§ 瀏覽學位論文書目資料
  
系統識別號 U0002-1902200915451800
DOI 10.6846/TKU.2009.00662
論文名稱(中文) 平面單極天線及槽孔天線特性之研究
論文名稱(英文) Characteristic investigation of planar monopole antennas and slot antennas
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 1
出版年 98
研究生(中文) 温俊峰
研究生(英文) Chun-Feng Wen
學號 695440601
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2009-01-06
論文頁數 121頁
口試委員 指導教授 - 李慶烈(Ching-Lieh Li@gmail.com)
委員 - 丘建青(chiu@ee.tku.edu.tw)
委員 - 陳建宏(f1092@mail.tcmt.edu.tw)
關鍵字(中) 槽孔天線
環型天線
單極天線
縮小尺寸天線
關鍵字(英) slot antenna
loop antenna
monopole antenna
reduced-size antenna
第三語言關鍵字
學科別分類
中文摘要
本論文的目的在研究多種平面槽孔天線的特性,最後並將之和平面單極天線的特性進行比較。本論文探討的平面槽孔天線結構包括簡單細槽孔天線、長方形寬槽孔天線以及正方形環狀槽孔天線,並針對後兩者進一步將其接地面裁小(縮小化)以提高其實用性,並探討接地面裁小後的特性變化。
對於接地面未裁小的天線,吾人首先探討簡單細槽孔天線,發現簡單細槽孔天線的輻射場型與極化方向,和由微帶線饋入的單極天線 (monopole antenna)幾乎完全一樣;另外,增大接地面尺寸可使簡單細槽孔天線的天線增益略為增加。接著,探討一個由”一字型”饋入長方形寬槽天線,於不同的頻率,吾人可以觀察到其電流及電場的分佈清楚展現出基頻模態與倍頻模態,接著針對此寬槽天線,改利用U字型端的饋入線以作為寬頻匹配之用。並進一步探討各結構參數對頻寬的影響。 
吾人發現,U型饋入端和槽孔下緣的距離Lg對天線的頻寬影響相當敏感,值得注意是Lg=0.8mm是一個達到寬頻特性的重要設計參數,這和超寬頻(UWB)單極天線的設計參數要求類似。另一個影響天線阻抗頻寬的重要設計參數為槽孔長度Ws,Ws對天線的頻寬影響相當嚴重,且主要影響最低通過頻率fL,適度的調整Ws可使頻率比fH/fL達到1.9左右。
    接著,吾人將天線槽孔的上方及左右的接地面尺寸裁小(縮小至2.5mm的寬度),方便將其應用於個人電腦存取的PCMCIA卡,以提高其實用性。接地面尺寸裁小後的天線,其頻率比fH/fL可達到2.15左右,和接地面未裁小的天線相比(Ws=40.88mm),其頻寬並不因接地面的裁小而變小,甚至還稍微增加。
有關正方形環狀槽孔天線的探討方面,眾所周知槽孔邊長為四分之一波長時會產生基頻共振:針對基頻進行確認,在槽孔週邊吾人可觀察到電流呈現兩半波長駐波的基頻共振現象,針對倍頻,在槽孔週邊吾人可觀察到電流呈現四個半波長駐波的倍頻共振現象。
若進一步將正方形環狀槽孔天線的接地面直接裁小,並和接地面未裁小的正方形環狀槽孔天線特性比較,吾人發現接地面裁小可使正方形環狀槽孔天線的基頻由2.45GHz降至2GHz左右,但原先倍頻模態的匹配性會變差。另外,接地面裁小後,正方形環狀槽孔上側的電場有比下側的稍微大一些,這將使得主輻射的角度由 theta=0° 偏移至 theta=10°左右。
接著,吾人在把正方環形迴圈內部金屬縮小,觀察其天線的影響,此時倍頻模態的匹配性會回復,S11響應有兩個匹配共振的頻率,分別是2.13GHz與4.61GHz。遠場輻射主要來自上下兩側槽孔電場的貢獻,且倍頻模態的槽孔上側電場的貢獻比下側的大了許多,這將使得主輻射的角度由 theta=0° 偏移至 theta=20°左右。
最後,本論文探討將環形迴圈的內部金屬被提到饋入線平面並和饋入線重疊,使結構由方形環狀槽孔天線變成方形寬槽孔天線,然後再進一步將槽孔去掉,使變成一個簡單的平面單極天線,後者是一相對窄頻的天線;要注意的是,此一平面單極天線的單極模態在方形寬槽孔天線中未必能被有效匹配/激發。
英文摘要
In this thesis, the characteristics several planar slot antennas are investigated, which are then compared with those of the planar monopole antenna. The antenna structures concerned include a simple thin slot, rectangular wide slots, and square ring slots. For the latter two structures part of the ground plane around the slot is then cut to reduce the antenna size in order to easily utilize them in practices. The characteristics of those after cutting the ground are compared with those without cutting.

