重覆性圖案及邊界效應及其(b)局部放大圖;(c)玻璃光罩六角形圖案及其(d)局部放大圖 114
圖3-20 不同尺寸線寬之重覆性圖案(a)12μm;(b)14μm;(c)16μm;(d)18μm 115
圖3-21 不同尺寸的重覆性結晶區線寬圖案(a)2μm ;(b)4μm ;(c)6μm ;(d)16μm 116
圖3-22 (a)結晶區之微米級線寬圖案陣列模仁及其(b)(c)SEM圖照片……………………………………………………………117
圖3-23 結晶區之微米級線寬圖案陣列模仁的AFM(a)三維圖;(b)截面分析圖-模仁深度及(c)截面分析圖-表面粗糙度 118
圖3-24 (a)結晶區微米級矩形圖案陣列模仁OM照片及其(b)(c)SEM圖 119
圖3-25 結晶區之微米級圖案陣列模仁的AFM(a)三維圖;(b)截面分析圖-模仁深度及(c)截面分析圖-表面粗糙度 120
圖3-26 二維結晶區圖案轉變成三維圖案模仁之蝕刻過程(a)2μm線寬;(b)4μm線寬 121
圖3-27 4μm線寬於不同曝光時間(a)1min (b)2min (c)3min之AFM分析 122
圖3-28 田口實驗之S/N分析 124
圖3-29 (a)結晶區之微米級線寬圖案陣列模仁與AFM分析的(b)三維圖;截面分析圖之(c)模仁深度;(d)表面粗糙度 125
圖3-30 (a)結晶區之微米級線寬圖案陣列模仁與AFM分析的 (b)三維圖;截面分析圖之(c)模仁深度;(d)表面粗糙度 126
圖3-31 方形繞射圖案模仁AFM分析之(a)三維圖;(b)表面粗糙度;截面分析圖之(c)模仁深度;(d)模仁寬度 127
圖3-32 12μm線寬繞射圖案模仁之(a)SEM圖及AFM分析的(b)三維圖;截面分析圖之(c)模仁深度;(d)模仁寬度;(e)及(f)表面粗糙度 128
圖3-33 14μm線寬繞射圖案模仁之(a)SEM圖及AFM分析的(b)三維圖;截面分析圖之(c)模仁深度;(d)模仁寬度;(e)及(f)表面粗糙度 129
圖3-34 16μm線寬繞射圖案模仁之(a)SEM圖及AFM分析的(b)三維圖;截面分析圖之(c)模仁深度;(d)模仁寬度;(e)及(f)表面粗糙度 130
圖3-35 18μm線寬繞射圖案模仁之(a)SEM圖及AFM分析的(b)三維圖;截面分析圖之(c)模仁深度;(d)模仁寬度;(e)及(f)表面粗糙度 131
圖3-36 (a)結晶區之奈米級線寬圖案陣列模仁的三維圖;截面分析圖之(b)模仁寬度及深度;(c)及(d)表面粗糙度 132
圖3-37 (a)轉印後高分子薄膜結晶區之微米級線寬圖案陣列;(b)SEM圖及其(c)局部放大圖 133
圖3-38 (a)轉印後高分子薄膜結晶區微米級矩形圖案陣列;(b)SEM圖及其(c)局部放大圖 134

表目錄
表1-1三種不同化學組成之熱性質..………………………45
表2-1控制其開關時間之Visual Basic程式…...………70
表2-2實驗變異因子的水準數…...………………………74
表2-3實驗L9(33)的直交表…...…………………………74
表2-4變異數分析.................................75
表2-5變異數計算.................................75
表3-1 GST薄膜之表面粗糙度(Ra)……………………….92
表3-2 GST薄膜之EPMA成份分析………………………….93
表3-3田口實驗之平均表面粗糙度………………………123
表3-4田口分析之變異數分析及貢獻度..………………123


參考文獻 伍、參考文獻
1.Gordon E. Moore, “Cramming more components onto integrated circuits”, Electronica, 38(8), (1965) pp114–117.
2.Stephen Chou, “NanoimprintLithography”, Technology Review, 106(1), (2003) pp42-44.