    For the structures with normal ground plane, we first investigate the simple slot antenna, it is found that the radiation pattern and polarization are well compared to those of a simple planar monopole antenna fed by a microstrip line. In additions, increase of the size of the ground plane can slightly increases the gain. Next, a rectangular wide slot antenna fed by a simple microstrip line is studied. For different resonant frequencies, it can be observed that the surface current on the ground plane and the corresponding E fields on the aperture exhibit clearly the corresponding modes of base frequency and the harmonic frequency. Then, a microstrip line with U-shape end is employed to feed the rectangular wide slot antenna in order to increase the bandwidth of the return loss. The influences of the structure parameters of this rectangular wide slot antenna upon the bandwidth and the characteristics of the return loss are also studied.
  
    It is found that the bandwidth is very sensitive to the gap distance Lg between the U-shape end and the slot. It should be mentioned that setting Lg around 0.8mm is a very convincing design, which is quite similar to the case of ultra wideband (UWB) planar monopole antenna designs. Another important factor that can largely influence the bandwidth is the slot width Ws , which can shift the lower end frequency fL of the passband easily. Therefore, by suitable adjusting the width Ws the frequency ratio fH/fL of the passband can achieve ~1.9.

    Next, the top, left and right parts of the ground plane around the slot is cut (reducing to width=2.5mm only) in order for easy applications, such as the wireless link of computers through the PCMCIA cards. It is found that, after the cutting, the the frequency ratio fH/fL of the passband can achieve ~2.15. As compared the original ones without cutting (Ws=40.88mm), the bandwidth is not sacrificed due to the size-reduction at all. On the contrary, it increases a little bit. 

   Next structure concerned is related to the square ring slot antennas. It is well known that each side of the slot should be about a quarter wavelength in order to resonate at the base frequency. To confirm the characteristics at the base frequency, the surface current on the ground plane exhibits two half-wavelengths standing wave patterns. While, for the second harmonic frequency, the surface current on the ground plane with four half-wavelengths standing wave pattern is observed.

    Afterward, the top, left and right parts of the ground plane around the square ring slot is cut (reducing to width=1mm only) for easy applications, The characteristics of those after cutting the ground are compared with those without cutting. It is found that cutting the ground plane can effectively reduce the first resonant frequency, from 2.45GHz to 2GHz in our cases, but the matching for the second resonant frequency would become worse. In addition, the cutting would render the E fields on the ring aperture unbalanced, of which the top-side become bigger than the bottom one a little bit. This would then make the main beam shifted from theta=0° to theta=10°.

    We then increase the ring slot by reducing the inner metal part of the aperture. By doing so, the matching for the second resonant frequency would be restored, which render the ring slot a dual–band antenna again. The resonant frequencies are 2.13GHz and 4.61GHz, respectively, in this case.  Similarly, reducing the inner metal part would render the E fields on the ring aperture more unbalanced, of which the top-side become even bigger than the bottom one. This then make the main beam shifted from theta=0° to theta=20°. 

    Finally, the inner metal part is raised to the feed line plane to coincide with the feed line. This would make the ring slot antenna become a square wide slot antenna. Furthermore, the slot is completely removed to make a planar monopole. The latter is relatively narrow band antenna. It is noted that the monopole mode embedded in the square wide slot antenna is not effectively excited.