3.Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom , “Nanoimprint lithography”, J. Vac. Sci. Technol. B, 14(6), (1996) pp4129-4133.
4.M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi et al, “Step and Flash Imprint Lithography: A New Approach to High-Resolution Patterning”, Proc. SPIE Int. Soc. Opt. Eng. 3676, (1999) pp379-389.
5.Younan Xia and George M. Whitesides, “Soft Lithography”, Angew. Chem. Int. Ed., 37, (1998) pp550-575.
6.Stephen Y. Chou, Chris Keimel, Jian Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature, 417, (2002) pp835-837.
7.C.M. Sotomayor Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. Clavijo Cedeno, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiesseic, G. Gruetzner, M.V. Maximov, B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach”, Mater. Sci. Eng. C, 23, (2003) pp23-31.
8.L. J. heyderman, B. Ketterer, D. Bachle, F. Glaus, B. Haas, H. Schift, K. Vogelsang, J. Gobrecht, L. tiefenauer, O. Dubochet, P. Surbled, and T. Hessler, “High volume fabrication of customised nanopore membrane chips”, Microelectron. Eng., 67-68, (2003) pp208-213.
9.T. I. Kamins, D. A. A. Ohiberg, R. Stanley Williams, W. Zhang, and S. Y. Chou, “Positioning of self-assembled, single-crystal, germanium islands by silicon nanoimprinting”, Appl. Phys. Lett., 74(12), (1999) pp1773-1775.
10.H. Cao, Z. Yu, J. Wang, J.O. Tegenfeldt, R. H. Austin, E. Chen, W. Wu, and S. Y. Chou, “Fabrication of 10 nm enclosed nanofluidic channels”, Appl. Phys. Lett., 81(1), (2002) pp174-176.
11.M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications”, J. Vac. Sci. technol. B, 21(2), (2003) pp660-663.
12.C.Y. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technique”, J. Vac. Sci. technol. B, 20(6), (2002) pp2862-2866.
13.J. Wang, S. Schablitsky, Z. Yu, W. Wu, and S. Y. Chou, “Fabrication of a new broadband waveguide polarizer with a double-layer 190nm period metal-gratings using nanoimprint lithography”, J. Vac. Sci. Technol. B, 17(6), (1999) pp2957-2960.
14.Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography”, Appl. Phys. Lett., 77(7), (2000) pp927-929.
15.I. Puscasu, G. Boreman, R. C. Tiberio, D. Spencer, and R. R. Krchnavek, “Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies”, J. Vac. Sci. Technol. B, 18(6), (2000) pp3578-3581.
16.E. Chen, H. Kostal, and Y. K. Park, “Manufacturing optical components on a nanoscale”, Lightwave, (2002 Oct.) pp52-58.
17.M. Li. J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20nm minimum feature size using nanoimprint lithography”, Appl. Phys. Lett., 76(6), (2000) pp673-675.
18.M. D. Austin and S. Y. Chou, “Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography”, Appl. Phys. Lett., 81(23), (2002) pp4431-4433.
19.C. Clavijo Cedeno, J. Seekamp, A. P. Kam, T. Hoffmann, S. Zankovych, C. M. Sotomayor Torres, C. Menozzi, M. Cavallini, M. Murgia, G. Ruani, F. Biscarini, M. Behl, R. Zentel, and J. Ahopelto, “Nanoimprint lithography for organic electronics”, Microelectron. Eng., 61-62, (2002) pp25-31.
20.C. Pannemann, T. Diekmann, and U. Hilleringmann, “Nanometer scale organic thin film transistors with Pentacene”, Microelectron. Eng., 67-68, (2003) pp845-852.
21.T. Makela. T. Haatainen, J. Ahopelto, and H. Isotalo, “Imprinted electrically conductive patterns from a polyaniline blend”, J. Vac. Sci. technol. B, 19(2), (2001) pp487-489.
22.J. Wang, X. Sun, L. Chen, and S. Y. Chou, “Direct nanoimprint of submicron organic light-emitting structures”, Appl. Phys. Lett, 75(18), (1999) pp2767-2769.
23.C. Brown, “Nanoimprint method defines thin-film polymer lasers”, Electronic Engineering Times, (Jan. 11, 1999) p51.
24.Y. Chen, D. Macintyre, E. Boyd, D. Moran, I. Thayne, and S. Thorns, “Fabrication of high electron mobility transistors with T-gates by nanoimprint lithography”, J. Vac. Sci. Technol. B, 20(6), (2002) pp2887-2890.
25.Y. Chen, D. S. Macintyre, E. Boyd, D. Moran, I. Thayne, and S. Thorns, “High electron mobility transistors fabricated by nanoimprint lithography”, Microelectron. Eng., 67-68, (2003) pp189-195.
26.L. Guo, P. R. Krauss, and S. Y. Chou, “Nanoscale silicon field effect transistors fabricated using imprint lithography”, Appl. Phys. Lett., 71(13), (1997) pp1881-1883.
27.D. Moran, E. Boyd, H. McLelland, K. Elgaid, Y. Chen, D. S. Macintyre, S. Thorns, C. R. Stanley, and I. G. Thayne, “Novel technologies for the realisation of GaAs pHEMTs with 120nm self-aligned and nanoimprinted T-gates”, Microelectron. Eng., 67-68, (2003) pp769-774.
28.Z. Yu, S. J. Schablitsky, and S. Y. Chou, “Nanoscale GaAs metal–semiconductor–metal photodetectors fabricated using nanoimprint lithography”, Appl. Phys. Lett., 74(16), (1999) pp2381-2383.
29.A. Lebib, S. P. Li, M. Natali, and Y. Chen, “Size and thickness dependencies of magnetization reversal in Co dot arrays”, J. Appl. Phys., 89(7), (2001) pp3892-3896.
30.M. Natali, A. Lebib, E. Carnbril, and Y. Chen, “Nanoimprint lithography of high-density cobalt dot patterns for fine tuning of dipole interactions”, J. Vac. Sci. Technol. B, 19(6), (2001) pp2779-2783.
31.Y. Chen, A. Lebib, S. P. Li, M. Natali, D. Peyrade, and E. Carnbril, “Nanoimprint fabrication of micro-rings for magnetization reversal studies”, Microelectron. Eng., 57-58, (2001) pp405-410.
32.G. D. Bachand, R. K. Soong, H. P. Neves, A. OIkhovets, H. G. Craighead, and C. D. Monternagno, “Precision Attachment of Individual F1-ATPase Biomolecular Motors on Nanofabricated Substrates”, Nano Lett., 1(1), (2001) pp42-44.
33.G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. best, K. R. Carter, and B. D. Terris, “Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold”, Appl. Phys. Lett., 81(8), (2002) pp1483-1485.
34.J. Moritz, B. Dieny, J. P. Nozieres, S. Landis, A. Lebib, and Y. Chen, “Domain structure in magnetic dots prepared by nanoimprint and e-beam lithography”, J. Appl. Phys., 91(10), (2002) pp7314-7316.
35.J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, “Ordered magnetic nanostructures: fabrication and properties”, J. Magnetism and Magnetic Mater., 256, (2003) pp449-501.
36.S. Y. Chou, “Patterned Magnetic Nanostructures and Quantized Magnetic Disks”, Proceedings of the IEEE, 85(4), (1997) pp652-671.
37.L. Kong, L. Zhuang, and S. Y. Chou, “Writing and Reading 7.5Gbits/in2 Longitudinal Quantized Magnetic Disk Using Magnetic Force Microscope Tips”, IEEE Transactions on Magnetics, 33(5), (1997) pp3019-3021.
38.B. Cui, W. Wu, L. Kong, X. Sun, and S. Y. Chou, “Perpendicular quantized magnetic disks with 45 Gbits on a 4×4 cm2 area”, J. Appl. Phys., 85(8), (1999) pp5534-5536.
39.J. Moritz, S. Landis, J. C. Toussaint, P. Bayle-Guillemaud, B. Rodmacq, G. Casali, A. Lebib, Y. Chen, J. P. Nozieres, and B. Dieny, “Patterned Media Made From Pre-Etched Wafers: A Promising Route Toward Ultrahigh-Density Magnetic Recording”, IEEE Transactions on Magnetics, 38(4), (2002) pp1731-1736.