第三語言摘要
論文目次
目錄
第一章	序論................................................................................................1
1.1簡介................................................................................................1
1.2研究動機與成果...........................................................................1
1.3論文架構.......................................................................................4
第二章	長方形槽孔天線及其縮小化後的特性比較...............................5
    2.1簡介..............................................................................................5
    2.2槽孔(slot)與帶線片(strip)之互補關係……………………….5
2.3簡單偶極天線槽孔天線特性之研究………………………….11
2.4矩形槽孔寬頻天線設計……………………………………….19
  2.4.1 簡介…………………………………………………………...19
  2.4.2 天線設計討論………………………………………………...19
2.5縮小化矩形槽孔PCMCIA 卡天線設計………………………45
  2.5.1簡介……………………………………………………………46
  2.5.2 縮小化矩形槽孔超寬頻設計原理…………………………...46
第三章正方形環狀槽孔天線及其縮小化後的特性比較............67
3.1目的……………………………………………………………..67
3.2環狀槽孔天線…………………………………………………...67
3.3環狀天線縮小化特性比較………………………………………77
第四章結論................................................................................................113
參考文獻....................................................................................................117

圖目錄
圖2.1 Stratton-Chu formula 示意圖……………………………………6
圖2.2 無窮大金屬面上之槽孔…………………………………………7
圖2.3 利用Stratton-Chu formula 解槽孔之EM 場之模型…………9
圖2.4 帶片(strip)天線…………………………………………………10
圖2.5 簡單槽孔偶極天線立體示意圖………………………………14
圖2.6(a) 微帶線饋入簡單槽孔偶極天線Wf=1.53mm,de=1.64mm,    h=0.8mm,Ls=39.62mm………………………………………………14
圖2.6(b) 簡單槽孔偶極天線結構特性圖………………………………15
圖2.7 簡單槽孔偶極天線模擬與實測S11圖…………………………15
圖2.8(a)二分之一波長槽孔之電場圖…………………………………16
圖2.8(b) 二分之一波長槽孔之等效磁流………………………………16
圖2.9 X-Z Plane(H-Plane)的模擬輻射場型圖……………………16
圖2.10 Y-Z Plane(E-Plane)的模擬輻射場型圖……………………17
圖2.11簡單槽孔天線電流分佈圖…………‥…‥‥…………17
圖2.12簡單槽孔天線電場分佈圖…………‥…‥‥…………18
圖2.13簡單槽孔天線阻抗圖…………………………………………18
圖2.14縮短槽孔長度天線示意圖…………‥…‥‥……20
圖2.15縮短槽孔長度天線模擬與實測S11圖…………‥…‥‥…21
圖2.16縮短槽孔長度天線在2.69GHz,相位 電流分佈圖……‥21圖2.17 縮短槽孔長度天線在2.69GHz時相位 電場圖…………22
圖2.18 縮短槽孔長度天線X-Z Plane(H-Plane)在2.69GHz模擬輻射場型圖……………………………………………………………………22
圖2.19 縮短槽孔長度天線Y-Z Plane(E-Plane)在2.69GHz模擬輻射場型圖……………………………………………………………………23
圖2.20寬槽孔天線示意圖……………………………………………26
圖2.21寬槽孔天線模擬與實測S11圖………………………………26
圖2.22 寬槽孔天線在2.86GHz相位 電流圖……………………27
圖2.23 寬槽孔天線在5.65GHz相位 電流圖……………………27
圖2.24 寬槽孔天線在2.86GHz相位 電場圖…………………28
圖2.25 寬槽孔天線在5.65GHz相位 電場圖……………………28