40.K. Naito, H. Hieda, M. Sakurai, Y. Kamata, and K. Asakawa, “2.5-Inch Disk Patterned Media Prepared by an Artificially Assisted Self-Assembling Method”, IEEE Transactions on Magnetics 38(5), (2002) pp1949-1951.
41.L. Kong, Q. Pan, B. Cui, M. Li, and S. Y. Chou, “Magnetotransport and domain structures in nanoscale NiFe/Cu/Co spin valve”, J. Appl. Phys., 85(8), (1999) pp5492-5494.
42.M. Austin and S. Y. Chou, “Fabrication of nanocontacts for molecular devices using nanoimprint lithography”, J. Vac. Sci. Technol. B, 20(2), (2002) pp665-667.
43.Y. Chen, D. A. A. Ohiberg, X. Li, D. R. Stewart, and R. Stanley Williams, “Nanoscale molecular-switch devices fabricated by imprint lithography”, Appl. Phys. Lett., 82(10), (2003) pp1610-1612.
44.I. Maximov, P. Carlberg, D. Wallin, I. Shorubaiko, W. Seifert, H. Q. Xu, L. Montelius. and L. Samuelson, “Nanoimprint lithography for fabrication of three-terminal ballistic junctions in InP/GaInAs”, Nanotechnology, 13, (2002) pp666-668.
45.I. Maximov, P. Carlberg, I. Shorubaiko, D. Wallin, E.-L. Sarwe, M. Beck, M. Graczyk, W. Seifert, H. Q. Xu, L. Montelius, and L. Samuelson, “Nanoimprint technology for fabrication of three-terminal ballistic junction devices in GaInAs/InP”, Microelectron. Eng. 67-68, (2003) pp196-202.
46.l. Martini, D. Eisert, M. Kamp, L. Worschech, A. Forchel, and J. Koeth, “Quantum point contacts fabricated by nanoimprint lithography”, Appl. Phys. Lett., 77(14), (2000) pp2237-2239.
47.l. Martini, S. Kuhn, M. Kamp, L. Worschech, A. Forchel, D. Eisert, J. Koeth, and R. Sijbesma, “Fabrication of quantum point contacts by imprint lithography and transport studies”, J. Vac. Sci. technol. B, 18(6), (2000) pp3561-3563.
48.l. Martini, M. Kamp, F. Fischer, L. Worschech, J. Koeth, and A. Forchel, “Fabrication of quantum point contacts and quantum dots by imprint lithography”, Microelectron. Eng., 57-58, (2001) pp397-403.
49.S. Zankovych, I. Maximov, I. Shorubaiko, J. Seekamp, M. Beck, S. Romanov, D. Reuter, P. Schafmeister, A. D. Wieck, J. Ahopelto, C. M. Sotomayor Torres, and L. Montelius, “N anoimprint-induced effects on electrical and optical properties of quantum well structures”, Microelectron. Eng., 67-68, (2003) pp214-220.
50.P. R. Krauss and S. Y. Chou, “”Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probeAppl. Phys. Lett., 71(21), (1997) pp3174-3176.
51.A. Pepin, P. Youinou, V. Studer, A. Lebib, and Y. Chen, “Nanoimprint lithography for the fabrication of DNA electrophoresis chips”, Microelectron. Eng., 61-62, (2002) pp927-932.
52.George M. Whitesides and Paul E. Laibinis, “Wet Chemical Approaches to the Characterization of Organic Surfaces: Self- Assembled Monolayers, Wetting, and the Physical-Organic Chemistry of the Solid-Liquid Interface”, Langmuir, 6, (1990) pp87-96.
53.Li M. T., PhD Thesis Princeton University, Princeton (2003).
54.Taniguchi J, Tokano Y, Miyamoto I, Komuro M and Hiroshima H, “Diamond nanoimprint lithography”, Nanotechnology, 13, (2002) pp592-596.
55.Pang S. W., Tamamura T, Nakao M, Ozawa A and Masuda H, “Direct nano-printing on Al substrate using a SiC mold”, J. Vac. Sci. Technol. B, 16(3), (1998) pp1145-1149.
56.M.M. Alkaisi, R.J. Blaikie, S.J. McNab, “Low temperature nanoimprint lithography using silicon nitride molds”, Microelectron. Eng., 57–58, (2001) pp367–373.
57.T.C. Bailey , D.J. Resnick , D. Mancini , K.J. Nordquist , W.J. Dauksher et al, “Template fabrication schemes for step and flash imprintlithography”, Microelectron. Eng., 61–62, (2002) pp461–467.
58.Qiangfei Xia, Chris Keimel, Haixiong Ge, Zhaoning Yu, Wei Wu, and Stephen Y. Chou, “Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography”, Applied Physics Letters, 83(21), (2003) pp4417-4419.
59. X. Liu, D. Du, and G. Mourou, “Laser Ablation and Micromachining with Ultrashort Laser Pulses”, IEEE Journal of Quantum Electronics, 33(10), (1997) pp1706-1716.
60.D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., 56(3), (1985) pp219–221.
61.W. S. Pelouch, P. E. Powers, and C. L. Tang, “Self-starting mode-locked ring-cavity Ti:sapphire laser”, Opt. Lett., 17(22), (1992) pp1581-1583.
62.L. Xu, C. Spielmann, F. Krausz, and R. Szipöcs, “Ultrabroadband ring oscillator for sub-10-fs pulse generation”, Opt. Lett., 21(16), (1996) pp1259-1261.
63.D. E. Spence, P. N. Kean, and W. Sibbet, “60-fsec pulse generation from a self-mode-locked Ti:Sapphire laser,” Opt. Lett., 16(1), (1991) pp42–44.
64.朱旭新、陳聿昕、汪治平、李超煌及陳賜原,十兆瓦超短脈衝雷射系統,科儀新知128期,(2002) 5-18頁.
65.R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett., 9(5), (1984) pp150–152.
66.P. S. Banks, M. D. Perry, V. Yanovsky, S. N. Fochs, B. C. Stuart, and J. Zweiback, “Novel All-Reflective Stretcher for Chirped-Pulse Amplification of Ultrashort Pulses”, IEEE Journal of Quantum Electronics, 36(3), (2000) pp268-274.
67.Jeff Squier, Frangois Salin, and Gerard Mourou, “100-fs pulse generation and amplification in Ti:A1203”, Opt. Lett., 16(5), (1991) pp324-326.
68.E. B. Treacy, “Optical Pulse Compression with Diffraction Gratings”, IEEE J. Quantum Electron., QE-5(9), (1969) pp454-458.
69.Richard A. Baumgartner and Robert K. Byer, “Optical Parametric Amplifier”, IEEE J. Quantum Electronics., QE-15(6), (1979) pp432-444.
70.Gábor Kurdi, Károly Osvay, Márta Csatári, Ian N. Ross, and József Klebniczki, “Optical Parametric Amplification of Femtosecond Ultraviolet Laser Pulses”, IEEE J. Quantum Electronics., 10(6), (2004) pp1259-1267.
71.M. Dantus, MJ Rosker and AH Zewail, “Real Time Femtosecond Probing of Transition States in Chemical Reactions”, J. Chem. Phys., 87(4), (1987) pp2395-2397.
72.J.K. Ranka, R.S. Windeler and A.J. Stenz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm”, Opt. Lett, 25(1), (2000) pp25-27.
73.D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall and S. T. Cundiff, “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis”, Science, 288, (2000) pp635-639.
74.M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, and E. Mazur, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask”, Applied Physics Letters, 82(11), (2003) pp1715-1717.
75.Frank Korte, Jürgen Koch, Carsten Fallnich, Andreas Ostendorf, and Boris N. Chichkov, “Towards nanostructuring with femtosecond laser pulses”, Proc. SPIE Int. Soc. Opt. Eng., 5118, (2003) pp93-100.
76.Ming Li, Kiyotaka Mori, Makoto Ishizuka, and Xinbing Liu, “Photonic bandpass filter for 1550 nm fabricated by femtosecond direct laser ablation”, Applied Physics Letters, 82(2), (2003) pp216-218.
77.N. Kh. Abrikosov and G. T. Danilova-Dobryakova, Izv. Akad. Auk., “”, SSSR Neorg. Mater., 1, (1965) p204.
78.K. A. Agaev and A. G. Talybov, “”, Sov. Phys. Cryst., 11, p400 (1966).