圖2.26 寬槽孔天線在2.86GHz(H-Plane)模擬與實測輻射場型圖…………………………………………………………………………29
圖2.27 寬槽孔天線在5.65GHz(H-Plane)模擬與實測輻射場型圖…………………………………………………………………………29
圖2.28 寬槽孔天線在2.86GHz(E-Plane)模擬與實測輻射場型圖…………………………………………………………………………30
圖2.29寬槽孔天線在5.65GHz(E-Plane)模擬與實測輻射場型圖…………………………………………………………………………30
圖2.30 矩形槽孔寬頻天線的結構示意圖……………………………31
圖2.31 矩形槽孔寬頻天線 模擬與實測圖…………………………32
圖2.32 矩形槽孔寬頻天線在3.8GHz電流圖………………………33
圖2.33 矩形槽孔寬頻天線在3.8GHz電場圖………………………33
圖2.34對X-Z Plane(H-Plane),在3.8GHz的模擬輻與實測射場型圖35
圖2.35對Y-Z Plane(E-Plane),在3.8GHz的模擬輻與實測射場型圖36
圖2.36 對Y-Z Plane(E-Plane) ,在3.8GHz用加上 轉接頭實測輻射場型圖……………………………………………………………………36
圖2.37(a)改變Lg長度S11模擬圖…………‥…‥‥………………38
圖2.37(b)改變Lg長度S11實測圖…………‥…‥‥………………38
圖2.37(c)改變Lg長度阻抗圖…………‥…‥‥……………………39
圖2.38(a)改變Ws長度S11模擬圖…………‥…‥‥………………40
圖2.38(b)改變Ws長度S11實測圖…………‥…‥‥………………40
圖2.38(c)改變Ws長度阻抗圖…………‥…‥‥……………………41
圖2.39(a)改變Wm2長度S11模擬圖…………‥…‥‥……………42
圖2.39(b) 改變Wm2長度S11實測圖…………‥…‥‥…………42
圖2.39(c)改變Wm2長度阻抗圖…………‥…‥‥…………………43
圖2.40(a) 改變Ls長度S11模擬圖…………‥…‥‥……………44
圖2.40(c) 改變Ls長度阻抗圖…………‥…‥‥…………………44
圖2.41 印刷式天線在PCMCIA Card介面上在筆記型電腦裡應用在WLAN上…………………………………………………………………46
圖2.42 筆記型電腦之PCMCIA 介面的無線網路卡,該無線網路卡可插入筆記型電腦之PCMCIA 插槽……………………………………46
圖2.43 PCMCIA Card天線結構示意圖………………………………47
圖2.44 PCMCIA Card 天線S11模擬與實測圖…‥…‥‥…………50圖2.45(a)在2.76GHz、相位 時電流圖……………………………50
圖2.45(b)在2.76GHz、相位50。時電流圖……………………………51
圖2.45(c)在4.45GHz、相位 時電流圖………………51
圖2.46(a)在2.76GHz時,相位 的槽孔電場圖(含Ex、Ey及Ez分量)
……………………………………………………………………………52圖2.46(b) 在4.45GHz時,相位 槽孔的電場圖(含Ex、Ey及Ez分量)………………………………………………………………………52
圖2.47(a)X-Z Plane(H-Plane)在2.76GHz模擬與實測輻射場型圖…………………………………………………………………………53
圖2.47(b)X-Z Plane(H-Plane)在4.45GHz模擬與實測輻射場型圖…………………………………………………………………………53
圖2.48(a)Y-Z Plane(E-Plane)在2.76GHz模擬與實測輻射場型圖…………………………………………………………………………54
圖2.48(b) Y-Z Plane(E-Plane)在4.45GHz模擬與實測輻射場型圖…………………………………………………………………………54
圖2.49(a)改變Lg長度S11模擬圖…………‥…‥‥………………56
圖2.49(b)改變Lg長度S11實測圖……………………………………56
圖2.49(c)改變Lg長度阻抗圖…………‥…‥‥……………………57
圖2.50(a)改變Ws長度S11模擬圖…………‥…‥‥………………58
圖2.50(b)改變Ws長度S11實測圖…………‥…‥‥………………59
圖2.50(c)改變Ws長度阻抗圖…………………………………………59
圖2.50(d)改變Ws長度S11模擬圖……………………………………60
圖2.50(e)改變Ws長度S11實測圖…………‥…‥‥………………60
圖2.50(f)改變Ws長度阻抗圖…………‥…‥‥……………………61
圖2.51(a)改變Wm2長度S11模擬圖…………‥…‥‥……………62
圖2.51(b)改變Wm2長度S11實測圖…………‥…‥‥……………62
圖2.51(c)改變Wm2長度阻抗圖…………‥…‥‥…………………63
圖2.52(a)改變Ls長度S11模擬圖…………‥…‥‥………………64
圖2.52(b)改變Ls長度S11實測圖…………‥…‥‥………………65
圖2.52(c)改變Ls長度阻抗圖…………‥…‥‥……………………65
圖3.1(a) 正方形環狀天線示意圖…………‥…‥‥…………………71
圖3.1(b) 正方形環狀天線結構圖…………‥…‥‥…………………72
圖3.2正方形環狀天線S11圖…………‥…‥‥……………………72
圖3.3(a) 2.45GHz時,相位 電流圖…………‥…‥‥………73
圖3.3(b) 4.53GHz時,相位 電流圖……‥…‥‥…………………73
圖3.4(a) 在2.45GHz時,相位 正方槽孔環狀上的電場分佈圖…74
圖3.4(b) 在4.53GHz,相位 正方槽孔環狀上的電場分佈圖……74
圖3.5 正方槽孔環狀上的磁流分佈圖‥……………………………75
圖3.6(a) 在2.45GHz時,X-Z Plane(H-Plane)方型環狀天線模擬與實測輻射場型圖………………………………………………………………75
圖3.6(b) 在4.53GHz時,X-Z Plane(H-Plane)方型環狀天線模擬與實測輻射場型圖………………………………………………………………76圖3.7(a) 在2.45GHz時,Y-Z Plane(E-Plane)方型環狀天線模擬與實測輻射場型圖………………………………………………………………76
圖3.7(b) 在4.53GHz時,Y-Z Plane(E-Plane)方型環狀天線模擬與實測輻射場型圖………………………………………………………………77
圖3.8 縮小化環型天線結構圖‥………………………………………79
圖3.9 縮小化環型天線S11圖‥………………………………………80
圖3.10 縮小化環型天線在f=2GHz,相位 的電流圖‥……………80圖3.11 縮小化環型天線在f=2GHz,相位 電場圖‥………………81 
圖3.12 X-Z Plane(H-Plane)在2GHz模擬與實測輻射場型圖………81
圖3.13 Y-Z Plane(E-Plane)在2GHz模擬與實測輻射場型圖………82
圖3.14  縮小迴圈環型天線結構圖……………………………………85
圖3.15  縮小迴圈環型天線S11圖……………………………………86
圖3.16  縮小迴圈環型天線在2.13GHz時,相位 電流圖………86圖3.17  縮小迴圈環型天線在4.61GHz時,相位 電流圖………87圖3.18  縮小迴圈環型天線在2.13GHz時,相位 電場圖…………87
圖3. 19  縮小迴圈環型天線在4.61GHz時,相位 電場圖………88
圖3.20(a) X-Z Plane(H-Plane)縮小迴圈環型天線在2.13GHz模擬輻射與實測場型圖…………‥…‥‥……………………‥‥……………88
圖3.20(b) X-Z Plane(H-Plane)縮小迴圈環型天線在4.61GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥……………89
圖3.21(a)Y-Z Plane(E-Plane)縮小迴圈環型天線在2.13GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥……………89
圖3.21(b) Y-Z Plane(E-Plane)縮小迴圈環型天線在4.61GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥……………90
圖3.22 迴圈縮小化環型天線結構圖………‥‥……………………94
圖3.23 迴圈縮小化環型天線S11圖………‥‥……………………‥95
圖3.24 迴圈縮小化環型天線在2.25GHz時,相位 電流圖………95圖3.25 迴圈縮小化環型天線在3.38GHz時,相位 電流圖………96圖3.26 迴圈縮小化環型天線在4.66GHz時,相位 電流圖……96
圖3.27 迴圈縮小化環型天線在2.25GHz時,相位 電場圖……97
圖3.28 迴圈縮小化環型天線在3.38GHz時,相位 電場圖………97
圖3.29 迴圈縮小化環型天線在4.66GHz時,相位 電場圖………98
圖3.30(a) X-Z Plane(H-Plane)縮小迴圈環型天線在2.25GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥…………98
圖3.30(b)X-Z Plane(H-Plane)縮小迴圈環型天線在3.38GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥…………99
圖3.30(c)X-Z Plane(H-Plane)縮小迴圈環型天線在4.66GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥…………99
圖3.31(a)Y-Z Plane(E-Plane)縮小迴圈環型天線在2.25GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥…………100
圖3.31(b) Y-Z Plane(E-Plane)縮小迴圈環型天線在3.38GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥…………100
圖3.31(c) Y-Z Plane(E-Plane)縮小迴圈環型天線在4.66GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥…………101