79.I I Petrov, R. M. Imamovet, and Z. G. Pinsker, “Electron-Diffraction Determination of the Strictures of Ge2Sb2Te5 and GeSb4Te7”, Sov. Phys. Cryst. 13(3), (1968) pp339-342.
80.Noboru Yamada, Eiji Ohno, Kenichi Nishiuchi, and Nobuo Akahira, “Rapid-phase transitions of GeTe-Sb2Te3, pseudobinary amorphous thin films for an optical disk memory”, J. Appt. Phys., 69(5), (1991) pp2849-2856.
81.Toshihisa Nonaka, Gentaro Ohbayashi, Yoshiharu Toriumi, Yuji Mori, Hideki Hashimoto, “Crystal structure of GeTe and Ge2-Sb2-Te5 meta-stable phase”, Thin Solid Films, 370, (2000) pp258-261.
82.Y. H. Chen, S. C. Tam, W. L. Chen and H. Y. Zheng, “Application of Taguchi Method in the Optimization of Laser Micro-engraving of Photomasks”, Reprinted from International Journal of Materials & Product Technology, 11, (1996) pp333-344.
83.Terence C.L. Wee, Boon Siew Ooi, Yan Zhou, Yuen Chuen Chan, and Yee Loy Lam, “Characterization of Reactive Ion Etching of Sol-Gel SiO2 Using Taguchi Optimization Method”, Proc. SPIE Int. Soc. Opt. Eng., 3896, (1999) pp438-444.
84.Jiunn-jye Tsaur, Chen-Hsun Du, Chengkuo Lee, “Investigation of TMAH for front-side bulk micromachining process from manufacturing aspect”, Sensors and Actuators A, 92, (2001) pp375-383.
85.Isamu Namose, “Optimization of gas utilization in plasma processes”, IEEE Transactions on Semiconductor Manufacturing, 16(3), (2003) pp429-435.
86.Tsunami user’s manual, Spectra-Physics.
87.Spitfire user’s manual, Spectra-Physics.
88.TOPAS user’s manual, Light Conversion
89.NANOTM, Negative Tone Photoresist Formulations 2002-2025, MicroChem.
90.H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis”, Anal. Chem. 29(11), (1957) pp1702-1706.
91.M. Avrami, “Kinetics of phase change. I. General theory”, J. Chem. Phys. 7, (1939) pp1103-1112.
92.Noboru Yamada and Toshiyuki Matsunaga, “Structure of laser-crystallized Ge2Sb2+xTe5 puttered thin films for use in optical memory”, Journal of Applied Physics, 88(12), (2000) pp7020-7028.
93.Zhaohui Fan, Lisha Wang, David E. Laughlin, “Modeling of Crystallization Activation Energy for GeTe-Sb2Te3 Based Phase Change Materials”, Proc. SPIE Int. Soc. Opt. Eng., 5380, (2004) pp493-500.
94.V. Weidenhof, “Minimum time for laser induced amorphization of Ge2Sb2Te5 films”,Journal of Applied Physics, 88(2),(2000) pp657-664.
95.Friedrich Dausinger, Helmut HUgel, Vitali Konov, “Micro-machining with ultrashort laser pulses:From basic understanding to technical applications”, Proc. SPIE Int. Soc. Opt. Eng., 5147, (2003) pp106-115.
96.G.F. Zhou, H.J. Borg, J.C.N. Rijpers, M.H.R. Lankhorst and J.J.L. Horikx, “Crystallisation behaviour of phase change materials: Comparison between nucleation- and growth-dominated crystallization”, Proceedings of SPIE, 4090, (2000) pp108-115.
97.Z. Guosheng, P.M. Fauchet, A.E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination”, Phys. Rev. B, 26(10), (1982) pp5366-5382.
98.W. Kautek, P. Rudolph, G. Daminelli, A. Hertwig, S. Martin, J. Bonse, J. Krüger, “Ultrashort Pulse Lasers - New Aspects of Materials Interaction”, Proc. SPIE Int. Soc. Opt. Eng., 5448, (2004) pp213-224.
99.R.S. Longhurst: Geometrical and Physical Optics (1964).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-08-08公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-08-08起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信