圖3.32 縮小化迴圈槽孔天線結構圖…………‥…‥‥……………104
圖3.33 縮小化迴圈槽孔天線S11圖…………‥…‥‥……………105
圖3.34 縮小化迴圈槽孔天線在2.2GHz時,相位 電流圖……‥105
圖3.35 縮小化迴圈槽孔天線2.75GHz時,相位 電流圖…‥…106
圖3.36 縮小化迴圈槽孔天線在2.2GHz時,相位 電場圖…‥…106
圖3.37 縮小化迴圈槽孔天線在2.75GHz時,相位 電場圖‥…‥107
圖3.38(a) X-Z Plane(H-Plane)縮小迴圈環型天線在2.2GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥…………107
圖3.38(b) X-Z Plane(H-Plane)縮小迴圈環型天線在2.75GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥…………108
圖3.39(a) Y-Z Plane(E-Plane)縮小迴圈環型天線在2.2GHz模擬與實測輻射場型圖…………‥…‥‥……………………‥‥……‥‥…108
圖3.39(b) Y-Z Plane(E-Plane)縮小迴圈環型天線在2.75GHz模擬與實測輻射場型圖…………‥…‥‥……………………………………109
圖3.40 單極天線結構圖…………‥…‥‥……………………‥‥110
圖3.41 單極天線S11圖…………‥…‥‥…………………………111
圖3.42 單極天線在3.35GHz時,相位 電流圖…‥…‥‥……111
圖3.43X-Z Plane(H-Plane)單極天線在3.35GHz時模擬輻射場型圖……………‥…‥‥……………………‥‥……………………112
圖3.44Y-Z Plane(E-Plane)單極天線在3.35GHz時模擬輻射場型圖……………‥…‥‥……………………‥‥……………………112
參考文獻
[1] G. A. Deschamps,〝Microstrip microwave antenna,〞presented at the Third USAF Symposium on Antenna,1953.
[2] H.Gutton and G.Baissinot,〝Flat aerial for ultra high frequencies,〞French patent no.703 113,1955.
[3] L.L. Rauth,J.S.McLean,K.R. Dorner, J.R. Casey,and G.E. Crook,〝Broadband low-profile antenna for portable data terminal〞,1997 IEEE AP-S Int.Symp. Dig.,pp.438-441,Monteral,Canda,July 1997.
[4] F.Yang and X.X. Zhang,〝A broadband dual frequency microstrip antenna〞IEEE AP-S Int.Symp. Ding.,PP.960-963, Montreal, Canda, July 1997.
[5] J.F.Zuercher and F.E. Gardiol,Broadband Patch Antenna,Artech House, Norwood,MA,1995
[6] Z.Li, P.Y. Papalambors,and J.L. Volakis,〝Designing broadband patch antennas using the sequential quadratic programming method〞IEEE Trans. Antennas Propagat.,vol.45, pp 1689-1692, Nov.1997.
[7] G. Kumar and K.C. Gupta,〝Broad-band microstrip antennas gap-coupled to the radiating edges〞IEEE Trans.Antennas Propagat., vol.32 , pp.1375-1379,Dec.1984
[8] S.Y. Ke and K.Ll.Wong,〝Broadband cylindrical-rectangular microstrip antennas using gap-coupled parasitic patches〞Microwave Optical Technol.Lett.,vol.7,pp699-701,1994.
[9] T.Huynh and K.F.Lee,〝Single-layer single-patch wideband microstrip antenna〞Electron. Lett. ,vol.31, pp.1310-1312, Sep.14, 1995.
[10] K.F.Tong,T.M.Au,K.M.Luk and K.F.Lee,〝Two-layer five-patch broadband microstrip antenna〞Electron.Lett.,vol.31,pp.1621-1622, Sep.14,1995.
[11] C.K.Wu and K.L.Wong,〝broadband microstrip antenna with directly-coupled and parasitic patches,〞Microwave Opt. Technol. Lett., vol.22, pp.348-349,Sep.5,1999.
[12] T.M.Au and K.M.Luk,〝Effects of parasitic elements on the characteristics of microstrip antennas,〞IEEE Trans.Antennas Propagat.,vol.39,pp.1247-1251,Aug.1991.
[13] G. Kumar and K.C. Gupta,〝Directly coupled multiple resonator wide-band microstrip antennas,〞IEEE Trans. Antennas Propagat., vol.33, pp.588-593,June 1985.
[14] C.L.Tang,C.W.Chiou,and k.l.Wong,〝Broadband dual-frequency V-shaped patch antenna,〞Miicrowave Opt.Technol. Lett.,vol.25. 2000.
[15] G. Kumar and K.C. Gupta,〝Nonradiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas,〞IEEE Trans.Antennas Propagat.,vol.33,pp. 173-178, Feb.1985.
[16] N.Herscovici,〝A wide-band single-layer patch antenna,〞IEEE Trans. Antennas Propagat., vol.46,pp.471-473,Apr.1998.	
[17] T.Huynh and K.F.Lee,〝Single-layer single-patch wideband microstrip antenna,〞Electron.Lett., vol.31, pp.1310-1311, Aug.3, 1995.
[18] E.Chang,S.A.Long and W.F.Richards,〝An Experimental investigation of electrically thick rectangular microstrip antennas,〞IEEE Trans. Antennas Propagat.,vol.34,pp.767-772,June 1986.
[19] Gino Sorbello, Mario Pavone, and Luca Russello1,〝Numerical and experimental study of a retangular slot antenna for UWB communications ,〞MICROWAVE AND OPTICAL TECHNOLOGY LETTERS.,  Vol. 46, No. 4, August 20 2005
[20] 吳俊文,應用於GPS/IMT2000/WLAN多頻段手機之寬頻平面單極天線,國立高雄海院學報,
[21] 郭彭淵,無線網路卡印刷天線暨低溫共燒陶瓷高頻轉接器與濾波器設計,碩士論文,國立交通大學,電信工程研究所,2002年6月
[22] 林琦璋,應用於WLAN以及超寬頻UWB通訊系統之平面印刷式天線的設計研究,博士論文,國立成功大學,電機工程學系,2007年7月 
[23] 史青平,單一饋入寬頻及多頻槽孔天線的設計,碩士論文,淡江大學 電機工程學系,2004年6月
[24] 林佩穎,饋入端Via對微帶線激發平面槽孔天線頻寬特性的影響,碩士論文,淡江大學 電機工程學系,2004年7月
[25] 翁律淨,平面Notch型天線的接地面縮小化及其陣列應用的研究,碩士論文,淡江大學 電機工程學系,2007年6月
[26] 莊宜璋,方型環狀及槽孔型天線特性之研究,碩士論文,淡江大學 電機工程學系,2002年7月
[27] Tzung-Wern Chiou;Kin-Lu Wong,〝Broad-band dual-polarized single microstrip patch antenna with high isolation and low cross polarization〞Antennas and Propagation, IEEE Transaction on, Volume:50 Issue:3, Mar 2002
[28] Granholm,J.;Woelders,K.〝Daul polarization stacked microstrip patch antenna array with very low cross-polarization〞Antennas and Propagation, IEEE Transaction no ,Volume:49 Issue:10, Oct. 2001
[29] Chun-I Lin and Kin-Lu Wong,〝Printed Monopole Slot Antenna for Internal ultiband Mobile Phone Antenna〞, IEEE Transactions on antennas and propagation,Vol.55 no.12,Dec.2007
[30] Horng-Dean Chen,Jin-sen Chen,and Jui-ni Li,〝Ultra-wideband square-slot antenna,〞Microwave and optical Technology Letter Vol.48, no.3 March 2006
[31] Kin-Lu Wong,Yun-Wen Chi,and Shu-Young Tu,〝Internal multiband printed phone application,〞Microwave and optical Technology Letters Vol.49,no.8, August 2007
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信